
Analysis of High-level Address Code Transformations
for Programmable Processors

Sumit Gupta‡ Miguel Miranda§ Francky Catthoor§ ¶ Rajesh Gupta‡

‡Department of Information and Computer Science, Univ. of California at Irvine.
§IMEC Lab., Kapeldreef 75, 3001 Leuven, Belgium.¶Also Professor at Katholieke Univ. Leuven.

Abstract
Memory intensive applications require considerable

arithmetic for the computation and selection of the differ-
ent memory access pointers. These memoryaddress calcu-
lations often involve complex (non)linear arithmetic expres-
sions which have to be calculated during program execution
under tight timing constraints, thus becoming a crucial bot-
tleneck in the overall system performance. This paper ex-
plores applicabilityand effectiveness of source-level optimi-
sations (as opposed to instruction-level) for address compu-
tations in the context of multimedia. We propose and eval-
uate two processor-target independent source-level optimi-
sation techniques, namely, global scope operation cost min-
imisation complemented with loop-invariant code hoisting,
and non-linear operator strength reduction. The transfor-
mations attempt to achieve minimal code execution within
loops and reduced operator strengths. The effectiveness of
the transformations is demonstrated with two real-life mul-
timedia applicationkernels by comparing the improvements
in the number of execution cycles, before and afterapply-
ing the systematic source-level optimisations, using state-
of-the-art C compilers on several popular RISC platforms.

1. Introduction
Memory intensive applications (e.g., multimedia) re-

quire considerable arithmetic for the computation and selec-
tion of the different memory access pointers. These mem-
ory address calculations often involve linear and non-linear
arithmetic expressions which are typically embedded into
deeply nested loops. These usually have to be calculated
during program execution under tight timing constraints,
thus becoming a crucial bottleneck in the overall system
performance. To handle this complex arithmetic special
hardware units have been used in processors, which may
be either programmable or custom hardware[1, 2].

Custom hardware generation solutions have received a
lot of attention and a considerable amount of work has
targeted optimising their overhead [2, 3]. However, spe-
cialised hardware units and/or custom hardware gener-
ation solutions add to the design complexity and cost.
On the other hand, most programmable multimedia and
DSP processors [4, 5] have specialised address calculation
units that provide special addressing modes, like the auto-
inc(dec)crement mode, in the instruction set architecture.

In a programmable processor context, several compiler

approaches targeted at instruction-level optimisations have
been proposed [6, 7, 8]. SUIF is instrumented [9] with
an additional pass to do aggressive code-hoisting and some
induction variable optimisations at the instruction-level.
However, we show in this paper that much bigger gains can
be obtained by performing these aggressive optimisations
at thesource code-levelprior to using standard compilers
for low-level code generation. From our experiments, we
deduce that the opportunities present at the high-level are to
a great extent complementary and decoupled from the ones
currently exploited at the instruction-level.

Previous experience with the custom ACU oriented
ADOPT approach [3], has shown that when the explo-
ration/optimisation is done at a higher-level (e.g., the in-
dex/address expression-level) much lower hardware imple-
mentation costs and synthesis time are obtained. However,
our ADOPT approach up to now was solely targeted for cus-
tom hardware generation. This paper describes experiments
which demonstrate that our previous work, augmented with
some additional steps, can be efficiently used in the context
of a software compiler approach. This will allow optimisa-
tion of high-level address generation code by applying opti-
mising processor independent transformations to the source
code. To demonstrate that the resulting high-level code is
optimised for performance it is compiled on several plat-
forms using standard compilers and the results before and
after applying the transformations are compared. These re-
sults show that significant improvements are possible.

Also, the ADOPT script can be used as the back end
of data transfer and storage exploration (DTSE) approaches
such asAtomium[10] andAcropolis[11] which target low
power background memory organisations and silent bus be-
haviour. The ADOPT transformations have been verified
to not counteract the memory oriented transformations per-
formed by such DTSE approaches.

Most of the transformations applied for this work have
been done manually in a systematic way. Because of the
formalism applied, we believe that these can be automated
in a high-level code optimiser which is our current work.
Some of the steps have already been automated in prototype
tools such as the address expression extraction [3] and the
exploration support for the algebraic transformations [12].

1

2. High-level address optimisation script
We refine the high-levelAddressOptimisation script

(ADOPT) presented in [13] to also support programmable
processors. The new methodology is a platform indepen-
dent approach whereby the address generation code in a
given behavioral description is optimised by applying pro-
cessor independent transformations. Therefore, the cost
model is extended to include performance, in terms of exe-
cution cycles, in addition to power and area. The resulting
behavioral code can either be synthesised into hardware or
compiled as software onto a target processor.

CDFG
Global

Algebraic
Trafos

Refined sub-script

Global scope
Code Motion

Non-linear
Induct.Anal.

ADOPT
 front-end

custom HW
synthesis

traditional
ILP compilers

C code

C code

Figure 1. Processor target independent high-
level address optimisation script

Our previous custom style oriented ADOPT script [13]
starts off by extracting the Address Expressions (AEs) from
the CDFG of the given behavioral algorithm and splitting
and clustering them to maximise resource sharing. This
is followed by target architecture selection, loop-invariant
code hoisting (CH), induction variable analysis (IVA), and
algebraic transformations (AT). The resulting AEs are then
mapped onto the custom hardware processor by using spe-
cific synthesis techniques aimed at thetime-shared cluster-
level [14]. However, this ADOPT methodology does lim-
ited CH and IVA and considers these two steps isolated from
each other.

In this paper, we refine the ADOPT script (see Figure 1)
to propose a more detailed analysis of the interaction be-
tween the global-scope CH and IVA stages and incorporate
operation cost minimisation (OCM) by exploiting algebraic
transformations. The Global Algebraic Transformation En-
gine (GLATE) stage [12] is now performed before the other
transformations. This is necessary to create more free-
dom at the global scope for CH, by exploring AE factori-
sations different from those originally present in the code.
For custom processor targets, the position of the common-
subexpression elimination stage at the beginning of the sub-
script did not limit the search space. However, for pro-
grammable processors, exploiting beyond basic-block code
invariance by CH is essential to maximally utilise the lim-
ited resources of the underlying platform. Hence, exploring
factorisation alternatives increases the search space, there-
fore, enhancing the opportunities for other optimisations.

To properly steer GLATE to consider optimal factori-
sation for global scope common-subexpression elimination
and CH in terms of performance cost, we extended the
current model [12, 13] to consider the cheapest context-
dependent cost, e.g., the cost of a constant multiplication
is the cost of the corresponding add/subtract/shift network,

expressed in cycles and weighted by the execution rate of
the corresponding code scope.

The approach starts with a behavioral description of the
application in a high-level language, e.g.C. The result af-
ter applying the high-level transformations (see Figure 1) is
C code with optimised addressing functionality. This code
can then be used either for hardware ACU generation or be
compiled on a target processor using standard compilers to
implement the addressing in software.
3. Address expression code extraction

The address expressions (AEs) for the indices of arrays
are extracted from indexed arrays of the formA[I1][I2]...[In],
by linearising the multi-dimensional arrays into single-
dimension linear arrays [3]. The address expression (AE)
of the array indices ofA can be expressed as:AE = ((I1*S2

+ I2)*S3 ...)*Sn + In, whereI = [I1, I2, ... In] is the index
vector of the array andS= [S1*S2*... * Sn, S2*S3 *... * Sn,
... Sn, 1] is the storage size vector of the array andSi is the
maximal size of the array in theith-dimension. This explicit
AE extraction exposes different opportunities for operation
cost minimisation.
4. High-level address transformations

We now introduce the two main sub-stages of ADOPT.
4.1. Operation cost minimisation and loop-

invariant code hoisting
Common Sub-expression Elimination(CSE) is an im-

portant compiler-level transformation that attempts to de-
tect repeating sub-expressions in a piece of code, stores
them in a variable and reuses the variable wherever the
sub-expression occurs subsequently [15]. Since the fac-
torisation of expressions influences CSE/CH drastically, the
ADOPT script uses GLATE [12] to find optimal factori-
sation possibilities, remove redundant code and propagate
constants at the high-level and beyond basic blocks (across
loop and conditional boundaries). In contrast, traditional
models used by ILP compilers typically limit the analysis
capabilities for data dependencies that expand beyond the
control-flow boundaries, hence limiting the optimisation ca-
pabilities to the local scope (within basic blocks).

Consider the segment of code from theFull Search Mo-
tion Estimationalgorithm (ME) shown in Figure 2(a). This
segment shows a deeply nested loop (3-levels), containing
two array accesses. The address expression equations have
already been extracted in the code shown in Figure 2(a) and
the arrays have been linearised as explained in Section 3.
The transformed code after factorised CSE using GLATE is
shown in Figure 2(b). Variables,cse10 andcse100 are pro-
duced by the factorisation engine, and reused in subsequent
scopes. Finally, Figure 2(c) shows howcse10 is moved out
of the loops in which it has no dependencies with the loop
variables. Similar optimisation happen oncse1 andcse2.
The results in Section 5 demonstrate how these transforma-
tions lead to a significant improvement in performance in
terms of execution cycles.

2

 for (j_1=-8; j_1<=8; j_1++) {
 for (k_11=-4; k_11<=4-1; k_11++) {
 for (l_11=-4; l_11<=4-1; l_11++)
 Ad[((208+j_1)*257+8+k_11)*257+ 16+j_1+l_11] =
 A[(8+k_11)*257+16+j_1+l_11];
 }
 Delta += A[3096] -
 Ad[((208+j_1)*257+4)*257+ 16+j_1-4];
 for (l_12=-4+1; l_12<=4-1; l_12++)
 Delta += A[3100+l_12] -
 Ad[((208+j_1)*257+4)*257+16+j_1+l_12];
 } (a)

 for (j_1=-8; j_1<=8; j_1++) {
 for (k_11=-4; k_11<=4-1; k_11++) {
 for (l_11=-4; l_11<=4-1; l_11++) {
 cse10 = (33025*j_1+6869616)*2;
 cse100 = l_11+k_11*257+1032;
 Ad[cse100+cse10] = A[cse100+1040+j_1];
 }
 }
 Delta += A[3096]-Ad[cse10];
 for (l_12=-4+1; l_12<=4-1; l_12++)
 Delta += A[3100+l_12]-Ad[l_12+4+cse10];
 } (b)

 for (j_1=-8; j_1<=8; j_1++) {
 cse10 = (33025*j_1+6869616)*2;
 //cse1 to cse2 obtained after code motion
 cse1 = 1040+j_1;
 cse2 = 4+cse10;
 for (k_11=-4; k_11<=4-1; k_11++) {
 //cse101 obtained after code motion
 cse101 = k_11*257+1032;
 for (l_11=-4; l_11<=4-1; l_11++) {
 cse100 = l_11+cse101;
 Ad[cse100+cse10] = A[cse100+cse1];
 }
 }
 Delta += A[3096]-Ad[cse10];
 for (l_12=-4+1; l_12<=4-1; l_12++)
 Delta += A[3100+l_12]-Ad[l_12+cse2];
 } (c)

Figure 2. Full-search ME kernel: (a) original
segment; (b) after operation cost minimisa-
tion; (c) after loop-invariant code hoisting

4.2. Non-Linear operator strength reduction

In this section, we demonstrate techniques to trans-
form the polynomial expressions generated from DTSE
approaches [10, 11], so as to achieve non-linear operator
strength reduction, whereas standard compilers only target
linear operator strength reduction [15].

The transformations attempt to reduce the number of
non-constant multiplications and replace them by cheaper
add/accumulate operations. Constant divisions and multi-
plications can be further reduced using conventional linear
IVA. Multimedia applications, especially in image render-
ing and 3D graphics rendering algorithms, are riddled with
non-linear arithmetic and the use of multiplies and divides.
However, the address generation logic typically cannot af-
ford the area and power intensive integer multipliers. After
operation strength reduction, the address arithmetic can be
efficiently mapped to architectural extensions such as auto-
increment hardware and add-shift-load chains [6].

Consider the code segment taken from theGSM code
book lookupshown in Figure 3(a). The polynomial expres-
sion for cse1 has a very expensive multiplication between
two loop dependent multiplicands. However, the sequence
generated by this variable can be analysed at compile time
since it depends the loop variables whose bounds and stride

ivtmp = ipos[3];
for (i3=ivtmp; i3<40; i3+=5) {
 cse1 = i3*(i3-1)/2;
 if (i3<=i0) {
 if (i3==i0) rdm = h2[cse2];
 else rdm = rr[cse4+i3];
 } else rdm = rr[cse1+i3];
 rrv[i3/5] = s;
} (a)

ivtmp = ipos[3];
//initialisation of ivpol
ivpol = ivtmp*(ivtmp-1)/2-5*ivtmp;
for (i3=ivtmp; i3<40; i3+=5) {
 //ivpol replaces ’i3*(i3-1)/2’ in ’cse1’
 ivpol += 5*i3-15;
 if (i3<=i0) {
 if (i3==i0) rdm = h2[cse2];
 else rdm = rr[cse4+i3];
 } else rdm = rr[ivpol+i3];
 rrv[i3/5]= s;
} (b)

ivtmp = ipos[3];
ivpol = ivtmp*(ivtmp-1)/2 - 5*ivtmp;
ivlin1 = 5*ivtmp-15; //initialise ivlin1
ivlin2 = ivtmp/5; //initialise ivlin2
for (i3=ivtmp; i3<40; i3+=5) {
 ivpol += ivlin1;
 //ivlin1 replaces ’5*i3-15’ in ’ivpol’
 ivlin1 += 25;
 if (i3<=i0) {
 if (i3==i0) rdm = h2[cse2];
 else rdm = rr[cse4+i3];
 } else rdm = rr[ivpol+i3];
 //ivlin2 replaces ’i3/5’ in ’rrv[i3/5]’
 rrv[ivlin2++]= s;
} (c)

Figure 3. GSM algorithm: (a) original seg-
ment; (b) after polynomial induction variable
replacement; (c) after linear IV replacement

is known. As shown in the transformed code in Figure 3(b),
the polynomial IV,ivpol, is an accumulatorwith a con-
stant multiplication which generates the same sequence as
cse1. Constant multiplications and divisions can then be re-
moved by conventional linear induction analysis techniques
as shown in Figure 3(c). For instance, the polynomial IV,
ivpol, in Figure 3(c) is being generated by adding a linear
IV, ivlin1, instead of the earlier 5� i3 multiplication. An-
other example is the linear IVs:ivlin2 replacingi3=5 in Fig-
ure 3(c). Similar polynomial IVA opportunities are present
throughout the GSM code.

A comprehensive overview of techniques to generate
polynomial IVs using a linear IV is presented by Wolfe
et al. [16]. They demonstrate that polynomials of succes-
sively higher degree can be obtained by augmenting them
with the polynomial IV of the previous degree. We have
obtained huge gains by applying these transformations on
source-level code as discussed in the results section.

5. Experimental framework and results on
real-life demonstrators

We have performed the high-level transformations de-
scribed in the previous sections on two already (manually)
optimised real-life demonstrators: the full search ME al-
gorithm and the GSM code-book lookup-search. The seg-
ments of code used from these kernels are responsible for
more than the 60 % of their overall performance cost.

For our experiments, we have used general-purpose mi-

3

Behav.Code: SUN UltraSparc 5 (128 MB) HP PA-RISC 2.x (1500 MB)
Full Search gcc-2.95.1 -O3 -mtune=ultrasparc cc -c -xO5 -xtarget=ultra2i gcc-2.91.6 -O3 native cc comp.

Motion Estimation SW Mult Emul. Mult. Enabled SW Mult Emul. Mult. Enabled SW Mult. Emul. Mult. Enabled Mult. Enabled
Initial 151.3 151.3 96.6 96.6 132.3 132.3 113.9
Algebraic Trafos 125.7 (20.3%) 125.7 (20.3%) 86.0 (12.3%) 86.0 (12.3%) 91.5 (45.5%) 90.9 (45.5%) 107.5 (5.8%)
+ Code Hoisting 121.7 (24.3%) 121.7 (24.3%) 82.7 (16.7%) 82.7 (16.7%) 88.2 (49.9%) 88.2 (49.9%) 105.6 (7.8%)
+ Ind. Anl.(Lin) 114.5 (32.1%) 114.5 (32.1%) 85.8 (13.5%) 85.8 (13.5%) 88.5 (49.4%) 88.5 (49.4%) 105.5 (7.8%)

Table 1. Full Search ME : number of Kcycles improvement and cumulative speed-up (%).

croprocessor based platforms (Sun UltraSparcandHP PA-
Risc 2.x) instead of DSP compilation and simulation envi-
ronments. The reason is state-of-the-art optimising compil-
ers for these platforms are known to be more powerful than
those available for DSPs. However, we believe that these
transformations are platform independent and can easily be
used for DSP processors as well, especially since several
new DSP architectures are VLIWs [4, 5]. The code before
and after the transformations is compiled with maximum
optimisation flags enabled using GNU’sgcc 2.9xportable
compiler on both the Sun and the HP platform and Sun So-
laris 2.7cc compiler and HP-UX’s 10.xcc compiler. By
using two different compilers on each platform and two dif-
ferent benchmark algorithms, we have tried to verify that
the transformations are independent of the internal idiosyn-
crasies of the optimising compilers and the algorithms.

The improvement in the number of cycles that the two
algorithms take for execution when compiled using the
portable compiler and the native compiler for both SUN
and HP platforms is shown in Tables 1 and 2. The tables
show the number of cycles of execution and the cumulative
speed-up (measured as % overhead in number of cycles of
the non-optimised version over the optimised one). Each
table compares the number of cycles when the code is com-
piled using software emulation for the integer multiplies by
adds and shifts, i.e., by disabling the use of the multiplier
and when the code is compiled so as to use the hardware
integer multiply instruction. This is done since it is desir-
able to reduce or eliminate multipliers from the ACU so as
to reduce area and power consumption. There is no flag in
HP’s native cc compiler to disable the generation of multi-
ply instructions, so the HP cc results in Tables 1 and 2 only
show the results with the multiplier enabled.

For the Motion Estimation kernel, Table 1 compares the
results when the applications are compiled after AT and op-
eration cost minimisation OCM (second row), and after ap-
plying the loop-invariant CH (third row). The table shows
that most speed-up is due to the AT exploration phase on
both architectures. After the application of OCM and loop-
invariance transformations on the ME algorithm, a signifi-
cant (upto 50%) speed-up is achieved.

For the GSM kernel, Table 2 compares the results for
when the algorithm is compiled after exploring AT at the
global scope (second row), and then, followed by global-
scope CH (third row). In this driver, CH was applied not
only across loop boundaries but also across data-dependent

conditional boundaries, where subexpressions which are
defined inside certain conditional basic blocks have been
moved unconditionally up-front in the code and reused in
all the remaining occurrences. To decide where to move the
subexpressions, we have respected the procedural execution
of the basic blocks. By profiling, we have decided when
the gain of unconditionally computing the subexpressions is
bigger than the cost of conditionally computing them. Ta-
ble 2 also shows the cumulative numbers after applying the
IVA, both polynomial and linear. Its evident from the table
that for this kernel most of the speed-up is due to IVA.

Note that when performing linear IVA at the source-
level, the number of cycles for the ME algorithm is at times
increased marginally, (see last row in Table 1) perhaps be-
cause of register spillage due to the added registers required
to store the induction variables. Conventional compilers are
capable of doing simple linear IVA by converting multiplies
into adds and shifts and they can control the register spillage
overhead. However, linear IVA can be effectively exploited
with DSPs due to their zero-cycle overhead auto-increment
addressing modes in the ACU [6].

We have also found that a similar effect happens in the
GSM code. The GSM code is dominated by non-linear
arithmetic, with 2.8K integer multiplications and 1.16K
constant divisions being initially executed at run time. After
the ADOPT transformations, the new code contains just 154
multiplications and 154 constant divisions (needed for the
initialisation of the different induction variables). Table 3
shows the reduction in number of calls to the SW-emulated
multiply and divide functions ateach stage of the transfor-
mation script and the cumulative savings as percentage re-
duction. Note that although the effective number of calls
to constant multiplications is not reduced when performing
linear IVA, a significant reduction (up to 86%) in calls to
constant divisions is observed.

This experiment demonstrates how applying linear in-
duction analysis may be closely interlinked to the steps and
passes being performed by the compiler, especially when
reducing the strength of the constant multiplications. How-
ever, the rest of the steps, namely global-scope CSE/CH,
non-linear IVA, and possibly even linear IVA for division
replacement, remain for the most part complementary and
well decoupled.

In terms of absolute number of cycles of code execution,
the native compiler, which is typically highly optimised
for the target processor, performed better than the portable

4

Behav.Code: SUN UltraSparc 5 (128 MB) HP PA-RISC 2.x (1500 MB)
GSM Codebook gcc-2.95.1 -O3 -mtune=ultrasparc cc -c -xO5 -xtarget=ultra2i portable gcc-2.91.6 -O3 native cc comp.
Look-up Search SW Mult. Emul. Mult. Enabled SW Mult. Emul. Mult. Enabled SW Mult. Emul. Mult. Enabled Mult. Enabled
Initial 15.94 9.79 17.91 10.01 20.88 10.87 9.26
Algebraic Trafos 15.93 (0.0%) 9.81 (-0.2%) 17.91 (-0.0%) 10.01 (-0.0%) 21.01 (-0.5%) 10.84 (0.3%) 9.45 (-1.9%)
+ Code Hoisting 14.93 (6.8%) 9.08 (7.9%) 16.87 (6.2%) 9.45 (5.9%) 18.73 (11.5%) 9.78 (11.1%) 8.55 (8.3%)
+ Ind.Anl.(Poly) 15.01 (6.2%) 8.45 (15.9%) 15.09 (18.6%) 8.28 (20.9%) 16.75 (24.6%) 8.40 (29.4%) 7.41 (25%)
+ Ind.Anl.(Lin) 12.93 (23.3%) 8.68 (12.9%) 13.60 (31.7%) 7.45 (34.4%) 15.64 (33.5%) 7.21 (50.7%) 7.01 (32.1%)

Table 2. GSM codebook: number of Mcycles improvement and cumulative speed-up (%).
Behav.Code: SUN ULTRASparc 5 (256 MB) HP PA-RISC 2.x (1500 MB)

GSM Codebook portable gcc 2.95.1 native-cc portable gcc 2.91.6
Look-up Search Multiplies Divides Multiplies Divides Multiplies Divides

Alg.Trafos 1554 188 1665 6.5 1634 188
+ Code Hoisting 1359 (12.5%) 188 (0.0%) 1548 (7.6%) 6.5 (0.0%) 1417 (13.2%) 188 (0.0%)
+ Ind.Anl. (Polynoml.) 1146 (26.5%) 188 (0.0%) 1321 (26.0%) 6.5 (0.0%) 1146 (29.8%) 188 (0.0%)
+ Ind.Anl. (Linear) 1146 (26.5%) 25 (86.7%) 1139 (46.2%) 6.5 (0.0%) 1146 (29.8%) 25 (86.7%)

Table 3. GSM: reduction in num. of Kcalls & cumulative saving(%) in SW integer multiplies & divides
one for both drivers. However, after applying the ADOPT
script, we note that both the compilers perform equally well
in terms of the absolute number of cycles, irrespective of the
platform. Also, when we migrated from gcc 2.8 to gcc 2.9,
we found that the absolute number of cycles improved, but
contrary to expectation, the speed-ups after our transforma-
tions alsoimproved. Clearly, an aggressive, processor inde-
pendent, source-to-source pre-compiler can greatly help im-
prove compilation results by exploring optimisations at the
global scope and remove the effects of syntactic variance
and coding styles. The large search space at the instruction-
level makes it more difficult to find global optimisation op-
portunities, hence, decreasing exploration productivity.

6. Conclusions
In this paper, we propose a script for advanced high-level

address optimisation consisting of a well defined sequence
of source-level transformations. Through our experimen-
tal results, we verify that we achieve significant speed-ups,
up to 50%, in terms of number of cycles, and savings, up
to 86%, in the number of calls to multiply/divide integer
units. Moreover, we demonstrate that these transformations
can be applied at the source-level, followed by the use of
standard compilers. We identify among the proposed trans-
formations those which counteract with the compiler and
those which are complementary to the compiler steps. Fi-
nally, we have also demonstrated that the results obtained
after applying the optimisations are near optimal, indepen-
dent of the compiler and platform selected. This clearly
demonstrates the need for a highly aggressive and portable,
processor independent, source-to-source pre-compiler tar-
geted at address computation code optimisation.

Although we have verified the effectiveness of our trans-
formations only with RISC processor architectures whereas
the final target architectures for such algorithms are DSPs,
these source-level transformations are to the most extent,
platform-independent and will easily extend to DSPs, es-
pecially contemporary VLIW-like DSP processors [4, 5].
However, more experimentation is required to determine

the interactions that architectural features of RISCs such as
caches and large register sets have with our transformations.
7. Acknowledgements

The authors would like to acknowledge the support of
the National Science Foundation under grant CCR-9806898
and DARPA under grant DARPA/ITO DABT63-98-C-004.
This research has been supported by the SMT and IT-
IMAGE projects of the Flemish Community - IWT.

References
[1] K.Kitagaki, T.Oto, T.Demura, Y.Araki, T.Takada,A new address gen-

eration unit architecture for video signal processing, Visual Commu-
nications and Image Processing,1991.

[2] P.Lippens, J.Van Meerbergen,et al. Phideo: A silicon compiler for
high speed algorithms, Europ. Conf. for Design Automation, 1991.

[3] M.Miranda, F.Catthoor, M.Janssen, H.De Man,ADOPT: Efficient
hardware address generation in distributed memory architectures,
Intl. Symp. on System Synthesis, 1996.

[4] Texas Instruments,TI TMS320C6x User’s Guide.
[5] Philips Semiconductor,Trimedia TM1000 Programmable media pro-

cessor databook.
[6] R.Leupers, P.Marwedel,Algorithms for Address Assignment in DSP

Code Generation, Intl. Conf. on Computer-Aided Design, 1996
[7] A.Sudarsanam, S.Liao, S.Devadas,Analysis and evaluation of ad-

dress arithmetic capabilities in custom DSP architectures, Design
Automation Conference, 1997.

[8] B.Wess,Minimisation of data address computation overhead in DSP
programs, Design Automation for Embedded Systems, no. 4, 1999.

[9] S.M. Pujare, C.G. Lee, P. Chow,Machine-Independent Compiler Op-
timizations for the UofT DSP Architecture, Intl. Conf. on Signal Proc.
Apps. and Tech., 1995

[10] F. Catthoor, S. Wuytack, E.De Greef, F. Balasa, L. Nachtergaele,
A. Vandecappelle,Custom Memory Management Methodology: Ex-
ploration of Memory Organisation for Embedded Multimedia System
Design, Kluwer Academic Publishers, 1998

[11] K. Danckaert, F. Catthoor, H. De Man,System-level memory man-
agement for weakly parallel image processing, EuroPar Conf., 1996.

[12] M.Janssen, F.Catthoor, H.De Man,A specification invariant tech-
nique for operation cost minimisation in flow-graphs, Intl. Symp. on
High-level Synthesis,1994

[13] M.Miranda, F.Catthoor, M. Janssen, H.De Man,High-Level Address
Optimisation and Synthesis Techniques for Data-Transfer Intensive
Applications, IEEE Trans. on VLSI Systems, no.4, vol.6, Dec. 1998.

[14] S.Note, W.Geurts, F.Catthoor, H.De Man,Cathedral-III: Architec-
ture driven high-level synthesis for high throughput DSP applica-
tions, Design Automation Conference, 1991.

[15] A.Aho, R.Sethi, J.Ullman,Compilers: Principles, Techniques and
Tools, Addison-Wesley Publishing Company, 1986.

[16] M.Gerleck, E.Stoltz, M.Wolfe, Beyond induction variables: de-
tecting and classifying sequences using a demand-driven SSA form,
ACM Trans. Progrm. Languages and Systems:17, Jan. 1995.

5

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

