
Fast Evaluation of Sequence Pair in Block Placement
by Longest Common Subsequence Computation

Xiaoping Tang�, Ruiqi Tian�y, and D.F. Wong�
�Department of Computer Sciences, University of Texas at Austin

y Motorola Computational Technology Lab, Austin, Texas
ftang, ruiqi, wongg@cs.utexas.edu

Abstract

In [1], Murata et al introduced an elegant representation
of block placement called sequence pair. All block placement
algorithms which are based on sequence pairs use simulated
annealing where the generation and evaluation of a large num-
ber of sequence pairs is required. Therefore, a fast algorithm is
needed to evaluate each generated sequence pair, i.e. to trans-
late the sequence pair to its corresponding block placement.
This paper presents a new approach to evaluate a sequence
pair based on computing longest common subsequence in a
pair of weighted sequences. We present a very simple and
efficientO(n2) algorithm to solve the sequence pair evalua-
tion problem. We also show that using a more sophisticated
data structure, the algorithm can be implemented to run in
O(n logn) time. Both implementations of our algorithm are
significantly faster than the previousO(n2) graph-based al-
gorithm in [1]. For example, we achieve 60X speedup over the
previous algorithm when input sizen = 128.

1. Introduction

Rapid advances in integrated circuit technology have led to
a dramatic increase in the complexity of VLSI circuits. Ac-
cording to the 1997 SIA National Technology Roadmap for
Semiconductors [2], we will soon have designs in less than 0.1
micron technology with over 100 million transistors. Circuits
with such enormous complexity have to be designed hierarchi-
cally. Circuit placement within each level of the hierarchy is
a complex block placement problem. A good block placement
solution not only minimizes chip area, it also minimizes in-
terconnect cost which is crucial in determining circuit perfor-
mance in deep submicron designs. Although block placement
is a classical problem with many previous algorithms [3, 4],
it remains to be a hard problem. Recently, there were two
breakthroughs in block placement – two novel placement rep-
resentations called sequence pair[1, 5, 6] and BSG [7] were
invented. In this paper we shall only focus on the sequence
pair representation.

In [1], Murata et al introduced an elegant representation
of block placement called sequence pair. All block placement
algorithms which are based on sequence pairs use simulated
annealing where the generation and evaluation of a large num-
ber of sequence pairs is required. Therefore, a fast algorithm is
needed to evaluate each generated sequence pair, i.e. to trans-

late the sequence pair to its corresponding block placement. In
[1], anO(n2) algorithm based on constructing a pair of hor-
izontal and vertical constraint graphs and computing longest
paths in both constraint graphs was used for sequence pair
evaluation. In [8], Takahashi attempted to improve the speed
for sequence pair evaluation and presented anO(n logn) algo-
rithm. Unfortunately, his algorithm only determines the width
and height of the block placement but not the positions of the
individual blocks. This clearly limits the application of [8] to
block placement since it is very important to obtain the posi-
tions of the blocks in order to compute the interconnect cost.

In this paper, we present a new approach to evaluate a se-
quence pair based on computing longest common subsequence
in a pair of weighted sequences. We present a very simple and
efficientO(n2) algorithm to solve the sequence pair evalua-
tion problem. We also show that using a more sophisticated
data structure, the algorithm can be implemented to run in
O(n logn) time. Both implementations of our algorithm are
significantly faster than the previousO(n2) graph-based algo-
rithm in [1]. For example, we achieved 60X speedup over the
original algorithm when the number of blocks is 128.

In the sections that follow, the concept of block placement
by sequence pair is reviewed in section 2; longest common
subsequence is introduced and its relation to sequence pair
structure described in section 3; the longest common subse-
quence algorithm as well as its efficiency analysis is presented
in section 4; some experimental results are presented in sec-
tion 5; and finally, the concluding remarks along with further
discussion about the longest common subsequence algorithm
to handle the general case are in section 6.

2. Block Placement by Sequence Pair
A sequence pair is a pair of sequences ofn elements represent-
ing a list ofn blocks. The sequence pair structure is actually
a meta-grid. Given a sequence pair(X;Y), one can construct
a 45 degree oblique grid as shown in Figure 1(a). For every
block, the plane is divided by the two crossing slope line into
four cones as shown in Figure 1(b). Block 2 is in the right cone
of block 1, then it is right to 1 (see Figure 1(c)). In general,
the sequence pair imposes the relationship between each pair
of blocks as follows:

(< ::xi::xj :: >;< ::xi::xj :: >)) xi is left toxj (1)

(< ::xj ::xi:: >;< ::xi::xj :: >)) xi is belowxj (2)

1

4

3
1

6

2

5 6

3

5
4

1
2

4

3

6

1

5

2

4

3
1

6

2

5 6

3

5
4

1
2

4

3

6

1

5

2

(a) (b)

 1 2
 3

 5 6

 4

(c)

Figure 1: (a) Oblique grid for Sequence pair (<4 3 1 6 2 5>,
<6 3 5 4 1 2>), (b) the four cones of block 1, and (c) the
corresponding packing. The dimensions for the 6 blocks are:
1(4�6), 2(3�7), 3(3�3), 4(2�3), 5(4�3), and 6(6�4).

Consequently, given a sequence pair(X;Y), the horizon-
tal relationship among blocks follows a horizontal-constraint
graphGh(V;E), which can be constructed as follows:

1. V = fshg [fthg [fviji = 1; :::; ng, wherevi corre-
sponds to a block,

2. E = f(sh; vi)ji = 1; :::; ng [f(vi; th)ji = 1; :::; ng [
f(vi; vj)j block i is left to blockjg,

3. Vertex weight = width of blocki for vertexvi, but 0 for
sh andth.

The vertical-constraint graphGv(V;E) can be similarly con-
structed. As for the example shown in Figure 1, the corre-
sponding constraint graphsGh(V;E) andGv(V;E) are shown
in Figure 2.

BothGh(V;E) andGv(V;E) are vertex weighted, directed,
acyclic graphs, so a longest path algorithm can be applied to
determine thex andy coordinates of each block. The coordi-
nates of a block are the coordinates of the lower left corner of
the block.

The construction of constraint graphsGh andGv takes
�(n2) time. The longest path computation can be done in
O(n + m) time, wheren = #vertices, andm = #edges
in the graph. The overall time for translating a sequence pair
to a floorplan is then�(n2). On the other hand, as shown in
sections that follow, instead of constructing the graphsGh and
Gv followed by longest path searches, computing the longest
common subsequence for the weighted sequence pair can effi-
ciently obtain the same optimal floorplan under the constraints.

4

3

6

1

5

2
hhs t

4

3

6

1

5

2

v

vt

s

(a) (b)

Figure 2: (a): horizontal constraint graphGh(V;E); (b): verti-
cal constraint graphGv(V;E) for Sequence pair(X;Y) = (<4
3 1 6 2 5>, <6 3 5 4 1 2>). (for simplicity, transitive edges
are omitted)

3. Longest Common Subsequence
for Weighted Sequence Pair

In this section, we first introduce the definitions of weighted
sequence and longest common subsequence.

Definition 1 A weighted sequence is a sequence whose ele-
ments are in a given setS, while every elementsi 2 S has a
weight. Letw(si) denote the weight ofsi.

Previously, elements inS have unit weight, i.e.,w(si) = 1. In
this paper, we only consider the situation8si 2 S; w(si) � 0.

Definition 2 Given two weighted sequencesX andY , a se-
quenceZ is a common subsequence ofX and Y if Z is a
subsequence of bothX andY .

Definition 3 The length of a common subsequenceZ =< z1;
:::; z2; :::; zn > is:

nX

i=1

w(zi)

Therefore, the longest common subsequence for a sequence
pair is the common subsequence of the two sequences with
maximum length. In the following, letLCS denote longest
common subsequence andlcs(X;Y) denote the length of the
longest common subsequence ofX andY .

Given the block setB = f1; :::; ng and sequence pair
(X;Y), a horizontal path in the packing is a common subse-
quence of(X;Y) as shown in Figure 3(a), and a path fromsh
in horizontal constraint graph corresponds to a common subse-
quence of(X;Y) as shown in Figure 4(a). LetXR denote the
reverse ofX . Then a vertical path in the packing is a common
subsequence of(XR; Y) as shown in Figure 3(b), and a path
from sv in vertical constraint graph corresponds to a common
subsequence of(XR; Y) as shown in Figure 4(b).

Suppose there is a blockb in the sequence pair(X;Y). Let
(X;Y) = (X1bX2; Y1bY2). Then(XR; Y) = (XR

2
bXR

1
,

Y1bY2). We can see a path fromsh to b in the horizontal con-
straint graph corresponds to a common subsequence of(X1; Y1)

2

 1 2
 3

 5 6

 4

 1 2
 3

 5 6

 4

(a) (b)

Figure 3: For the packing of Sequence pair (X;Y)=(<4 3 1
6 2 5>, < 6 3 5 4 1 2>), (a): a common subsequence<4
1 2> of (X;Y), shows horizontal constraint; (b): a common
subsequence<6 3 4> of (XR; Y)=(<5 2 6 1 3 4>, <6 3 5 4
1 2>), shows vertical constraint.

4

3

6

1

5

2
hhs t

4

3

6

1

5

2

v

vt

s

(a) (b)

Figure 4: (a): in horizontal constraint graphGh(V;E), a path
sh ! 4 ! 1 ! 2 ! th corresponds to<4 1 2>, a common
subsequence of (X;Y)=(<4 3 1 6 2 5>, < 6 3 5 4 1 2>); (b):
in vertical constraint graphGv(V;E), a pathsv ! 6 ! 3 !
4 ! tv corresponds to<6 3 4>, a common subsequence of
(XR; Y)=(<5 2 6 1 3 4>, <6 3 5 4 1 2>).

(see Figure 4(a)). Similarly, a path fromsv to b in the verti-
cal constraint graph corresponds to a common subsequence of
(XR

2
; Y1) (see Figure 4(b)). Note that the coordinates of a

block is the coordinates of the lower-left corner of the block.
Thus, ifw(i) equals the width of blocki, lcs(X1; Y1) is the
x-coordinate of blockb.

Lemma 1 8b 2 the block setB, if sequence pair(X;Y) =
(X1bX2, Y1bY2), thenlcs(X1; Y1) is thex coordinate of block
b, wherew(i) is the width of blocki, andlcs(X;Y) is the width
of the block placement.

Proof As presented in [1], the longest path from vertexsh to
the vertexvb representingb in graphGh(V;E) gives thex co-
ordinate of blockb. It is therefore suffice only to prove that the
length of the longest path fromsh tovb is equal tolcs(X1; Y1).
One observation is that the source vertexsh of weight 0 and
the sink vertexth of weight 0 can be safely omitted due to the
fact thatsh can always be added to the head of both sequences

andth to the tail without changing the length of common sub-
sequence for any block.

By the definition of the constraint graph in the previous
section, a path tovb in Gh(V;E) corresponds to a common
subsequence of(X1; Y1), and vice versa. In addition, since the
vertex weight inGh(V;E) for a block is equal to the weight
of the corresponding element in the sequence pair, the length
of the path tovx in Gh(V;E) is equal to the length of the
corresponding common subsequence of(X1; Y1). Thus, the
length of the longest path tovx is equal to the length of the
longest common subsequence of(X1; Y1), i.e. lcs(X1; Y1).
Since the path fromsh to th corresponds to a common subse-
quence of(X;Y), the length of the longest path fromsh to th
is lcs(X;Y). 2

From the necessary and sufficient condition that

1. if bi is afterbj in X and beforebj in Y , thenbi is before
bj in XR and beforebj in Y , and

2. if bi is beforebj in XR and beforebj in Y , thenbi is
afterbj in X and beforebj in Y

we can similarly conclude the following lemma:

Lemma 2 8b 2 the block setB, if sequence pair(X;Y) =
(X1bX2, Y1bY2), then(XR; Y) = (XR

2
bXR

1
; Y1bY2) and

lcs(XR
2
; Y1) is they coordinate of blockb, wherew(i) is the

height of blocki, and lcs(XR; Y) is the height of the block
placement.

Based on the Lemma 1 and 2, we have the following theorem:

Theorem 1 LCS computation can be applied to determine the
x andy coordinates of each block and the width and height of
the block placement for a given sequence pair. Therefore, the
optimal packing can be obtained by computing LCS.

Table 1:x andy coordinates of each block.X=<4 3 1 6 2 5>,
Y =<6 3 5 4 1 2>,XR=<5 2 6 1 3 4>. The dimensions for ev-
ery block are: 1(4�6), 2(3�7), 3(3�3), 4(2�3), 5(4�3), and
6(6�4). See Figure 1(c) for the dimensions and the packing.

LCS of LCS of
block (X1; Y1) x coor (XR

2
; Y1) y coor

1 3 3 6 4
2 3 1 7 5 3
3 0 6 4
4 0 6 3 7
5 6 6 0
6 0 0

Table 1 shows the process that LCS is applied to determine
thex andy coordinates of each block for the sequence pair (<4
3 1 6 2 5>,<6 3 5 4 1 2>).

3

4. A Fast LCS Algorithm

A fast algorithm for computing longest common subsequence
was introduced in [9]. However, it only handles sequences
with unit weight. The representation they used is tightly based
on unit weight, and can not be adapted to the presence of
weights. In the rest of this section, we first propose a very
simple and efficientO(n2) algorithm to compute LCS for a
given sequence pair wheren is the number of elements and the
weights are not restricted to be 1 or integers. Then, we show
that using more sophisticated data structure, the algorithm can
be improved to run inO(n logn) time.

Assume the blocks are1:::n, and the input sequence pair
is (X;Y). BothX andY are then a permutation off1:::ng.
Block position arrayP [b]; b = 1:::n is used to record thex or
y coordinate of blockb depending on the weightw(b) equals
to the width or height of blockb respectively. To record the in-
dices in bothX andY for each blockb, the arraymatch[b]; b =
1:::n is constructed to bematch[b]:x = i andmatch[b]:y = j
if b = X [i] = Y [j]. The length arrayL[1:::n] is used to record
the length of candidates of the longest common subsequence.
The algorithm is as follows.

Algorithm 1:
1 Initialize Match Arraymatch;
2 Initialize LengthArrayL with 0;
3 for i = 1 to n
4 dob = X [i];
5 p = match[b]:y;
6 P [b] = L[p];
7 t = P [b] + w(b);
8 for j = p to n
9 do if (t > L[j])
10 thenL[j] = t;
11 else break;
12 returnL[n];

As an example, Figure 5 shows the steps algorithm 1 took
to compute the LCS of Sequence pair(<4 3 1 6 2 5>, <6 3
5 4 1 2>) in determining thex-coordinate of each block. The
weights of blocks are their widths as shown in Figure 1. When
the algorithm ends, the arrayP [1:::6] records the blocks’x-
coordinates.

Theorem 2 Algorithm 1 correctly returnslcs(X;Y) and the
position of each block is correctly recorded inP [1:::n].

Proof We use aninductionon i to prove that the positions
of the blocks in subsequenceX [1:::i] are correctly recorded.

Initially, all the L[j](j = 1; :::n) is 0. Wheni = 1, the
position of blockb (= X [1]) is 0. Assume that all the positions
of the blocks inX [1:::k] are correctly recorded. Wheni =
k + 1, we letb1 denote the blockX [k + 1], andp1 denote the
block’s index in the sequenceY , i.e.

match[b1]:x = k + 1 match[b1]:y = p1

Therefore, according toLemma 1and2, the position of block
b1 is lcs(X [1:::k]; Y [1:::(p1 � 1)]). Assume the last element

L 0 0 0 0 0 0 P
Initial

L 0 0 0 2 2 2 P 0

Step (1)
L 0 3 3 3 3 3 P 0 0

Step (2)
L 0 3 3 3 7 7 P 3 0 0

Step (3)
L 6 6 6 6 7 7 P 3 0 0 0

Step (4)
L 6 6 6 6 7 10 P 3 7 0 0 0

Step (5)
L 6 6 10101010 P 3 7 0 0 6 0

Step (6)

Figure 5: An Example of Algorithm 1 to compute the LCS of
Sequence pair (<4 3 1 6 2 5>,<6 3 5 4 1 2>). The dimensions
of the 6 blocks are shown in Figure 1. Herew(i) = width of
block i. L : candidates of LCS;P : positions of blocks

of the LCS isb2. Thus,match[b2]:x � k andmatch[b2]:y �
p1 � 1. We get

lcs(X [1:::k]; Y [1:::(p1 � 1)])

= lcs(X [1:::(match[b2]:x� 1)];

Y [1:::(match[b2]:y � 1)]) + w(b2)

Since all the positions of the blocks inX [1:::k] are correctly
recorded according to the induction assumption, we get

P [b2] = lcs(X [1:::(match[b2]:x� 1)];

Y [1:::(match[b2]:y � 1)])

Then,lcs(X [1:::k]; Y [1:::(p1 � 1)]) = P [b2] + w(b2).
The code from line 7 to line 11 guarantees thatP [b2] +

w(b2) is recorded inL[p1].
When the algorithm ends,L[n] records the maximal value

of the position of blockb plus its weight (b = 1; :::n), which is
lcs(X;Y). 2

Initializing the match array can be done inO(n) time by
scanning the two sequences. The running time of Algorithm
1 is O(n2), and the space requirement isO(n). In spite of
its O(n2) running time, the code is very tight, so the hidden
constant factor in its running time is small.

Note that the code from line 8 to line 11 actually records
the greatest value for later queries. If we usebalanced search
tree (BST)to manage the arrayL[1:::n], we can achieve the
O(n logn) running time. Every node in the BST is associ-
ated with two keys: (index, length), and both keys must be
kept in increasing (non-decreasing) order. We useindex as
the primary key , and discard the node whoselength is not
increasing since it makes no contribution to subsequent LCS
computation. The extra time charged for discarding nodes can
beamortized. The algorithm is shown below.

Algorithm 2:

4

1 Initialize Match Arraymatch;
2 Initialize BST with a node (0,0);
3 for i = 1 to n
4 dob = X [i];
5 p = match[b]:x;
6 P [b]=find BST(p);
7 t = P [b] + w(b);
8 insert (p; t) to BST;
9 discard the nodes with greater index thanp

and less length thant;
10 return findBST(n);

find BST(p):
1 find the greatest index in BST which is less than p;
2 return the corresponding length.

0,0

P
Initial

0,0

4,2

P 0

Step(1)
0,0

0,00,04,2

2,3

2,3Rotate Discard

4,2

2,3

P 0 0

Step(2)

0,0

2,3

5,7

P 3 0 0

Step(3)

0,05,7

1,6

5,7

Discard 1,6

0,0

2,3

P 3 0 0 0

Step(4)

0,0

6,10

5,7

1,6

P 3 7 0 0 0

Step(5)

6,10

0,0

6,10

0,05,7

1,6

3,10

3,10

1,6
Discard

P 3 7 0 0 6 0

Step(6)

Figure 6: An Example of Algorithm 2 to compute the LCS of
Sequence pair (<4 3 1 6 2 5>,<6 3 5 4 1 2>). The dimensions
of the 6 blocks are shown in Figure 1. Herew(i) = width of
block i. P : positions of blocks.

As an example, Figure 6 shows the steps Algorithm 2 took
to compute the LCS of sequence pair(<4 3 1 6 2 5>,<6 3 5
4 1 2>) in determining thex-coordinate of each block. The
weights of blocks are their widths as shown in Figure 1. Like
Algorithm 1, the arrayP [1:::6] is used to record thex-coordinate
of each block.

Theorem 3 Algorithm 2 finds thelcs(X;Y) and records the

position of each block inO(n logn) running time withO(n)
space requirement.

Proof The correctness of the algorithm can be observed
sincelcs(X [1:::i]; Y [1:::j]), whereX [i] = Y [j], is indicated
by the element(j; t) in the BST. Similar to Algorithm 1, the
algorithm returnsfind BST(n), which is exactlylcs(X;Y).

Now we useamortized analysisto prove that its running
time isO(n logn). In line 3, the loop hasn iterations. Line 4,
5, and 7 takeO(1) time each. Line 6 takesO(logn) time. In
line 8, the tree may need re-balance after inserting(p; t), which
takes at mostO(logn) time. In line 9, discarding one element
from BST and re-balancing it takeO(logn) time. Suppose
there aredk elements discarded during thekth iteration. Thus,
the total running time is

O(n logn) +

nX

k=1

dk � logn

Since there are at mostn elements discarded,
Pn

k=1 dk � n.
Therefore, the total running time isO(n logn).

Clearly, the space requirement isO(n). 2

5. Experimental Results

In this section, we design experiments to compare our algo-
rithm with original algorithm in two aspects. In Experiment
1, we compare the runtimes in evaluating a single sequence
pair. In Experiment 2, we compare the runtimes in obtaining
block placement. Both experiments are done on Sun-Ultra En-
terprise3000 (200MHz).

5.1. Experiment 1

We randomly generated test cases with 16, 32, 64, 128, 256,
512, 1024, 2048, 4096, 8192, and 16384 blocks. Table 2 lists
the average running time (in second) for the original algorithm
and our algorithms. The original algorithm uses an efficient
method to construct the constraint graphs inO(n2) time, and
uses an algorithm similar to that in [10] to find the longest
path length to all vertices from source vertex inO(n + m)
time wheren = #blocks(vertices), m = #edges.

From Table 2, we can see that both Algorithm 1 and Al-
gorithm 2 are significantly faster than the original algorithm.
For example, we achieved 60X speedup over the original al-
gorithm when the number of blocks is 128. When the number
of input blocks is more than 8192, Algorithm 2 outperforms
Algorithm 1. However, Algorithm 2 is slower than Algorithm
1 when the input size is small. The reason is that Algorithm 2
has the overhead of dynamic memory allocation and dealloca-
tion in maintaining the balanced search tree. When the input
size gets larger, Algorithm 2 begins to exploit itsO(n log n)
running time characteristic.

5.2. Experiment 2

The experiments are carried out for the MCNC benchmarks.
The evaluation of a sequence pair is a weighted sum of the

5

Table 2: time comparison for single computation between
original algorithm and our algorithms.

block# original(s) alg 1(s) alg 2(s)
16 5.50e-05 3.39e-06 5.55e-05
32 1.92e-04 7.21e-06 1.13e-04
64 7.25e-04 1.63e-05 2.34e-04
128 2.83e-03 4.47e-05 4.84e-04
256 1.13e-02 1.13e-04 9.95e-04
512 5.68e-02 3.29e-04 2.03e-03
1024 0.249 8.87e-04 4.13e-03
2048 1.06 2.45e-03 8.42e-03
4096 4.37 9.29e-03 1.73e-02
8192 19.6 2.93e-02 3.82e-02
16384 121 9.47e-02 8.88e-02

Table 3: Performance comparison for floorplanning experi-
ments between the original and ours.

data #mod #net original(s) ours (s) speedup

ami33 33 123 897 182 5X
ami49 49 408 1956 503 4X

area of the packing and the total wire length based on the half
perimeter estimate of bounding box for each net, where termi-
nals are assumed to be at the center of each block. The cost
functionC is defined as:

C = A + � � W

whereA is the area, andW is the wiring cost. The weight
parameter� is used in the cost function for balancing the two
factors. The initial temperature is decided such that the initial
acceptance rate is greater than 95%. Note that, since we are
only replacing the original sequence pair evaluation algorithm
with our algorithm, the number of iterations and the final so-
lutions are identical.

The comparison result is shown in Table 3. CPU-time and
speedup are listed. Notably, the wiring cost estimations for the
original and our method are the same. It accounts for a non-
trivial part in the running time. For example, if wiring cost
estimation accounts for 1/3 of running time for the original
algorithm, then we could achieve at most a 3X speedup even
if the time for the longest path computation is reduced to 0.
In spite of this, as we can see, our method still outperforms
the original one and achieved 5X speedup for ami33 and 4X
speedup for ami49.

6. Concluding Remarks

Sequence pair is an elegant topology representation of block
placement. In this paper, we have proposed a new algorithm
to translate a sequence pair to a block placement. We demon-
strate that its running time could beO(n logn) by using more
sophisticated data structure. Given a sequence pair, the algo-
rithm not only evaluate the area of the placement, but also

gives the position of each block, which is essential to wire
length estimation in practical VLSI placement. Experimental
results show its efficiency.

Our LCS algorithm is motivated by translating a sequence
pair to a block placement. So the algorithm presented above
mainly handles the situation that each of the two sequences
has the same length and is a permutation ofn blocks. In the
general case, the two sequences may have different length or
repeated elements. For example,X=< a b c b b a>, Y =< b
a b d a d b>. Both Algorithm 1 and Algorithm 2 can be easily
expanded to deal with the general case.

References

[1] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani,
“VLSI module placement based on rectangle-packing
by the sequence pair”.IEEE Transaction on Computer
Aided Design of Integrated Circuits and Systems, vol.
15:12, pp. 1518-1524, 1996.

[2] Semiconductor Industry Association, National Technol-
ogy Roadmap for Semiconductors, 1997.

[3] N. Sherwani, Algorithms for VLSI Physical Design Au-
tomation, Kluwer Academic Publishers, Boston, 1995.

[4] M. Sarrafzadeh and C.K. Wong, An Introduction to
VLSI Physical Design, McGraw Hill, 1996.

[5] H. Murata, K. Fujiyoshi, and M. Kaneko, “VLSI/PCB
placement with obstacles based on sequence pair”,
ISPD-97, pp. 26-31, 1997.

[6] H. Murata, and E.S. Kuh, “Sequence-Pair Based
Placement Method for Hard/Soft/Pre-placed Modules”,
ISPD-98, pp. 167-172, 1998.

[7] S. Nakatake, H. Murata, K. Fujiyoshi, and Y. Kajitani,
“Module Placement on BSG-Structure and IC Layout
Applications”, Proceedings of ICCAD-96, Nov. 1996.

[8] T. Takahashi, “An Algorithm for Finding a Maximum-
Weight Decreasing Sequence in a Permutation, Moti-
vated by Rectangle Packing Problem ”,Technical Re-
port of IEICE, VLD96, vol. VLD96, No. 201, pp. 31-35,
1996.

[9] J.W. Hunt, and T.G. Szymanski, “A fast algorithm for
computing Longest Common Subsequences”.Commu-
nications of the ACM, Vol. 20:5, pp. 350–353, May
1977.

[10] J.A. McHugh, “Algorithmic Graph Theory”, Prentice
Hall (1990).

[11] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “ Opti-
mization by simulated annealing”.Science, vol. 220,
pp. 671-680, 1983.

6

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

