Faster Optimal Single-Row Placement with Fixed Ordering

U. Brenner

J. Vygen

Research Institute for Discrete Mathematics, University of Bonn

Lennéstr. 2, 53113 Bonn, Germany

Abstract

We consider the problem of placing a set of cells in a
single row with a given horizontal ordering, minimiz-
ing the (weighted) bounding box netlength. We analyze
the running time of an algorithm of Kahng, Tucker and
Zelikovsky which solves this problem optimally. By us-
ing different data structures we are able to improve the
worst—case running time in the unweighted case as well
as in the presence of netweights.

1. Introduction

The one—dimensional placement problem consists of
placing a set of cells within a single row. The objective
is to minimize the bounding box netlength estimation.
Even this restricted problem is NP-hard [1]. In this
paper we consider an even more restricted problem,
which is easier to solve: we assume a fixed ordering of
the cells to be placed. More precisely, we consider the
following problem:

Given cells Ci,...,C, with widths w
{C1,...,Cr} — Ry and a total row width
W > Y, w(C;), a feasible placement is a
function p {C1,...,Cn} — Ry such that
p(Cit1) > p(Ci) + w(C;) for ¢ = 1,...,n — 1
and W > p(C,) + w(C,). Moreover, we are given
a netlist, possibly with net weights, and we ask
for a feasible placement with minimum (weighted)
bounding box netlength. We call this problem the
Ordered Single Row Problem (OSRP).

This problem occurs as the final task of some de-
tailed placement tools for standard cells (see e.g. [3]),
considering each row (or each maximal part of a row
not blocked by any macros) separately. Even if other
methods for detailed placements are used, the OSRP
can be applied afterwards to improve the design (as
shown in [2]).

The OSRP can be formulated as a linear program
which is the dual of an uncapacitated minimum cost
flow problem [3]; indeed this also holds when consider-
ing several (or all) rows simultaneously. This leads to

an O(m? log? m)-algorithm, where m is the number of
nets with at least one movable pin.

Kahng, Tucker and Zelikovsky [2] improved this con-
siderably. They developped a so—called CLUMPING
ALGORITHM which solves the OSRP optimally. How-
ever, their algorithm is slower than stated in [2]: we
show that it needs time ©(m log® m) in the unweighted
case and ©(m?) in the weighted case. We use different
data structures to implement the CLUMPING ALGO-
RITHM with a running time of O(mlogmloglogm) in
the unweighted case and O(mlog® m) in the weighted
case. Besides being of theoretical interest, these im-
provements may also be relevant in practice since cur-
rent designs already have rows with several thousand
cells.

2. Notation
As [2] we define for each net N:

e L(N) (R(N)) is the leftmost (rightmost) movable
cell which has a pin of N (we consider only nets
with at least one movable pin);

e fi(N) (f-(N)) is the position of the leftmost
(rightmost) fixed pin of N.

We assume that every net has at least one fixed pin.
This causes no loss of generality: A net N without
fixed pins can be replaced by two new nets; the first
one connects L(N) with a fixed pin at position W, the
second one connects R(N) with a fixed pin at posi-
tion 0. It is easy to see that the resulting instance is
equivalent.

If all pins are on the left edge of their cells (i.e. with-
out pin offsets), the horizontal part of the bounding
box netlength of a feasible placement p is

> (max{f,(N),p(R(N))} — min{fi(N), p(L(N))}),

N
or equivalently,

SN = £i(N) + 3 coste, (0(CH)),
i=1

N

where the cost function costc of cell C is defined on
the interval [0, W — w(C)] by

max{f;(N) — z,0}

costo(z) = Z

N:L(N)=C

DS

N:R(N)=C

max{z — f.(N),0}.

The vertical part of the bounding box netlength is
fixed in the OSRP. Of course, (horizontal) pin offsets
can easily be taken into account by shifting fixed pins.

The function costc describes the contribution of cell
C to the bounding box netlength. So the task is to find
a feasible placement p minimizing

Z costo; (p(Cy)).

In the second part of this paper we shall also con-
sider weights 7(N) > 0 for all nets N; in this case
costo(z) = EN:L(N):C T(N)max{fy(N) — z,0} +
2 n:r(Ny=c T(IV) max{z — f,(N),0}. The cost func-
tion costc is the sum of convex piecewise linear func-
tions and hence is convex and piecewise linear itself.

Without loss of generality n < 2m since a cell C, for
which no net N with R(N) = C or L(N) = C exists,
can be placed arbitrarily; we can delete C' and increase
the width of its predecessor by w(C).

For each cell C we denote by [I(C),r(C)] the in-
terval within [0, W — w(C)] where costc assumes its
minimum. Of course, [(C) = r(C) is possible.

filN:) £ (M)

;

N

Cy Co

fi(N2) L

fi(IN3) ¢ fr(INs)

1(C2) r(Cs)

Figure 1.

Example: Figure 1 shows an instance of OSRP
with two cells and three nets Ny, N» and N3. Here
C1 = L(Nl), and 02 = R(Nl) = L(NQ) = R(Nz) =
L(N3) = R(N3). The cost function of Cy has six dif-
ferent slopes. Cs is placed on position I(C5).

It is convenient to represent the cost function coste
by a set M (C) of slope changes:
M(C) = {(fi(N),—7(N)): C=L(N)}
U A{{fr(N),7(N)) : C = R(N)}.
The slope of the cost function at an arbitrary position
y (with y # z for all (z,0) € M(C)) can be com-
puted by adding the positive weights of the elements
to the left of y and the negative weights of the elements
to the right of y, i.e. E(z,d)éM(C):z<y max{0,0} +
2 (r,0)eM(C)a>y Min{0,0}. Note that for all (z,0) €
M(C) we have z < I(C) or z > r(C). Moreover,

3. The Clumping Algorithm

The following algorithm of Kahng, Tucker and Ze-
likovsky [2] solves the OSRP optimally:

CLUMPING ALGORITHM

An ordered list £ of cells Cq,...,C, and
their widths w : {Cy,...,Cr} = Ry;

nets Ni,..., Ny and their weights 7
{Nl, . ,Nm} — |R+

Output: A feasible placement p:{C1,...,Cp} =Ry .

@ Add an auxiliary element Cy at the front of £
and set p(Cp) := 0 and w(Cy) := 0.
Fori=0,...,n:

Initialize M(Ci), l(CZ) and T(CZ)
Fori=1,...,n: PLACE(C};, £);
Use p: £L — R4 to compute the positions of the
original cells p: {C4,...,Cr} — R4.

Input:

ee ©

Prace(C, £)
(D Let C' be the predecessor of C in L.
@ Ifp(C") +w(C') <r(C)
then p(C) := max{p(C") + w(C"),I(C)}
else CoLLAPSE(C', C, £) and PLACE(C', £).

CoLLapsg(C',C, L)

(D Shift the coordinates of all entries of M (C) by
w(C") units to the left.

® M) :=M(C")YUM(O).

® Find in M(C") the new positions of [(C") and
r(C") (with respect to the cost function of the
merged cell made of C' and C).

@ w(C) :=w(C") +w(C).

® Remove C from L.

The function PLACE first tries to place cell C at the
leftmost position which is to the right of its (already
placed) predecessor C' and within [[(C),r(C)]. If this
is impossible because r(C) < p(C") + w(C"), we apply
CoLLAPSE to merge C' and C to a single cell. In

particular, C' and C are merged if there is not enough
space for C' to the right of C".

The coordinates of M (C) must be shifted by w(C")
units to the left in) of COLLAPSE in order to take
the new pin offsets into account.

After the procedure PLACE has been called for all
cells in @), it is easy to derive the positions of the
original cells from the placement of the merged cells

in @.
Theorem 3.1 The CLUMPING ALGORITHM finds an
optimum placement.

For the simple proof we refer to [2].

4. Analysis of the running time

Evidently the running time of the CLUMPING AL-
GORITHM mainly depends on the data structures used
to represent the sets M (C;). Kahng, Tucker and Ze-
likovsky [2] recommend red-black trees, since they al-
low inserting an element and determining the succes-
sor or predecessor in logarithmic time. Steps @ and
® of COLLAPSE can then be implemented (assuming
|[M(C)] < |M(C")|) by scanning M(C) from left to
right, inserting the elements of M (C) into M (C") and
shifting [(C") and r(C") by one position to the left or
to the right if necessary after an insertion. (If the net
weights are not constant, it may be necessary to shift
1(C") and r(C") by more than one position.)

If |IM(C)| > |M(C")|, then we interchange the roles
of C and C’'. We introduce a global offset for the new
cell, —w(C"), and move the coordinates of all entries
of M(C") by w(C") to the right.

For unit weights 7 = 1 the running time is
O(mlog®m): Merging two cells takes O(Ilogm) time,
where [= min{|M(C)|,|M(C")|}. Since the cardi-
nality of the united set M(C) is at least 2, each
element of |J_; M(C;) can be only logm times ele-
ment of the smaller set in COLLAPSE. Since all other
parts of the algorithm can easily be implemented in
O(mlogm) time, we obtain an overall running time of
O(mlog®m).

Kahng, Tucker und Zelikowski [2] even state a run-
ning time of O(mlogm). However, we shall now prove
that no better bound than O(mlog®m) can be shown
for their implementation:

Theorem 4.1 Let ¢ be a sufficiently small posi-
tive constant, such that COLLAPSE(C,C",L) takes
at least cllogl elementary steps, where | =
min{|M(C)|,|M(C")|}. Moreover we assume that the
CLUMPING ALGORITHM needs at least g steps for in-
stances with just one cell.

Then for each k € IN there is an instance of the
OSRP with 2% cells and 2% nets of unit weight, such

that the CLUMPING ALGORITHM takes at least c(k —
1)22k=3 steps.

Proof (Sketch): By induction on k we show the ex-
istence of an instance I(k,a, s) of OSRP with the fol-
lowing properties, for each @ > 0 and each s € {0, —1}.

o The instance has 2* cells of unit width; each cell
has precisely one pin, located at the left edge of
the cell.

e The instance has 2* nets of unit weight; each net
has one movable pin and one or two fixed pins.
If a net has two fixed pins, then one of them has
z-coordinate 0.

e The CLUMPING ALGORITHM merges all cells to
one; the cost function of the final merged cell has
slope s in the interval [0, a] and assumes its min-
imum in a.

e The CLUMPING ALGORITHM takes at least c¢(k —
1)22k=3 steps.

For ¥k = 0 and s = 0 consider an instance whose
only cell has one pin which is connected by a three—
terminal net to fixed pins at coordinates 0 and a. For
k = 0 and s = —1, the cell’s pin is connected by a
two—terminal net to a fixed pin at coordinate a.

For the induction step we want to show the exis-
tence of an instance I(ko,ao,So) with the properties
above by using the induction hypothesis that claims
the existence of instances I(k,a,s) for k < ko, a > 0
and s € {0,1}. We apply the induction hypothesis
tok =ky—1,a =ag+2% —1, s = —1; the re-
sult are the first 2501 cells of our instance. Next
we apply the induction hypothesis to £k = kg — 2,
a = ag+ 2k +2k0—1 _1 and s = 0, then to k = ko — 3,
a = ag + 2% 4 2k~ 4 9k0=2 _ 1 and s = 0, and so
on. Up to now we have an instance with 2F — 1 cells
and nets. If we apply the CLUMPING ALGORITHM
to this instance, we have at the end k¢ merged cells,
the first of which has width 2¥o—1 the second one has
width 2%0=2 and the last one has width 1. These are
placed directly next to each other. The CLUMPING
ALGORITHM needs at least 50" ¢(i — 1)22¢~2 steps
for this instance.

To complete our instance we create one more cell
(the rightmost one), whose pin is connected to a fixed
pin at coordinate 0 (for s = 0) resp. to two fixed pins
at coordinates 0 and ag + 2% (for s = —1). If we
apply the CLUMPING ALGORITHM to the completed
instance it first behaves as if run on the incomplete
instance without the rightmost cell. At the end this
cell is considered and merged successively with its pre-
decessors, because initially we have I(Cyr) = 0 and
either r(Cyro) = ag + 2% or 7(Cyr+1) = 0. Since each
predecessor C' of Cyr, has I(C) < ag + 250 — 1, Co,
is indeed merged with all its predecessors into a single

cell. One easily checks that the instance has the other
asserted properties.

For placing the rightmost cell the algorithm needs at
least Y +00 " 2iclog(27) steps, hence the overall running
time is at least ¢ Efigl 2"(@ +14) > (kg —1)22k0—3
(the last inequality follows by an easy induction on kg).

O

5. Improved Implementation

We now suggest an improved implementation. To
simplify our notation we assume x # z' for differ-
ent elements (z,0), (2',0") € M(C) for each cell C.
We store M (C) as a set of at most [log(2m)] ordered
doubly-linked lists. The elements (z,0) € M(C) in
each list are sorted by their coordinate z.

For each list of M(C) we maintain a pointer to the
rightmost list element to the left of /(C'). When merg-
ing two cells C' and C' (with |[M(C)| < |M(C")]), we
just add a list representing M (C) to M(C"). If after
this the number of lists of C' exceeds [log(2m)], we
merge two of them.

We now describe our implementation in detail.
When merging two cells C and C' in COLLAPSE, where
|M(C)| < |M(C")|, we proceed as follows (implement-
ing @ and @ of COLLAPSE):

e Suppose M(C') is stored in ¢ lists My,...,M;
(where t < [log(2m)]). Merge all lists of M(C)
into a single ordered list M.

e Find in M; U...UM;y; the [Myyq| rightmost ele-
ments to the left of I(C") and the |My41]| leftmost
elements to the right of r(C"). Let M be an or-
dered list containing I(C"), r(C"), the first | M, |
predecessors of [(C"), the first | My 1| successors
of r(C'), and all elements in between [(C') and
r(C").

e The new positions of [(C') and r(C") must be el-
ements of M. Therefore they can be found by
scanning M;,; and successively updating [(C")
and r(C') in M.

e Ift+1 > [log(2m)], then choose two lists among
{Mi,..., M1} whose lengths differ by at most
a factor of 2. Merge these lists.

Theorem 5.1 With the above implementation the
overall running time of COLLAPSE, and hence of the
CLUMPING ALGORITHM, is O(mlogmloglogm) for
unit net weights.

Proof: The running time of the CLUMPING ALGO-
RITHM is dominated by the time needed for COLLAPSE.
With the above implementation there are three rele-
vant contributions:

1. The time for computing M;1:

We can compute My;; in time O(| M1 |loglogm):
Let M(C) be stored in Mj,...,M],. Merge the lists

M},_, and M}, to one list for i € {1,..., |4 |}. This
can be done in time O(|M;1]|) and the result is a set
of [%] lists that contain the elements of M(C). By
iterating this method one gets a single list in time
O(|M¢41]loglogm) because the number of lists de-
creases in each iteration by a constant factor.

Finally we compute a pointer to the rightmost ele-
ment of M1 to the left of [(C') by simple scanning
of the list (in O(|M(C)|) time).

As |M(C") U M(C)| > 2|M(C)|, each element can
belong to M, at most O(logm) times. Hence the
overall running time for computing the sets M, in all
calls to COLLAPSE is bounded by O(m logm loglogm).

2. The time for computing M and the new positions
of [(C") and r(C"):

Recall that for each list we maintain a pointer to
the rightmost list element to the left of I(C'). We
put these ¢t + 1 elements into a heap and proceed as
follows: In each step we remove the rightmost element
from the heap (say it was in list 4) and insert it into
M. Then we insert the preceding element of list ¢
into the heap. The part of M to the right of r(C") is
computed similarly, the elements in between [(C") and
r(C") can be obtained by scanning M;, 1. We get a
running time of O(|M;1]|loglogm +logm) (inserting
an element and removing the minimum element takes
logarithmic time). The additional time for computing
the new positions of [(C") and r(C") is then O(|M]) =
O(| My 41])-

Since each element can belong to M;;; at most
O(logm) times, and the overall number of calls to
COLLAPSE is at most n = O(m), the overall running
time for computing M and updating [(C") and r(C")
is O(mlogmloglogm + mlogm).

3. The time for merging two lists (if t + 1 >
Nlog(2m)1):

This time is linear in the length of the longer list.
Since the longer list grows by at least a factor %
when subject to merging, each element can belong
to a longer list which is merged at most logz (2m)
times. Hence the overall running time for this step
is O(mlogm). m|

6. Net weights

Both implementations discussed above become less
efficient in the presence of netweights. In this case the
number of successors or predecessors to be considered
for updating I(C") and r(C") cannot bounded by the
number of elements inserted into M(C"). In general
one may have to consider all predecessors/successors,
and the worst—case running time becomes ©(n?).

However, in the special case when all net weights
are within a fixed range, say an interval [a,b], then

one has to consider only [2] predecessors and suc-
cessors of [(C") and r(C") when inserting an element
into M(C"). Hence the running times of the above
implementations increase by a factor O(%) In many
practical situations, this factor can be considered as
bounded by a constant. In this case we still have a
running time of O(m logmloglogm).

In the rest of this paper we consider arbi-
trary netweights. We show how to implement the
CLUMPING ALGORITHM to obtain a running time of
O(mlog®m) in the general case.

We store M (C) as a list of ordered doubly-linked
lists Lo, ..., L; with the following properties:

1. Lg contains all elements of M (C).

2. L; (i > 0) is a sublist of L; ; containing the first
and the last element of L; ;. For each element e
of L; there is a pointer 7(e) to the corresponding
element of L;_i. For each two consecutive ele-
ments e, e’ of L; the number of elements between
m(e) and w(e') in L; 1 is 1 or 2.

3. L; consists of two elements.

So L; arises from L;_; by iteratively skipping one
or two elements. Hence |L;| < 2(|L;_1|+ 1), implying
t = O(logm).

For two consecutive elements e = (z,0) and e =
(«',0") of L;, i = 0,...,t, we store the sum of all
absolute values of the weights of the elements of M (C)
between e and e’ (not counting e and e’ themselves):
we write Ti(e, €') 1= 30, Hem(Cyacy<a T

We shall use variables sl(x) for the slope of the cost
function to the right of z; at any stage we maintain
sl(=00) := ¥, »yem(c) min{o, 0} for each cell C.

These data structures can be built initially in
O(mlogm) time. We now show how to insert an ele-
ment e into M (C'), maintaining the above data struc-
tures. We have lists Lo, ..., L; with properties 1,2,3;
we assume |Lg| = |M(C)| > 3. Moreover we have
numbers 7; and sl(—o0).

INSERT(e = (z,0))
@ Insert e into Lo at the appropriate place.
@ Fori=1,...,t:
If there are neighbours €', " in L; such that
L;_1 contains three elements between m(e')
and m(e") in L;_; then insert the middle

element between e’ and e” into L;.
@ If L; has three elements then let L;11 be a list

consisting of the first and the last element of L;
and set t :=1¢ + 1.
Set sl(—o0) := sl(—o00) + min{o,0}.
Fori=1,...,t
Use 7;_1 and L; ; to determine 7;.
@ Let Lt be the list (1’1,0’1), (332,0’2). Set lt =1,
ry := 22 and sl(ly) := sl(—o0) + |o1].

©6

@® Fori=t—1,...,0:
Let e1 = (21,61), - .-, ex = (2, (k) be the
sublist of L; from 7(l;y1) to m(riyr1)-
Set j := 1.
Repeat
ji=j+1
sl(zj) = sl(zj-1) + Tiej-1,€;) + |G-
Until j =k or si(z;) > 0.
Set I; :==e;_1 and r; := e;.
® Ifsi(lp) > 0 then r(C) := Iy else r(C) :=ro.
If sl(lp) > 0 then [(C) := I else [(C) := ry.

An easy induction shows that the variables sl(z) in
® and (D) contain the slope of the cost function to the
right of . We use the observation that (z,0) € M(C)
means that the slope of costc increases at x by |o|.

Before termination we always have sl(l;) < 0 and
sl(r;) > 0. Hence the interval minimizing the cost
function must be between [; and r;.

To check the running time, we first show how to
implement @ in O(logm) time: Find in each list,
beginning with L;, two successive elements between
which e has to be placed. By using the pointers m,
this can be done in constant time per list.

Similarly, each iteration in (2) takes constant time
since we only have to consider the neighbours between
e has been inserted. To find these, we can either use
reverse pointers 7! in addition to 7, or we store the
neighbours considered in Q).

So @ takes O(logm) time. Similarly, & takes
O(logm) time. @, @ and ® obviously take con-
stant time only. Moreover, each iteration of () can be
done in constant time as k € {3,4}.

So the running time of INSERT is indeed O(logm)
as required. When merging C' and C' we insert
the elements of M(C") into M(C) (or vice versa if
|M(C)| < |M(C")]); then each element is inserted at
most log m times. This yields an overall running time
of O(mlog® m) of COLLAPSE and hence of the CLUMP-
ING ALGORITHM, for general net weights.

We thank an anonymous referee of this paper for his
useful remarks.

References

[1] M.R. Garey, D.S. Johnson, L. Stockmeyer: Some
Simplified NP-Complete Graph Problems. Theoret-
ical Computer Science 1 (1976), 237-267

[2] A.B. Kahng, P. Tucker, A. Zelikovsky: Optimiza-
tion of Linear Placements for Wirelength Minimiza-
tion with Free Sites. Proc. of the Asia and South Pa-
cific Design Automation Conference, 1999, 241-244

[3] J. Vygen: Algorithms for Detailed Placement of Stan-
dard Cells. Proc. of the Conference Design, Automa-
tion and Test in Europe (DATE’98), IEEE 1998, 321-
324

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

