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Abstract

This paper describes a mew multi-level partitioning
algorithm (PART) that combines a blend of iterative
improvement and clustering, biasing of node gains, and
local uphill climbs. PART is competitive with recent
state-of-the-art partitioning algorithms. PART was
able to find new lower cuts for a number of benchmark
circuits.

1. Introduction

A partition of a hypergraph G(V, E) is an unordered
pair (V1,V3) of subsets of V' such that Vi UV, =V
and V1 NV2 = 0. The size S(A) of a subset of nodes
A C V is the sum of the sizes of its constituent nodes.
A partition (V1, V») is a bisection (balanced partition)
if | S(Vi) — S(V2) | < aS(V), where « is some
pre-specified constant. A net e is said to be cut by
a partition (Vq,V3) if it links nodes in V; and in V5,
ie, enVy # 0 and enVy # 0. The cut ( cost ) of
a partition (Vy,Vs) is the subset ( number ) of nets
cut and is denoted by cut(V1, Va) ( cost(V1,Va) ). The
network bisection problem (NB) seeks a bisection of
minimum cost,

2. Multi-level partitioning

Contraction is an operation in which several nodes
are clustered (contracted) together to form a single
node. Contraction is used in the coarsening phase of
multi-level algorithms [7, 2]. PART differs from other
multi-level algorithms in its coarsening phase which
produces a sequence (Go,FPy) — (G1,P1) — ... —
(Gi—1,P—1) — (G1, P), where G = Gy is the input
graph, and P, = (Vj1,V;2) is a partition of G; for
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0 <i<l Forl <i <l the pair (G;,P;) is ob-
tained from (G;_1,P;—1) as follows. An iterative im-
provement algorithm is applied to refine partition P;_;
which along the way computes disjoint subsets of nodes
for contraction such that nodes to be contracted belong
to the same side of the refined partition P, ;. There-
fore, after contraction of G;_; into G;, partition P;_;
projects to a partition P; of G;. To get the process
started, the first partition Py of G is generated ran-
domly.

The un-coarsening phase in PART proceeds just like
other multi-level algorithms. For [ > i > 0, parti-
tion P;y; is projected to a partition of G; which is
then refined to replace P; by an iterative partition-
ing algorithm. However, unlike other multi-level algo-
rithms, some refinement steps are skipped during the
un-coarsening phase as we will explain later.

The advantages of the coarsening scheme used by
PART are:

e The best partition is refined during coarsening, so
that partition P, of the coarsest graph projects to
a good partition of G = Gy.

e Coarsening is a by-product of iterative improve-
ment at almost no additional computation cost.

e Coarsening and un-coarsening can be repeatedly
applied until no further improvements can be
made.

During the un-coarsening phase many refinement
steps are skipped altogether. A refinement step is
skipped if it is unable to produce any improvement.
The coarsening phase guarantees that cost(Pi11) <
cost(P;). Therefore during the un-coarsening phase, if
cost(P;41) = cost(P;) then refinement is skipped. Oth-
erwise, P;11 projects to a partition of G; that will be re-
fined and then will replace P;. We note that most of the
refinement steps are skipped during the un-coarsening
phase of PART. The reason for skipping refinement
during the un-coarsening phase is simple. During the
coarsening phase, P;;; was obtained from P; using an



iterative improvement algorithm. If during the un-
coarsening phase we see that cost(Piy1) = cost(P;),
then the iterative improvement algorithm was unable
to improve P; during coarsening. This means that the
iterative algorithm will not improve this partition now,
and therefore the refinement step is skipped.

3. Iterative improvement and contrction

The core of PART is an iterative improvement pass
that refines the current partition, and at the same time
colors some of the nodes. The colors are used to con-
tract the graph during the coarsening phase and are
not used at all during the uncoarsening phase. The
iterative improvment pass is a variant of the Fiduccia-
Mattheyses [5] algorithm and is essentially a modified
version of the improvement pass used in [8].

Given an initial bisection, i.e., a partition that sat-
isfy the size balance criterion, sequences of nodes are
moved from one side of the partition to the other side
until every node has moved once. Several subsets of
nodes in the same sequence may be colored with the
same color signaling that these nodes should be clus-
tered together. The rational for this clustering scheme
is simple. Nodes that are heavily connected to each
other tend to migrate together during iterative im-
provement. The best bisection seen during the iterative
improvement pass is saved.

The order in which nodes are moved from one side
of the partition to the other is determined by the gain
of nodes. The gain of a node is the net decrease (may
be negative) in the number of nets cuts if the node is
moved to the other side of the partition. The node with
highest gain is moved first. To facilitate retrieval of the
node of highest gain, a bucket structure as described
in [5] is used with the LIFO scheme as described in [6].
The first initial bisection is randomly generated.

Coloring of the nodes during the iterative pass is
done as follows. Initially all nodes are not colored. A
soon as a node v is moved, it is made contractable.
Then v and all other contractable nodes that are con-
nected to it via critical nets, are colored by a new color
and their contractability is removed. If it turns out
that only v gets the new color, then the color of v is
removed and the contractability of v is restored. A net
is critical for node v if it is removed from the cut after
moving v to the other side of the partition. At the end
of the iterative improvement pass, nodes of the same
color are clustered together. Other nodes connected to
v via non-critical nets are not selected for clustering
with v to slow down the clustering process and for effi-
ciency purposes. See [8] for more detailed explanation
on this issue.

The function MOV E(v, A, B) performs the update
needed to move node v from side A to side B of the
current partition. Basically, MOV E(v, A, B) moves v
from A to B, sets free(v) = false, updates gains of
all affected nodes, and, while doing gain updates, it
colors v and all its contractable neighbors via critical
nets with a new color and set contractable(x) = false
for all nodes that got the new color. If only v gets
the new color then it sets color(v) = NoColor and
contractable(v) = true.

we are now ready to present the complete the de-
scription of the iterative improvement pass with con-
traction:

1. For each node v, set free(v) = true, color(v) =
NoColor, and contractable(v) = false.

2. Save the initial input bisection (V7,V3) as the best
bisection so far (B, Ba).

3. Partition Side Selection: for 1 < ¢ < 2, let h; be
the highest gain of a free node in V;. If V; has no
free nodes then set h; = —oo. If h; = hs then toss
a balanced coin and set j = 1 or 7 = 2 depneding
on the outcome of the toss. otherwise set j as the
index of the side with the highest gain.

4. Forward move: If V; has no free nodes then go
to step 7. Otherwise let v be a free node of
highest gain in V;. Record cost of current par-
tition in OldCost. Call MOV E(v,V;,V(3_j)).
if cost(V1,Va) >= OldCost then repeat this
step. Otherwise, for each contractable node z, set
contractable(x) = false.

5. Restore size: Let j be the index of the largest side
of the partition. Aslongas S(V;) — S(V(z_j)) >
aS(V) and V; has free nodes do: let v be a free
node of highest gain in V;. If | S(V; —v) —
S(Vis_jyuv) | < | S(Vj) = S(V(z_j) | then call
MOVE(v,V;,V(3_;). Otherwise for each con-
tractable node z, set contractable(x) = false.

6. Save: If (Vi,V,) is a bisection then if
cost(V1,V2) < cost(B1,Bs) or if cost(Vy,V2) =
cost(By,By) and | S(V1) — S(V2)| <
| S(B1) — S(B2) |, then replace (B, Bs) with
(V1,Vs). Go to step 3

7. Restore best bisection:
(B1, Ba).

8. Contraction: Color each remaining uncolored node
with a new color. cluster together all node with
the same color.

replace (V1,Va2) with

The above pass takes an input graph G; and a ini-
tial bisection P; = (V;1,Via) of G;. It then improves
P; and contract G;. It returns the contracted graph



G(iy1) and an initial bisection P11y of G(;11) which
is the projection of the best bisection P; of G;. We en-
capsulate this iterative improvement pass in the func-
tion REFINE — AND — CONTRACT (G, P;). This
function is the main function used during the coars-
ening phase. The same function with the contraction
operation removed is used in the uncoarsening phase.
We call this function REFINE(G;, P;). During the
uncoarsening phase the function MOV E(v, A, B) can
be modified to ignore coloring of nodes although this
does not significantly affect the running time.

A single multi-level pass consists of a coarsening
phase followed by an uncoarsening phase. We will en-
capsulate this pass in the function /M PROV E(G, P)
which takes as input a hypergraph G and a partition
P = (V1,V2) of G, and returns an improved parttion
of G. One approach to optimize an initial bisection is
to call function /M PROV E repeatedly until no more
improvements can be made. We experimentally found
that this approach can find good bisections. However,
we were able to obtain better results by applying node
gain biasing and local bisection perturbations inspired
by the work in [3].

4. Node biasing

Paper [3] points out that during a pass of a Fiduccia-
Mattheyses [5], a net e can be in one of three states:

e Free: all nodes of net e are free.

e Loose: only one side of the partition contains
locked nodes of net e. The side that contains
locked nodes of net e is called the anchor of e.
The other side is called the tail of e.

e Locked: Both sides of the partition contain locked
nodes of net e.

Furthermore, the state of a net changes from free
to loose to locked in that order. Clearly locked nets
cannot be removed from the cut for the remainder of
the iterative pass. Therefore, it makes sense to increase
the chances of removal of loose nets from the cut be-
fore they become locked. This is achieved by positively
biasing the gains of nodes of a loose net that are in the
tail of the loose net. The author of [3] use a formula for
the additional bias that favors short nets, dense con-
nectivity at the anchor, and sparse connectivity at the
tail. They apply the bias every time a node of a loose
net moves, and they do not remove the bias once the
net is locked. Our approach to biasing is simpler. A
bias of 1 is added to all nodes in the tail of a net e only
immediately after the state of e changes from free to

loose. Also, we remove the additional bias as soon as
the loose net becomes locked.

We have experimently observed that biasing is not
always good. After all some of the loose nets may ac-
tually belong to the optimal cut. Therefore, biasing
them to be removed from the cut may hinder the algo-
rithm from finding the optimal solution. Another case
where biasing is not good is when the partition being
improved is close to being optimal. In this case, biasing
prevent the distinction between a move that actually
improves the cut (positive gain without bias) from an-
other that does not (equal positive gain but biased).
Our experiments suggest that biasing is most benefi-
cial initially when the partition is far from optimal,
and that it should be turned off once the partition is
close to optimality. Furthermore sometimes biasing al-
together should be avoided. This lead us to the notion
of selective biasing.

In selective biasing, only a selected subset of nets
can be biased. if we pose the question: which nets are
harder to remove from the cut? the intuitive answer
is longer nets are harder to remove from the cut than
short nets. One way to increase the chances of removal
of long nets from the cut is to simply apply biasing
to loose nets longer than some threshold length. We
found that biasing long nets was beneficial for some
circuits, but it was quite bad for others. For the other
circuits, doing the opposite, i.e., biasing short nets, was
very effective.

The conclusions that can be drawn from our prelim-
inary experiments is that depending of the structure
and connectivity of the input circuit one of the follow-
ing may be beneficial:

e bias all loose nets (mode = 1).
e avoid biasing altogether (mode = 2).

e bias loose nets longer than some threshold length
(mode = 3).

o bias loose nets shorter than some threshold length
(mode = 4).

Since it is difficult to determine which of the four
items above is helpful, the obvious choice is to try
all of them and pick the best result. Indeed, this
is exactly what we did. we ran IM PROV E(G, P)
four times each time with a random initial partition
and one of the four biasing approach above. Further-
more, we only applied the biasing during the coarsen-
ing phase of IM PROV E and turned it off during the
un-coarsening phase. To apply biasing, The following
sample code need to be added to the end of function
MOVE(v, A, B):



for (each net e incident to node v) do
if ( net e is selected for biasing ) then
if (v is the only locked node of e ) then
/*free to loose transition*/
for (each node w of en A) do
gain(w) = gain(w) + 1;
else if ( e has locked nodes in A and v is
the first locked node of e in B ) then
/*loose to locked transtition*/
for (each node w of eN B) do
gain(w) = gain(w) — 1;

We call our approach global sampling since we sam-
ple four different initial random partition to obtain a
bisection that will be subject to further refinement. We
used a threshold of 5 for selective biasing. Obviously
other thresholds can be used. We found that a thresh-
old of 5 works reasonably well on all the circuits which
we experimented with. This global sampling is sum-
marized in the pseudo-code:

generate a random initial bisection P;
Q = P; /* save best bisection so far*/
for1<i<4do{
call IM PROV E(G, P) using mode i;
if (cost(P) < cost(Q)) then
Q@ = P; /* save best bisection so far*/
generate a random initial bisection P;

}

return Q;

The bisection @ returned by the above code will be
further optimized as we will explain next.

5. Local sampling

Like global sampling, local sampling also perturbs
the current partition then it attempts to improve it.
However unlike global sampling which starts each time
with a brand new random initial bisection, local sam-
pling attempts to perturb only the nodes of nets that
belong to the cut. This local hill-climbing does not in-
crease the cost of the perturbed partition significantly.
Yet it allows the removal from the cut of certain nets
that are harder to remove otherwise. Our local sam-
pling is similar to the so called stable net removal in
[3].

We encapsulate the local perturbation in the func-
tion PERTURB(P). This function first sets the states
of all nodes of cut nets free. It then scans the cut nets
of bisection P in random order. For each scanned net e
the following is done. If all the nodes of e on the larger
side of the partition are free, then they are moved to the

other side of the partition and they are locked. Oth-
erwise If all the nodes of e on the smaller side of the
partition are free, then they are moved to the other side
of the partition and they are locked. Nothing is done
if net e has locked nodes on both sides of the partition.

After scanning all the cut nets of the initial bisec-
tion P, the perturbed partition P may no longer be a
bisection. Partition P is then restored to a bisection as
follows. The nodes are scanned one at a time and the
scanned node is moved to the other side of the partition
if: (1) moving it improves the balance of the partition,
or (2) if (1) is false and the node currently belongs to
the larger side of the partition and a random coin toss
yields a head. The nodes are repeatedly scanned in
this fashion until the balance criterion of the bisection
is restored. Although it may seem that this approach is
expensive, we have observed that it does not take much
time for the 45-55% balance criterion (10% deviation
in size) that is typically used in the literature.

Local smapling can now be described by the follow-
ing pseudo-code:

@ = best bisection so far;
repeat 4 times:
P = PERTURB(Q);
IMPROVE(G, P);
if (cost(P) < cost(Q)) then
@ = P; /* save best bisection so far*/
return Q;

We iterate 4 times in local sampling just like we
did for global sampling. Off course, any other number
of iterations can be used. Local sampling can only
improve its input bisection. If no improvements can be
made the initial bisection is returned intact.

The full algorithm PART can now be described as
follows:

1. @ = bisection returned by global sampling.
2. Let P be the best partition obtained by applying
local sampling to Q.

3. Repeatedely call IM PROV E(G, P) until no fur-
ther improvement can be made.

In algorithm PART, node biasing is applied only
during the coarsening phases of global sampling as ex-
plained before.

6. Experimental results

In table 1 we compare the result of PART to previ-
ously reported results in the literature on the ISPD98
benchmarks [1]. All experiments were performed on



Table 1. Results on ISPD98 benchmarks.

Test time(s) cut fr3 | FM | CL | hM
ibm01 | 14.3 180 9 6.1 0.6 0.0
ibm02 | 31.4 262 9 1.5 1.1 0.0
ibm03 | 39.7 950 10 | 21.1 | 124 | 0.6
ibm04 | 55.9 522 2 155 | 7.9 3.8
ibm05 | 68.2 1672 6 121 | 283 | 2.6
ibm06 | 67.4 885 7 9.9 104 | 0.3
ibmQ7 | 108.6 824 6 25.8 | 12.7 | 3.5
ibm08 | 115.6 1140 10 | 12.7 | 10.6 | 0.2
ibm09 | 120.4 620 10 | 471 | 87 | 0.6
ibm10 | 212.0 1249 3 19.3 | 13.7 | 0.6
ibm11 | 200.7 956 2 52.6 | 11.2 | 0.4
ibm12 | 265.7 1872 5 20.5 | 27.5 | 2.5
ibm13 | 267.3 831 7 42.11 9.9 1.1
ibm14 | 499.1 1794 7 65.2 | 414 | 24
ibm15 | 981.7 2587 1 974 | 38.0 | 1.5
ibm16 | 953.6 1710 6 38.2 | 54.3 | 2.6
ibm17 | 158.9 2186 5 39.6 | 28.2 | 24
ibm18 | 876.3 1521 6 12.2 | 49.1 | 1.3

a DEC 8400 station. All the results are reported for
45-55% partitions (deviation up to 10% of exact bisec-
tion). For our algorithm PART, we report the average
running time of a single run in seconds, the minimum
cut found in 10 runs (cut), and the number of solutions
in 10 runs that are within 3% (fr3) of the smallest cut.
The results of three other algorithms are reported as
percentages in cut over the cut produced by PART.
The three other algorithms are FM [5], CLIP (CL) [4]
and hMetis (hM) [7]. For FM and CLIP, we used the
results reported in [1] which are the minimum cuts over
hundred runs of each algorithm. The results of hMetis
were erroneous in [1]. the corrected results which we
used are available from vlsicad.cs.ucla.edu web site.

PART performed well on the ISPD98 benchmarks,
and in all cases obtained the smallest cut. As can be
readily seen from Table 1, PART significantly improves
over the results of FM and CLIP. The improvement
over the results of hMetis which is a very powerful par-
titioner are modest. For example on circuit ibm04, the
result of hMetis is 3.8% larger than the result of PART.

Algorithm PART is robust. In many cases 5 out of
10 runs are within 3% of the minimum as column fr3
in table 1 show. This means that only few runs are
needed to get a good solution.

The running time of PART is reasonable. On the
largest circuit, ibm18, with 210613 nodes and 201920
nets, a single run of PART takes about 15 minutes.

7. Conclusion

We have presented an efficient, effective, and robust
partitioning algorithm. Our algorithm effectively com-
bines node gain biasing and local uphill climbs within
the multi-level framework. For several circuits new
lower cuts have been obtained than previously reported
in the literature. In the future, we intend to investi-
gate possible improvement to our algorithm which may
include new ways of clustering and node biasing. We
think that the running time can be improved without
significant degradation in quality by limiting the num-
ber of levels during the coarsening phase (currently we
do not use any preset limit), and by using the early-
exit strategy in the un-coarsening phase as described
in [7].
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