Fast Evaluation of Sequence Pair in Block Placement
by Longest Common Subsequence Computation

Xiaoping Tang, Ruigi Tiart’, and D.F. Wony
*Department of Computer Sciences, University of Texas at Austin
T Motorola Computational Technology Lab, Austin, Texas
{tang, ruiqi, wong @cs.utexas.edu

Abstract late the sequence pair to its corresponding block placement. In
1], an O(n?) algorithm based on constructing a pair of hor-
izontal and vertical constraint graphs and computing longest
.) . . hs in both constraint graphs was used for sequence pair
algorithms which are based on sequence pairs use simulalgdation. In [8], Takahashi attempted to improve the speed
annealing where thg ggnerat!on and evaluation of a Iargg nug; sequence pair evaluation and presente@@nlog 1) algo-
ber of sequence pairs is required. Therefore, afas_t a'Igorlthmr|§1m_ Unfortunately, his algorithm only determines the width
needed to evaluate each generated sequence pair, i.e. 10 ra%y pejght of the block placement but not the positions of the
late the sequence pair to its corresponding block placemeRlyiiqual blocks. This clearly limits the application of [8] to
This paper presents a new approach to evaluate a sequepffy niacement since it is very important to obtain the posi-
pair based on computing longest common subsequence ltri‘ogs of the blocks in order to compute the interconnect cost.
pair of weighted sequences. We present a very simple and, yhis paper, we present a new approach to evaluate a se-
gmmentO(nz) algorithm to solve the. seéquence pair ?V?"“f’%‘] ence pair based on computing longest common subsequence
tion problem. We also show that using a more sophisticated, pair of weighted sequences. We present a very simple and
data structure, the alg_onthm can l_Je implemented to run éﬁficientO(nZ) algorithm to solve the sequence pair evalua-
O(nlogn) time. Both implementations of our algorithm argq, oy ohiem.” We also show that using a more sophisticated
significantly faster than the previou3(n”) graph-based al- 12 sirycture, the algorithm can be implemented to run in
gorithm in [1]. For example, we achieve 60X speedup over t%?n logn) time. Both implementations of our algorithm are
previous algorithm when input size= 128. significantly faster than the previoGgn?) graph-based algo-
rithm in [1]. For example, we achieved 60X speedup over the
1. Introduction original algorithm when the number of blocks is 128.

In the sections that follow, the concept of block placement

Rapid advances in integrated circuit technology have leddg sequence pair is reviewed in section 2; longest common
a dramatic increase in the complexity of VLSI circuits. AGypsequence is introduced and its relation to sequence pair
cording to the 1997 SIA National Technology Roadmap fQf,cture described in section 3; the longest common subse-

Semiconductors [2], we will soon have designs in less than § jence algorithm as well as its efficiency analysis is presented
micron technology with over 100 million transistors. Circuits, saction 4: some experimental results are presented in sec-
with such enormous complexity have to be designed hierarGiyy, 5. and finally, the concluding remarks along with further

cally. Circuit placement within each level of the hierarchy igiscussion about the longest common subsequence algorithm
a complex block placement problem. A good block placemegty,4ndie the general case are in section 6.

solution not only minimizes chip area, it also minimizes in-
terconnect cost which is crucial in determining circuit perfor-)
mance in deep submicron designs. Although block placeméntBlock Placement by Sequence Pair

is a classical problem with many previous algorithms [3, 4}, sequence pair is a pair of sequences efements represent-
it remains to be a hard problem. Recently, there were tyy a list ofn blocks. The sequence pair structure is actually
breakthroughs in block placement — two novel placement repmeta-grid. Given a sequence p@¥, Y'), one can construct
resentations called sequence pair[1, 5, 6] and BSG [7] werd5 degree oblique grid as shown in Figure 1(a). For every
invented. In this paper we shall only focus on the sequerdeck, the plane is divided by the two crossing slope line into
pair representation. four cones as shown in Figure 1(b). Block 2 is in the right cone
In [1], Murata et al introduced an elegant representatiehblock 1, then it is right to 1 (see Figure 1(c)). In general,
of block placement called sequence pair. All block placemdf Sequence pair imposes the relationship between each pair
algorithms which are based on sequence pairs use simul@)focks as follows:
annealing where the generation and evaluation of a large num-
ber of sequence pairs is required. Therefore, a fast algorithm is
needed to evaluate each generated sequence pair, i.e. to trans-

In [1], Murata et al introduced an elegant representatio
of block placement called sequence pair. All block placem

< .Ti.rj..>,< .Ti.Tj.. >) = x;isleft tox; (1)
(< WX >, < LT T >) = ;IS beIOij (2)

Figure 2: (a): horizontal constraint gragh (V, E); (b): verti-
cal constraint grap&y', (V, E) for Sequence paitX,Y) = (<4

a = 31625, <6354 1 2). (for simplicity, transitive edges
are omitted)

()

Figure 1: (a) Oblique grid for Sequence pait4 31 6 2 5>, %rk/(\)lgigist;g%rgrTJOer:seUtF),Sjguence

<6 3541 2), (b) the four cones of block 1, and (c) th(I g q

corresponding packing. The dimensions for the 6 blocks ang:this section, we first introduce the definitions of weighted
1(4x6), 2(3x 7), 3(3x3), 4(2x3), 5(4x3), and 6(6<4). sequence and longest common subsequence.

Definition 1 A weighted sequence is a sequence whose ele-
Consequently, given a sequence gair, V'), the horizon- ments are in a given s&, while every element; € S has a
tal relationship among blocks follows a horizontal-constramweight. Letw(s;) denote the weight of;.

graphGy,(V, E), which can be constructed as follows:) . o]
Previously, elements if have unit weight, i.ey(s;) = 1. In

1.V = {sp} U {tn} U{vs)i = 1,...,n}, wherew; corre- this paper, we only consider the situatiés; € S, w(s;) > 0.

sponds to a block, Definition 2 Given two weighted sequenc&sandY’, a se-

2. E = {(sn,v)|i = 1,..,n}U{(vi,tp)|i = 1,...,n} U Qquencez is a common subsequence XfandY if Z is a

{(vs,v;)| blocki is left to blockj }, subsequence of botk andY’.
3. Vertex weight = width of block for vertexwv;, but O for Definition 3 The length of a common subsequefice < 2z,
sp, andty,. veey 22y aany Zp > IS!
The vertical-constraint grapf, (V, E) can be similarly con- w(z;)
structed. As for the example shown in Figure 1, the corre- i=1
sponding constraint grapli, (V, E) andG, (V, E) are shown

in Figure 2. Therefore, the longest common subsequence for a sequence

BothG,,(V, E) andG, (V, E) are vertex weighted directecPair is the common subsequence of the two sequences with

acyclic graphs, so a longest path algorithm can be applietmg)('mum length. In the following, IeLCS denote longest

determine the: andy coordinates of each block. The coordicommon subsequence ahg(X, Y) denote the length of the

nates of a block are the coordinates of the lower left cornerlg?g(‘\.st common subsequence’bandy”. .
the block. Given rt1he. blockI setﬁ = h{l, ...,;(z_} a_nd sequence pair
The construction of constraint grapl4, and G, takes (X, Y), a horizontal path in the packing is a common subse-

O(n?) time. The longest path computation can be done fyence olX,Y) as s_hown in Figure 3(a), and a path frem
. - . _ in'horizontal constraint graph corresponds to a common subse-
O(n + m) time, wheren = #wvertices, andm = #edges

S T
in the graph. The overall time for translating a sequence p%lr'rence of X, ¥) as shown in Figure 4(a). Le(™ denote the

to a floorplan is thet® (n2). On the other hand, as shown feverse ofX. Then a vertical path in the packing is a common

R A
sections that follow, instead of constructing the graghsand subsequence ¢fX™", ') as shown in Figure 3(b), and a path

: fram s, in vertical constraint graph corresponds to a common
G, followed by longest path searches, computing the longe sequence ¢fY ¥, V") as shown in Figure 4(b).

common subsequence for the weighted sequence pair can 2ff:

ciently obtain the same optimal floorplan under the constrain(t% ?/u)pi)c();g Zr;?re;sb?[b)l o?_l;\r;;h((}sl{e qyu;a "_‘C(eXp}?gi‘;{). Let
) - 1 2,11 2)-) - 2 ’

Y10Y>). We can see a path frosy, to b in the horizontal con-
straint graph corresponds to a common subsequer{éé ot)

andty, to the tail without changing the length of common sub-

2 4 sequence for any block.
’:‘\ By the definition of the constraint graph in the previous
I a 2 section, a path te, in G1,(V, E) corresponds to a common
$ T \3 subsequence ¢, Y1), and vice versa. In addition, since the
vertex weight inG,(V, E) for a block is equal to the weight

of the path tou, in G, (V, E) is equal to the length of the
corresponding common subsequencé ®f,Y;). Thus, the
(a) (b) length of the longest path to, is equal to the length of the

longest common subsequence(df;, Y1), i.e. les(X1, Y1).
Since the path from,, to t;, corresponds to a common subse-

Figure 3: For the packing of Sequence pair, {)=(<4 3 1 quence of X,Y), the length of the longest path fros to ¢,

625>, <635412), (a): acommon subsequenegd islcs(X,Y). O

1 2> of (X,Y), shows horizontal constraint; (b): a common From the necessary and sufficient condition that

subsequence6 3 4> of (XF,Y)=(<526134>, <6354 o ,) .
12>) qshows vertical co(nstraint). (1. if b; is afterb; in X and beforé; in Y, thenb; is before

b; in X and beforeh; in Y, and

. s & = of the corresponding element in the sequence pair, the length

2. if b; is beforeb; in X*® and beforeh; in Y, then; is
afterb; in X and beforé; in Y’

we can similarly conclude the following lemma:

Lemma 2 Vb € the block seB, if sequence paifX,Y’) =
(X1bXs, Y1bY5), then(X B Y) = (XFbX [, vibY5) and
les(X £ Y1) is they coordinate of block, wherew(i) is the
height of blocki, andlcs(X#,Y) is the height of the block
placement.

Based on the Lemma 1 and 2, we have the following theorem:

Figure 4: (a): in horizontal constraint graph,(V, E), a path Theorem 1 LCS computation can be applied to determine the
sn — 4 = 1 — 2 — t, corresponds tec4 1 2>, a common andy coordinates of each block and the width and height of
subsequence of\(, Y)=(<431625,<635412):; (b): the_block pla_cement for a gi_/en sequence pair. Therefore, the
in vertical constraint grapt¥, (V, E), a paths, — 6 — 3 — optimal packing can be obtained by computing LCS.
4 — t, corresponds tec6 3 4>, a common subsequence of
(XE Y)=(<526134>,<635412).
Table 1:2 andy coordinates of each block=<431625>,
Y=<635412, Xf=<526134>. The dimensions for ev-

(see Figure 4(a)). Similarly, a path frosm to b in the verti- ery PIOCk are: 1(46), 2(3x7), 3(3x3), 4(2x3), 5(4x3), and
cal constraint graph corresponds to a common subsequen%eté)>< ' ; i ' X

4). Fi 1(c) for the di i h king.
(XE. Y1) (see Figure 4(b)). Note that the coordinates of a). See Figure 1(c) for the dimensions and the packing

block is the coordinates of the lower-left corner of the block. LCS of LCS of
Thus, if w(i) equals the width of block, lcs(X1,Y7) is the block | (X1,Y7) | w_coor | (X£ Y1) | y_coor
x-coordinate of block. 1 3 3 6 4

. . 2 31 7 5 3
Lemma 1 Vb € the block seB, if sequence paifX,Y’) = 3 0 6 Z
(X10X5, Y1bY3), thenles(X,, Y1) is thex coordinate of block y) 0 63 Z
b, wherew(7) is the width of block, andlcs(X,Y) is the width 5 6 6 0
of the block placement. 5 0 0

Proof As presented in [1], the longest path from verigxto)))
the vertexvy representing in grathh (V’ E’) gives ther co- Table 1 ShOVV.S the process that LCS is applled to dete.rmlne
ordinate of block. It is therefore suffice only to prove that thdhez andy coordinates of each block for the sequence pad (
length of the longest path from to vy is equal tdes(X;,Y;). 31625>,<635412).

One observation is that the source verigxof weight O and

the sink vertex;, of weight O can be safely omitted due to the

fact thats;, can always be added to the head of both sequences

4. A Fast LCS Algorithm L[ofofofofofo] P [[[]]

A fast algorithm for computing longest common subsequence Initial

was introduced in [9]. However, it only handles sequences ~ L10[0[0]2[2]2] P[[[[o] []
with unit weight. The representation they used is tightly based Step (1)

on unit weight, and can not be adapted to the presence of | |[0]|3[3]3[3]3] P| | [o]o] | |
weights. In the rest of this section, we first propose a very Step (2)

simple and efficient)(n?) algorithm to compute LCS for a

given sequence pair whetids the number of elements and the L|0|3|3|3|7|7| P|3| |O|O| | |

weights are not restricted to be 1 or integers. Then, we show Step (3)
that using more sophisticated data structure, the algorithmcan L[6]6[6]6[7[7] P[3] [o[o] [0]
be improved to run iQ(n log n) time. Step (4)

Assume the blocks arke..n, and the input sequence pair |_| 6| 6| 6| 6| 7 |10| |:>| 3| 7| 0 | 0| |0|

is (X,Y). Both X andY are then a permutation dfl...n}.
Block position arrayP[b],b = 1...n is used to record the or
y coordinate of bloclb depending on the weight(b) equals

Step (5)
L[e]6[1d1d1dad P[3][7]0]0]6]0]

to the width or height of block respectively. To record the in- Step (6)
dicesin bothX andY for each blocld, the arraymatch[b],b = .
1...n is constructed to beatch[b].z = i andmatch[b].y = j Figure 5: An Example of Algorithm 1 to compute the LCS of

if b= X[i] = Y[j]. The length array.[1...n] is used to record S€quence paiK431625-, <6354 12>). The o_lim(_ensions
the length of candidates of the longest common subsequeR&dhe 6 blocks are shown in Figure 1. Heri) = width of

The algorithm is as follows. locki. L : candidates of LCSP : positions of blocks

Algorithm 1:

1 Initialize_MatChArray match: of the LCS isbs. ThUS,match[bz].l' <k andmatch[bz].y <

2 Initialize_LengthArray L with O; p1 — 1. We get

i fordio?it?(ﬁ]- les(X[1...k], Y]1...(py — 1)])

5 p; mat'ch[b].y' = les(X[1...(match[bs].x — 1)],

6 P[b] = L[p]; V[1...(match[bs].y — 1)]) + w(b2)

! b= .P[b] + w(b); Since all the positions of the blocks iK[1...k] are correctly

g ford]oi:f gtg 72[0 recorded according to the induction assumption, we get
J

10 thenL[j] = ¢; Plbs] = les(X[1...(match[bs].z — 1)],

11 else break; Y[1...(matchlbs].y — 1

12 returnLin]; ... b2y = 1))

_ _ Then,les(X[1...k], Y[1...(p1 — 1)]) = P[ba] + w(bs).

As an example, Figure 5 shows the steps algorithm 1 took The code from line 7 to line 11 guarantees tiRib,] +
to compute the LCS of Sequence pai#(3 1 6 2 5>, <6 3 () is recorded inL[p,].

541 2>) in determining ther-coordinate of each block. The When the a|gorithm endg‘{[n] records the maximal value
weights of blocks are their widths as shown in Figure 1. Whefthe position of block plus its weight § = 1, ...n), which is

the algorithm ends, the array[1...6] records the blocksk- jc5(x | v). O
coordinates. Initializing the match array can be donedn(n) time by
scanning the two sequences. The running time of Algorithm
1 is O(n?), and the space requirement(¥n). In spite of

its O(n?) running time, the code is very tight, so the hidden
constant factor in its running time is small.

Note that the code from line 8 to line 11 actually records
the greatest value for later queries. If we bs¢anced search
dree (BST)o manage the arrag[1...n], we can achieve the
O(nlogn) running time. Every node in the BST is associ-
ated with two keys: (index, length), and both keys must be
kept in increasing (non-decreasing) order. We umkex as
the primary key , and discard the node whdesegthis not

match[b)].z =k +1 match[by].y = p increasing since it makes no contribution to subsequent LCS
computation. The extra time charged for discarding nodes can
Therefore, according tbemma land2, the position of block beamortized. The algorithm is shown below.
by isles(X1..k], Y[1...(;1 — 1)]). Assume the last elemem/—\lgorithm 2:

Theorem 2 Algorithm 1 correctly returnges(X,Y) and the
position of each block is correctly recordedfi1...n).

Proof We use arinductionon to prove that the positions
of the blocks in subsequendg1...i] are correctly recorded.

Initially, all the L[j](= 1,...n) is 0. Wheni = 1, the
position of blockb (= X[1]) is 0. Assume that all the position
of the blocks inX|1...k] are correctly recorded. Whenh=
k + 1, we letb; denote the blocK [k + 1], andp; denote the
block’s index in the sequendé, i.e.

4

1 Initialize Match Array match;

2 Initialize BST with a node (0,0);

3 fori=1ton

4 dob = XT[i];

5 p = matchl[b].z;

6 P[b]=find_.BST(p);

7 t = P[b] + w(b);

8 insert p, t) to BST;

9 discard the nodes with greater index than
and less length than

10 return findBST(n);

find_BST(p):
1 find the greatestindex in BST which is less than p;
2 return the corresponding length.

PLLT T[] PLL [fof []
Initial Step(1)
BN Dim
@5 MY RNCY
PL[[ofo] []
Step(2)
. Di”"
) & G
ONRO o)
P(3[[ofo] [] P[3] [ofo] [o]

Step(3)
(o) (1)

P[3[7]o]o] o] P[3[7]o]ofs6][0]

Step(4

@
) e ()

position of each block i®(n logn) running time withO(n)
space requirement.

Proof The correctness of the algorithm can be observed
sinceles(X[1...i], Y[1...5]), whereX[i] = Y[j], is indicated
by the elementy, ¢) in the BST. Similar to Algorithm 1, the
algorithm returndind BST(), which is exactlyics(X,Y).

Now we useamortized analysisto prove that its running
time isO(nlogn). In line 3, the loop has iterations. Line 4,
5, and 7 takeé)(1) time each. Line 6 take®(logn) time. In
line 8, the tree may need re-balance after insefting), which
takes at mosP(logn) time. In line 9, discarding one element
from BST and re-balancing it tak€(logn) time. Suppose
there arel;, elements discarded during thth iteration. Thus,
the total running time is

O(nlogn) + Z dy, - logn
k=1

Since there are at mostelements discarde(Z:Z:]L dr < n.
Therefore, the total running time @(n log n).
Clearly, the space requiremeniign). m|

5. Experimental Results

In this section, we design experiments to compare our algo-
rithm with original algorithm in two aspects. In Experiment
1, we compare the runtimes in evaluating a single sequence
pair. In Experiment 2, we compare the runtimes in obtaining
block placement. Both experiments are done on Sun-Ultra En-
terprise3000 (200MHz).

5.1. Experiment 1

We randomly generated test cases with 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, and 16384 blocks. Table 2 lists
the average running time (in second) for the original algorithm
and our algorithms. The original algorithm uses an efficient
method to construct the constraint graph®ifn?) time, and
uses an algorithm similar to that in [10] to find the longest
path length to all vertices from source vertex(Gtn + m)
time wheren = #blocks(vertices), m = #tedges.

From Table 2, we can see that both Algorithm 1 and Al-

Step(5) Step(6) gorithm 2 are significantly faster than the original algorithm.

Figure 6: An Example of Algorithm 2 to compute the LCS Olfor_ example, we achieved 60X spe_edup over the original al-
Sequence paiK(4 3162 5>, <6354 12>). The dimensions go_rlthm when the number of blocks is 128. When the number
of the 6 blocks are shown in Figure 1. Hepéi) = width of of input blocks is more than 8192, Algorithm 2 outperforms
blocki. P : positions of blocks. Algorithm 1. However, Algorithm 2 is slower than Algorithm

1 when the input size is small. The reason is that Algorithm 2

s the overhead of dynamic memory allocation and dealloca-

. . h
As an example, Figure 6 shows the steps Algorithm 2 togg : e .
. n in maintaining the balanced search tree. When the input
to compute the LCS of sequence pai(3 1 6 2 5>,<6 3 5 size gets larger, Algorithm 2 begins to exploit @ logn)
4 1 2>) in determining ther-coordinate of each block. Therunning time characteristic

weights of blocks are their widths as shown in Figure 1. Like
Algorithm 1, the arrayP[1...6] is used to record thﬁLcoordinate5

of each block. .2. Experiment 2

The experiments are carried out for the MCNC benchmarks.

Theorem 3 Algorithm 2 finds thées(:X,Y') and records the The evaluation of a sequence pair is a weighted sum of the

ives the position of each block, which is essential to wire
gth estimation in practical VLSI placement. Experimental
results show its efficiency.

Table 2: time comparison for single computation betwe
original algorithm and our algorithms.

[block# | original(s)| alg 1(s) | alg 2(s) | Our LCS algorithm is motivated by translating a sequence
16 5.50e-05 | 3.39e-06| 5.55e-05 pair to a block placement. So the algorithm presented above
32 1.9%e-04 | 7.21e-06| 1.136-04 mainly handles the situati_on that each_of the two sequences
64 7 256-04 | 1.636-05 2.34e-04 has the same length and is a permutation dlocks. In the

general case, the two sequences may have different length or
repeated elements. For examples<abcbba>, Y=<b
abdadb-. Both Algorithm 1 and Algorithm 2 can be easily
expanded to deal with the general case.

128 2.83e-03 | 4.47e-05| 4.84e-04
256 1.13e-02 | 1.13e-04| 9.95e-04
512 5.68e-02 | 3.29e-04| 2.03e-03
1024 0.249 8.87e-04| 4.13e-03
2048 1.06 2.45e-03| 8.42e-03

4096 4.37 9.29e-03| 1.73e-02 References
8192 19.6 2.93e-02| 3.82e-02
16384 121 9.47e-02| 8.88e-02 [1] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani,

“VLSI module placement based on rectangle-packing

) . . by the sequence pairfEEE Transaction on Computer
Table 3: Performance comparison for floorplanning experi- ajdeq Design of Integrated Circuits and System.
ments between the original and ours. 15:12, pp. 1518-1524, 1996.

| data | #mod | #net | original(s) | ours (s)| speedup]
ami33 33 123 897 182 5X
ami49 | 49 408 1956 503 4X

[2] Semiconductor Industry Association, National Technol-
ogy Roadmap for Semiconductors, 1997.

[3] N. Sherwani, Algorithms for VLSI Physical Design Au-

. . tomation, Kluwer Academic Publishers, Boston, 1995.
area of the packing and the total wire length based on the half

perimeter estimate of bounding box for each net, where termi{4] M. Sarrafzadeh and C.K. Wong, An Introduction to
nals are assumed to be at the center of each block. The cost VLSI Physical Design, McGraw Hill, 1996.

functionC' is defined as: .)
[5] H. Murata, K. Fujiyoshi, and M. Kaneko, “VLSI/PCB

C=A+X\-W placement with obstacles based on sequence pair”,

where 4 is the area, andlV is the wiring cost. The weight ISPD-97, pp. 26-31, 1997.

parameten is used in the cost function for balancing the two [6] H. Murata, and E.S. Kuh, “Sequence-Pair Based

factors. The initial temperature is decided such that the initial ~ Placement Method for Hard/Soft/Pre-placed Modules”,

acceptance rate is greater than 95%. Note that, since we are |SPD-98, pp. 167-172, 1998.

only replacing the original sequence pair evaluation algorithm

with our algorithm, the number of iterations and the final so- [7] S. Nakatake, H. Murata, K. Fujiyoshi, and Y. Kajitani,

lutions are identical. “Module Placement on BSG-Structure and IC Layout
The comparison result is shown in Table 3. CPU-time and Applications”, Proceedings of ICCAD-96, Nov. 1996.

speedup are listed. Notably, the wiring cost estimations for th . : - . i
original and our method are the same. It accounts for a norﬁ—s] %;aﬁ?rglsgrléaéinnAI%zmSg(];?ariﬁlgdg]grr%m:tTénr:uRnﬂoti-
trivial part in the running time. For example, if wiring cost vate% by Rectangl% Pa%king ProblemTachnical I,?e—

estimation accounts for 1/3 of running time for the original
algorithm, then we could achieve at most a 3X speedup even ggggf IEICE, VLD96vol. VLDI6, No. 201, pp. 31-35,

if the time for the longest path computation is reduced to O.

In spite of this, as we can see, our method still outperformgg] j.w. Hunt, and T.G. Szymanski, “A fast algorithm for

the original one and achieved 5X speedup for ami33 and 4 computing Longest Common Subsequenc€smmu-

speedup for ami49. nications of the ACMVol. 20:5, pp. 350-353, May
1977.

6. Concluding Remarks [10] J.A. McHugh, “Algorithmic Graph Theory”, Prentice

Sequence pair is an elegant topology representation of block Hall (1990).

placement. In this paper, we have proposed a new algorith
to translate a sequence pair to a block placement. We dem ?1-1] S'_ K|r_kpatr|ck,_ C.D. Gelat, an_d MP Vecchi, * Opti-
strate that its running time could I6&(n log n) by using more mization by simulated annealingScience vol. 220,
sophisticated data structure. Given a sequence pair, the algo- pp. 671-680, 1983.
rithm not only evaluate the area of the placement, but also

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

