
CAS-BUS: A Scalable and Reconfigurable Test Access Mechanism for Systems
on a Chip�

Mounir Benabdenebi Walid Maroufi
Meryem Marzouki
LIP6 Laboratory

Couloir 55-65, 4 Place Jussieu
75252 Paris Cedex France

Tel. (+33)1 44 27 39 67 - Fax. (+33)1 44 27 72 80
E-mail : fMounir.Benabdenbi,Walid.Maroufi,Meryem.Marzoukig@lip6.fr

Abstract

This paper describes CAS-BUS, a P1500 compatible Test
Access Mechanism for Systems on a Chip. The TAM archi-
tecture is made up of a Core Access Switch (CAS) and a test
bus. The TAM characteristics are its flexibility, scalability
and reconfigurability. A CAS generator has been developed,
and some results are provided in the paper.

1 Introduction

The design of highly complex systems on single chips
has been the new challenge faced by the design community
for some years. Driven in one hand by the technological
need for high-speed and large bandwidth applications and
in the other hand by the commercial pressure for short time-
to-market, the demand for systems-on-a-chip (SoCs) can be
met thanks to the spectacular progresses in chip integration
capacities, together with the availability of existing, highly
specialized, hardware and software cores. These libraries of
IP cores, either available in-house or commercialized on the
market, are reused by embedding them into a single system
chip, conceptually in the same way as integrated circuits
were connected on PCBs.

However, while system geometry shrinking and design
reusing allow impressive gains, SoC testing faces new set
of problems, among which we can identify:

- testing cores with different functionnalities, coming
from different companies,

- accessing cores from the system primary inputs and
outputs,

- controlling whole SoC test process.

�This work has been partly supported by MEDEA SMT-AT403 Project

Solving these problems needs new types of test architec-
tures, able to manage the test of up to 100 million transistors
cores while allowing the high fault coverage required before
signing off a design to manufacturing. Moreover, highly
standardized solutions are needed in such a context. The
efforts of an IEEE working group [1] have resulted in the
P1500 standard proposal of a core test architecture, which
main elements are, in its current development status:

- test sources to generate the cores test stimuli and test
sinks to compare the test responses to the expected ones.

- A Test Access Mechanism (TAM) in charge of trans-
porting test data between sources, cores and sinks.

- A core test wrapper [2] which is the interface between
the embedded core and the TAM. Through different modes,
it provides test functions at the core terminals.

The major effort of the working group focuses on the
wrapper standardization problem, while source, sink and
TAM design is left to the system designer. TAM architec-
tures can be based on the use of the system bus [3] or on a
specific test bus [4], [5].

In this paper we propose a P1500 compatible TAM archi-
tecture, named CAS-BUS, which falls into the second cate-
gory. It is highly flexible, scalable and dynamically recon-
figurable. The CAS-BUS can be connected to either internal
and external sources and sinks (BIST or off-chip TPG). In
addition, it supports hierarchical core architectures, where a
core can itself embed other cores. More details on SoC test
can be found in [6], [7] and [8].

2 The CAS-BUS architecture

The TAM architecture we propose (figure 1) is composed
by two main elements:

- A Core Access Switch (CAS) which is a simple con-
troller connected to each testable core through the P1500

Sys-inter

Sys-inter Sys-inter Sys-inter

Sys-inter

Sys-inter Sys-inter

CORE 1

CORE 4

CORE 3CORE 2

CORE 5

N

N

CAS 5 CAS 4

CAS

Bus

CAS 1 CAS 2 CAS 3

CAS 6

Controller
Test
SOC

BCU

CORE 6

System bus

Figure 1. The CAS-BUS architecture

wrapper at its test terminals,
- A test bus which is a set of wires transporting serial

test data through the SoC and connecti ng CASes to each
other.

When the system bus is wrapped itself by a P1500 wrap-
per, it also has its dedicated CAS.

Let N be the width of the test bus, and P the number of
test pins for a given core. N is greater or equal to 1 and
P is lower or equal to N. The CAS chooses among the N
wires composing the test bus the P wires which will be con-
nected to the test pins of the core. P depends on the core
test method:

- For scannable cores, P is the number of integrated scan
chains (figure 2 (a)),

- For BISTed cores, P is generally equal to 1 (figure 2
(b)),

- For cores tested using external sources and sinks, P de-
pends on the nature of these source and sink, e.g. P=1 when
the source is a simple LFSR and the sink a simple MISR
(figure 2 (c)),

- For hierarchical cores, we consider that internal cores
can be CASed, and in this configuration P is equal to the
width of the internal test bus (figure 2 (d)).

All test control signals, either for the CAS or for the

testable cores, are connected to a central SoC test controller
which is in charge of synchronizing test data and control.

3 CAS architecture

The CAS is a simple configurable switcher which con-
nects P wires out of the N test bus wires to the core test
input terminals (e.g. scan-in inputs) and collects P wires
from the core test output terminals (e.g. scan-out outputs),
in order to connect them to the test bus. The connection to
the test bus is made through the ei inputs and si outputs,
while the connection to the target core is made through the
oi and ii tri-stated outputs and inputs. Figure 3 details the
CAS architecture, where we can identify:

- An instruction register, used to initialize the adopted
switching scheme. The width of this register obviously de-
pends on N and P values. When all the instruction register
bits are 0, the CAS is in a BYPASS mode, thus no test bus
wire is connected to the core. The instruction registers of
all the CASes are connected to each other through the first
serial test bus wire (e0/s0) during the initialization phase,

- An update mechanism to configure the N/P switcher,
- The N/P configurable switcher. In configura-

tion phase, the tri-stated switcher outputs and inputs are

2

P P

N

P P
P P

(N / 1)(N / P) (N / 1 or P)

SoC Test
Controller

BIST Source

SinkCORE 3

CORE 2CORE 1

CORE 4 CORE 3

P

P

CAS 2

CAS 4 CAS 3

CAS 1 CAS 2 CAS 3 CAS 4

(a)

(b)

(d)

(c)

(N / P)

CORE 1

CORE 4
CORE 2

CAS 1

Figure 2. Test types supported by the CAS-BUS

switched to high impedance.

3.1 CAS functionl modes

The CAS has three functional modes:

tck

configconfig

e0 s0
1

0

1

0

(a) (b) (c)

Figure 4. CAS modes

- The CONFIGURATION mode in which the instruc-
tion register is initialized (all ci are at 1) (figure 4 (a)).
The system test engineer may configure the wrapper in-
dependently, or may want to implement a tri-state mecha-
nism, which allows to configure at the same time the CAS
and the wrapper, by serially connecting the CAS and wrap-
per instruction registers, while synchronizing control sig-
nals of both elements through the SoC test controller (figure
3). The implementation of this mechanism is optional, but
when integrated, it simplifies the overall SoC test architec-
ture configuration during the testing process.

- The BYPASS mode, where all the test bus wires di-
rectly go through the CAS from ei inputs towards si outputs
(figure 4(b)) (instruction: 000...0),

- The TEST mode in which the N/P switcher is config-
ured and the core is considered under test. Each instruction
corresponds to a specific switch scheme. When P wires are
switched to the core, the N-P remaining wires bypass the
CAS (figure 4 (c)).

3.2 CAS Generation

The SoC test designer first has to decide the width of the
test bus (N) and the number of switched wires for each CAS
(P). A trade-off should be made on the value of N: the larger
is the width of the test bus (N), the shorter is the overall
test time. In addition, the number of possible combinations
between N and P has a direct impact on the width of the
CAS instruction register.

In order to reduce the number of combinations and thus
the width of the instruction register, the following heuristic
has been defined: When an input ei is switched to an output
oj , the corresponding ij CAS input is switched to the si

output.
The use of this heuristic (figure 4 (c)) obviously limits

the width of the test bus path between a core and its CAS.
Thanks to this heuristic, we can completely construct a test
bus wire path from an e input to an s output with the same
control word (c0...ck).

Some other heuristics are used to limit the total number
m of combinations, which is equal to the number of required
control instructions for the CAS.

Thus, for m combinations, the width k of the instruction
register can be calculated using the formula :

k = dlog2(m)e

3.3 Implementation and Results

A CAS architecture generator has been developed. It
takes as parameters the N and P values, and provides a
VHDL description of the CAS, which can be synthesized
with a commercial synthesis tool. This generator is writ-
ten in C, however, we have considered an alternative way of
generation, which consists in describing a CAS architecture
in generic VHDL.

In our experiments, we have synthesized various con-
figurations of CASes using the Synopsys Design Analyzer

3

config

1

0
s0

s1

sn-2
sn-1

o0 o1 op-1 i0 i1 ip-1

update

tck

config

c0 c1 ck

SWITCH N / P

1
0

cfcf

cf

config

SI SO

Instruction Register

IP CORE

P1500 WRAPPER

Control

en-1
en-2

e1

e0

Figure 3. CAS architecture

tool. The resulting CAS architecture area is too small (ta-
ble 1) compared to the SoC total area (millions of transis-
tors) to influence the overall SoC test overhead. In fact, the
major part of the test overhead will mainly be caused by
the core internal DFT functionalities (including the P1500
wrapper). However, when the width of the test bus becomes
important, the induced CAS-BUS overhead can be signifi-
cant. A good trade-off between test time, test requirements
and CAS-BUS overhead allows to choose an optimal width
for the test bus.

N P m k # of gates.

3 1 5 3 16
4 1 6 3 23
4 2 14 4 64
4 3 26 5 118
5 1 7 3 28
5 2 22 5 85
5 3 62 6 205
6 1 8 3 33
6 2 32 5 134
6 3 122 7 280
6 5 722 10 1154
8 4 1682 11 4400

Table 1. CAS synthesis results

It is important to note that the width of the CAS instruc-
tion register, even when it is large, does not affect the test
time, since the SOC test architecture configuration will only
occur once at the beginning of a SoC testing session.

Moreover, two other ways to generate CASes are now
under study. The first one consists in generating a highly
optimized gate level description. The second one, which
is much more optimized, considers a hardware architecture
based on the use of pass transistors. These architectures are
not detailed in this paper, but first experiments have shown
that they solve the CAS area problem for large width test
busses, even without restricting heuristics.

4 CAS-BUS Benefits

The CAS-BUS has multiple advantages due to its flexi-
bility, scalability, reconfigurability and dynamic aspect:

- Supporting different core test methods (Scan, BIST,
parallel test),

- Allowing the test of hierarchical cores without degrad-
ing performances in terms of reconfigurability and flexibil-
ity,

- Thanks to the CAS reconfigurability, the CAS-BUS ar-
chitecture can be easily modified, even during test sessions,
in order to optimize test performances. A good collabora-
tion between the test designer and the test programmer leads
to a good trade-off between test overhead and test time. For
example, in case of scanned cores, the test programmer can
balance the length of the scan chains within the test pro-
grams, in order to reduce the test time. In the same way,
SoC interconnect test time can be optimized when adopting
a good configuration of the test chains,

4

- In case of maintenance test, it is possible to test some
embedded cores while others are in normal functionning
mode. This is very useful when, e.g., an embedded memory
test is periodically required.

Compared to other approaches described in the litera-
ture, the CAS-BUS has the advantage of being independent
of any industrial proprietary SoC architecture. Moreover,
we propose an architecture where the TAM can be used
with any kind of wrappers (either proprietary or standard
to be defined, e.g. the P1500 wrapper in its current status),
contrarily to approaches like [4], where the TAM and the
wrapper are closely merged, leaving few freedom of deci-
sion to the system integrator. On the contrary, the CAS-
BUS eases the SoC test architecture design by using plug-
and-play CAS modules.

5 Conclusion

A P1500 compatible reconfigurable TAM architecture
has been presented in this paper. It is characterized by
its flexibility, scalability, reconfigurability, and dynamic as-
pect. The Core Access Switchers (CASes) and the test bus
are the main components of the proposed architecture. Tak-
ing into account the test functionalities within the embedded
cores and the required test performances, the test designer
and the test programmer can make a decision concerning
the test bus width, which then allows the generation of the
reconfigurable CAS switchers.

Associated with a SoC central test controller, in charge
of test data and control synchronization, and with the P1500
wrappers, the proposed CAS-BUS can offer a complete test
architecture for the SoC.

Different TAM architectures can be addressed, in se-
quentiel order, within the same test program, in order to
optimize test performances (time, pattern length, etc.). This
represents the main advantage of the proposed reconfig-
urable CAS-BUS architecture.

References

[1] IEEE Computer Socity. IEEE P1500 Standard for
Embedded Core Test. Technical report, IEEE,
http://grouper.ieee.org/groups/1500, 1998.

[2] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and
l. Whetsel. Towards a standard for embedded core test:
An example. In International Test Conference, Atlantic
city, NJ, September 1999.

[3] P. Harrod. Testing reusable ip - a case study. In Inter-
national Test Conference, pages 493–498, Atlantic city,
NJ, September 1999.

[4] E. J. Marinissen and al. A structured and scalable mech-
anism for test access to embedded reusable cores. In In-
ternational Test Conference, Washington, DC, October
1998.

[5] P. Varma and S. Bhatia. A structured test re-use
methodology for core-based system chips. In Interna-
tional Test Conference, Washington, DC, October 1998.

[6] R. K. Gupta and Y. Zorian. Introducing core-based sys-
tem design. IEEE Design and Test of Computers, pages
15–25, October 1997.

[7] Y. Zorian, E. J. Marinissen, and S. Dey. Testing
embedded-core based system chips. In International
Test Conference, Washington D.C., USA, 1998.

[8] Y. Zorian. Testing the monster chip. IEEE Spectrum,
pages 54–60, July 1999.

5

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

