
Code Selection for Media Processors with SIMD Instructions

Rainer Leupers

Department of Computer Science 12
University of Dortmund

44221 Dortmund, Germany
email: Rainer.Leupers@cs.uni-dortmund.de

Abstract – Media processors show special instruction sets
for fast execution of signal processing algorithms on different
media data types. They provide SIMD instructions, capable
of executing one operation on multiple data in parallel within
a single instruction cycle. Unfortunately, their use in com-
pilers is so far very restricted and requires either assembly
libraries or compiler intrinsics. This paper presents a novel
code selection technique capable of exploiting SIMD instruc-
tions also when compiling plain C source code. It permits to
take advantage of SIMD instructions for multimedia applica-
tions, while still using portable source code.

1. Introduction

In order to support the fast execution of computation-
intensive multimedia application programs, dedicated media
processors are available on the semiconductor market. These
machines provide architectural support for efficiently pro-
cessing different data types on the same data path. Examples
are the Texas Instruments C62xx, the Philips Trimedia, and
Intel’s Pentium MMX architecture.

Many media processors show a 32-bit data word length.
However, applications in the audio or video domain normally
require only a precision of 16 or 8 bits, respectively, resulting
in a potential waste of computational resources. Therefore,
media processors show a special kind of machine instruc-
tions, that permit to virtually split each full data register into
multiple subregisters and to perform identical computations
on the subregisters in parallel. These instructions are now
commonly called SIMD (single instruction, multiple data) in-
structions. SIMD instructions are very powerful for compu-
tations on media data. However, a major problem with SIMD
instructions is the missing support by C compilers. Standard
code generation techniques are not capable of detecting op-
portunities for SIMD instructions due to a limited exploration
of the search space. Using plain C code for programming me-
dia processors thus potentially results in huge losses in code
quality with respect to code size, performance and/or power
consumption.

One way to circumvent this problem is the use of ”com-
piler intrinsics”, i.e. calls to compiler-known functions which
are expanded into specific assembly instructions. Another
method is the use of hand-optimized assembly libraries. Un-
fortunately, both methods result in highly machine-specific

This work has been supported by Agilent Technologies, USA.

code, so that porting an application to a new target processor
requires significant programming effort.

The contribution of this paper is a new code selection tech-
nique, capable of exploiting SIMD instructions when compil-
ing plain ANSI C code. This allows to take full advantage of
the media processor capabilities while still using machine-
independent source code. The paper is structured as fol-
lows. The next section mentions previous work on code se-
lection for embedded processors. After exemplifying the use
of SIMD instructions in section 3, we explain the details of
the proposed code selection technique in sections 4 and 5.
Experimental results for existing media processors are given
in section 6.

2. Related work

Most compilers use tree pattern matching with dynamic
programming [1] for code selection. This technique uses an
intermediate program representation consisting of data flow
trees (DFTs). The problem of code selection is mapped to a
problem of covering DFTs by available instruction patterns.
Tree pattern matching with dynamic programming is capable
of computing an optimal covering of each DFT linear time. It
is used in code generator generators like ”twig” and ”olive”
[1] which generate code selectors from a tree grammar de-
scription of the machine instruction set. A tree grammar con-
sists of terminals, nonterminals (including a designated start
symbol), and tree-like, cost-attributed rules. Rules are used
to describe the behavior of assembly instructions, while rule
costs induce a metric such as the execution time of an instruc-
tion.

However, tree pattern matching with dynamic program-
ming is not directly applicable to generation of SIMD instruc-
tions, since this in general requires to simultaneously cover
multiple DFTs, instead of processing one DFT after another.
This means that code selection has to be performed on full
data-flow graphs (DFGs) instead of only DFTs as in tradi-
tional compiler technology. This will become obvious in the
next section, which exemplifies the use of SIMD instructions.

Some work on code selection for DFGs has also been per-
formed in the DSP area [2, 3, 4, 5]. Such techniques have
been designed to cope with the irregular data path structure
of DSP processors. However, code selection with SIMD in-
structions has so far not been addressed. As a result, current
compilers for media processors cannot directly exploit SIMD
instructions when compiling C source code.

3. SIMD instructions

We call an instruction a SIMD instruction, if it performs a
manipulation (arithmetic or logic operation, load or store) of
data stored subregisters instead of full registers. For the use
of SIMD instructions, the 32-bit data registers are considered
to be composed of either two 16-bit subregisters or four 8-bit
subregisters. Thus, in terms of the C programming language,
any full register may store either four ”char” data, two ”short”
data, or a single ”int” at a time. In the following, for sake
of simplicity, we will emphasize SIMD instructions on 16-
bit data, although (as outlined later) the proposed technique
equally applies to 8-bit data.

Fig. 1 gives an example of the SIMD instruction ”ADD2”
of the TI C62xx. It performs two 16-bit additions in parallel
and writes two results into the two subregisters of the desti-
nation register. While arithmetic SIMD instructions require

16 bits 16 bits 16 bits 16 bits

16 bits 16 bits

+ +

Figure 1. TI C62xx instruction ”ADD2”

special hardware support, such as the suppression of carry
propagation, there are also ”trivial” SIMD instructions like
those performing logic operations (AND, OR, XOR, NOT).

In order to take full advantage of SIMD instructions, it
is necessary, that the 16-bit or 8-bit data to be manipulated
are efficiently loaded from and stored into memory. Under
certain conditions, one can use 32-bit instructions to load
operands and store results of SIMD instructions. As an exam-
ple, consider the piece of C code in fig. 2, which describes a
vector addition on short data. In this example, the loop body

void f(short* A,short* B,short* C)
{ int i;

for (i = 0; i < N; i += 2)
{ A[i] = B[i] + C[i];
A[i+1] = B[i+1] + C[i+1];

}
}

Figure 2. Source code for vector addition

has been unrolled once, so as to reveal the potential paral-
lelism.

Using the above ”ADD2” instruction, the two additions in
the loop body could be executed in parallel. However, this
requires that the operand pairs B[i], C[i] and B[i+1], C[i+1]
are loaded into the lower and upper halves of the argument
registers, respectively1. Therefore, B[i] and B[i+1] must be

1On some processors this requires a memory alignment to word bound-
aries. We assume that an appropriate alignment can be ensured, either by the
source code itself or by assembler directives.

loaded by a single 32-bit load instruction instead of two sep-
arate 16-bit loads, and the same applies to C[i] and C[i+1].
Since adjacent array elements are stored in adjacent memory
locations, this can be accomplished with two 32-bit load in-
structions. After execution of ”ADD2”, the results A[i] and
A[i+1] are located in the lower and upper halves of the des-
tination register, and a single 32-bit store operation suffices
to write the two results back to memory. This is illustrated
in fig. 3. In total, the number of instructions required to exe-
cute the vector addition can be reduced by 50 % when using
SIMD instructions.

Figure 3. Parallelization of vector addition with SIMD
instructions

There are two major difficulties in exploiting SIMD in-
structions. First, parallel loading or storing of values located
in subregisters from/to memory requires to establish that the
memory address difference is correct. In our C compiler, we
apply a standard data flow analysis technique to pointers in
order to determine those sets of operands that qualify for par-
allel loading and storing with 32-bit instructions.

A more difficult task is to correctly pack potentially par-
allel instructions together during code generation, so as to
form SIMD instructions. Generating SIMD instructions on-
the-fly only during the instruction scheduling and register al-
location phases, although possible, would be very difficult,
because a large number of constraints need to be obeyed. If,
for instance, multiple values share a single 32-bit register,
then their live ranges are tightly coupled. As a consequence,
standard register allocation techniques, such as graph color-
ing [6], cannot be applied.

Instead, we prefer to generate SIMD instructions already
early in the code generation process during the code selec-
tion phase, which maps the machine-independent intermedi-
ate representation of a program into machine-specific instruc-
tions. The generated code afterwards only operates on sym-
bolic 32-bit registers, so that existing instruction scheduling
and register allocation techniques can still be used.

4. DFG covering

Our code selection technique operates on data flow graph
(DFG) representations of basic blocks. Using full DFGs (in-
stead of separate DFTs) is necessary, since exploitation of

SIMD instructions frequently requires to pack together op-
erations located in different DFTs. Each DFG node rep-
resents an operation (arithmetic, logic, load, or store), a con-
stant, or a variable, and each DFG edge denotes a data
dependence between nodes and . Note that a DFG in
general may contain common subexpressions (CSEs) (nodes
with fanout greater than one) and may consist of several non-
connected subgraphs. A given DFG is partitioned into multi-
ple DFTs by cutting the DFG at the CSE edges and comput-
ing optimal covers for each single DFT. Since media proces-
sors tend to show a regular data path architecture, this does
not incur significant losses in code quality. However, this
”traditional” approach is not directly capable of generating
SIMD instructions, since this in general requires the consid-
eration of multiple DFTs at a time.

We overcome this problem by permitting the generation
of alternative solutions during tree pattern matching. Instead
of annotating only a single optimal rule to each DFG node,
we annotate all optimal rules, including those for SIMD in-
structions, and only later determine the best rules globally
for the whole DFG. In order to achieve this, we introduce
dedicated nonterminal symbols in the tree grammar, which
denote the different possibilities of using a register, i.e. either
as a full 32-bit register or as two separate 16-bit registers.
As an example, consider instructions for addition on a C62xx
processor (all other arithmetic and logic SIMD instructions
are modeled in the same way). Instruction ”ADD” adds two
32-bit registers and also writes the result to a 32-bit register.
This can be expressed by the following rule, where nonter-
minal symbol ”reg” denotes a full register and ”PLUS” is a
terminal symbol.

reg: PLUS(reg,reg)

The SIMD instruction ”ADD2” (fig. 1) simultaneously per-
forms two 16-bit additions. We use two separate rules for
modeling the behavior of ”ADD2”:

reg_lo: PLUS(reg_lo,reg_lo)
reg_hi: PLUS(reg_hi,reg_hi)

The nonterminals ”reg lo” and ”reg hi” denote the lower and
upper 16-bit subregisters of a full register. Both rules are
assigned the same cost value as the 32-bit version. As a con-
sequence, there exist three alternative optimal covers for all
DFG nodes representing a PLUS operation. Note that the
rule costs for SIMD instructions are not counted twice. Rule
costs are only considered during the DFG covering phase in
order to obtain alternative optimal DFT covers. During the
subsequent code selection phase (section 5), which aims at
maximizing the use of SIMD instructions, the rule costs are
no longer required.

As mentioned earlier, 32-bit load/store instructions can
also be used to simultaneously load/store two 16-bit values.
For instance, a 32-bit load into a full register from an address
pointed to by some other register is described by the rule

reg: LOAD_INT(reg)

Similar to the above ”ADD2” instruction, we use two addi-
tional rules to describe the use of a 32-bit load for SIMD
instructions:

reg_lo: LOAD_SHORT(reg)
reg_hi: LOAD_SHORT(reg)

Note that all rules representing operations on subregisters
must not be considered as ”stand-alone” instructions, since
this would result in invalid code. The constraint system pre-
sented in section 5 ensures, that such rules can only be used
for covering pairs of DFG nodes, in which case only a single
SIMD assembly instruction is emitted.

The overall DFG covering process works as follows. The
DFG is partitioned into DFTs by assigning each CSE to a
symbolic register and replacing all uses of CSEs by read op-
erations on that register. Then, all DFTs are separately cov-
ered by means of tree pattern matching with dynamic pro-
gramming. We use a modification of olive [1] to generate
the required tree pattern matcher from an instruction set de-
scription. Since olive in the original version only computes a
single optimal solution (with ties broken arbitrarily) for each
DFT and thus only annotates a single rule at each DFT node,
we have modified olive in such a way, that alternative op-
timal covers are retained during DFT covering. Our modi-
fied olive version annotates all minimum cost derivations for
each nonterminal at the DFT nodes. Whether or not SIMD
instructions can be selected is decided only later globally for
the entire DFG.

5. Code selection

After DFG covering, the actual code selection phase de-
termines the detailed DFG node covers to be selected from
the available alternatives. In this phase, the goal is to maxi-
mize the use of SIMD instructions across the entire DFG. We
solve this problem by transforming the code selection prob-
lem into an Integer Linear Program (ILP) formulation. For
each DFG node , the DFG covering phase returns a set of
alternative rules , which match at minimum costs.
We use Boolean variables to express that node is (or
is not) covered by rule . A valid code selection
requires that each node is covered by exactly one rule. There-
fore, for each node , we impose the constraint

Selecting a certain rule for some node has implica-
tions on the covering of its children nodes in the DFT. If, for
instance, node is covered by rule

reg_lo: PLUS(reg_lo,reg_lo)

then it must be ensured that the first and second child of
are derived to nonterminal ”reg lo”, i.e., the arguments of the
PLUS operation reside in lower 16-bit subregisters. More
generally, let be the rule selected for node , let

be the -th child of in a DFT, and let be
the rule selected for . Since is the -th child of , the
nonterminal on the left hand side (LHS) of must be equal to
the -th nonterminal, say , on the right hand side of .
Let denote the set of rules for , such
that LHS() = . Then, the following constraint expresses
the dependence between and :

The next class of constraints concerns code selection for
common subexpressions (CSEs) in the DFG. As already
mentioned, each CSE is strictly assigned to a register, and
we insert register read/write nodes (using dedicated grammar
terminals) into the DFG so as to replace the CSE edges. Since
we are dealing with general-purpose registers, it is not neces-
sary to commit to certain physical registers during code selec-
tion, but the use of symbolic registers, which can be mapped
to physical registers only later, is sufficient. However, there
still may be alternatives for storing 16-bit ”short” CSEs, since
these may reside in either full registers or subregisters. This
should not be neglected, since SIMD instructions can some-
times also be exploited for parallel computation of CSEs. In
our tree grammar model, 16-bit CSEs can be written to and
read from either ”reg”, ”reg lo”, or ”reg hi”. The correspond-
ing rules are (”S” is the grammar start symbol):

S: WRITE_SHORT_CSE(reg) /* r1 */
S: WRITE_SHORT_CSE(reg_lo) /* r2 */
S: WRITE_SHORT_CSE(reg_hi) /* r3 */

reg: READ_SHORT_CSE /* r4 */
reg_lo: READ_SHORT_CSE /* r5 */
reg_hi: READ_SHORT_CSE /* r6 */

A correct code selection requires that the locations for
a CSE definition and its uses are identical across the en-
tire DFG. If, for instance, rule is selected for some node

defining a CSE, then all uses of that CSE have to
be covered by rule . Conversely, the selection of for

enforces the selection of for . In general, for any
”short” CSE definition/use pair the following three
constraints2 have to be specified:

Another class of constraints ensures a valid packing of
instructions to SIMD instructions. For this purpose, we in-
troduce the notion of SIMD pairs. A pair of DFG
nodes is called a SIMD pair, if the following conditions are
satisfied:

There is no scheduling precedence between and

and have the same operator

According to the tree grammar rules, may be located
in an upper subregister and may be located in a lower
subregister.

If and represent load or store operations of 16-bit
values, where and are the corresponding memory
addresses, then the difference equals the number
of memory words occupied by a 16-bit value (e.g. 2 for
a byte-addressable memory).

The latter condition ensures, that parallel loads and stores of
subregisters implemented by SIMD instructions actually re-
fer to adjacent data in memory.

The set of all SIMD pairs can be computed from the
information generated by DFG covering. The required run-
time is quadratic in the number of DFG nodes. Any DFG

2These can also be replaced by unifying the variables on the left and right
hand sides in the ILP.

node contained in a SIMD pair can potentially be mapped
to a SIMD instruction. However, it must be guaranteed that
any selected SIMD instruction actually covers a pair of DFG
nodes and that any DFG node is covered by at most one
SIMD instruction. In order to express these conditions in
terms of ILP constraints, we introduce one auxiliary Boolean
variable for each SIMD pair . The setting of

denotes that and are packed into a single SIMD
instruction, i.e., operates on the upper subregister and
operates on the lower subregister of the same full register.

For any let and
denote the sets of rules for operating on an upper or a
lower subregister, respectively. If is covered by some rule
in , then there must be a node , such that

, and is covered by a rule in . Conversely, if
is covered by some rule in , then there must be

a node , such that , and is covered by a
rule in . For any contained in a SIMD pair, this is
modeled by two constraints:

Since the right hand sides of the equations are always less
or equal to 1, it is also guaranteed, that any node is packed
into at most one SIMD instruction.

The last class of constraints is required for avoiding code
selection decisions leading to scheduling deadlocks. For any
DFG node , let denote the set of nodes that must
be scheduled before (e.g. due to data or output depen-
dence), and let be the set of nodes to be scheduled
after . Whenever a SIMD pair is covered by a
SIMD instruction , and there is a SIMD pair
with and , or vice versa, then it
must be ensured, that and are not packed into another
SIMD instruction . Otherwise, the resulting code could not
be scheduled, since would need to be executed both before
and after . For any SIMD pair , let denote
the set of SIMD pairs , such that and

, or and . Then,
for and any , we specify the following
constraint to avoid scheduling deadlocks:

For an optimized code selection under the above correct-
ness constraints, the number of selected SIMD instructions
must be maximized across the entire DFG . For any node

, let denote the subset
of rules for operating on a subregister. Then, we maximize
the following objective function:

This task can be performed with any ILP solver. For our
experiments (section 6) we have used ”lp solve” [9]. The 0/1
binding of the solution variables accounts for the detailed

code selection and thus allows to emit assembly code for the
DFG.

The code selection technique described above can be eas-
ily scaled to SIMD instructions operating on 4 subregisters
of 8 bit each. The necessary changes mainly concern the
nonterminals for subregisters and the definition of ILP vari-
ables. For instance, we have to use SIMD quadruples instead
of SIMD pairs, and the decision variables have to be re-
placed by four-index variables . Naturally, due to the
larger number of variables, code selection for 8-bit subregis-
ters requires more runtime than in the case of 16 bits.

6. Experimental results

Using the techniques described above, we have imple-
mented code selectors for the Texas Instruments C62xx and
the Philips Trimedia TM1000. We have compiled ANSI C
source codes into assembly code for several signal process-
ing kernel routines, which mainly consist of one finite loop.
”vector add” is the example from fig. 2, ”image composit-
ing” is taken from [8], and the remaining sources are from
the DSPStone suite [7]. In order to ensure that exploitation
of SIMD instructions takes place without machine-specific
source code constructs, the sets of C source codes were iden-
tical for both target processors.

source type unroll no SIMD SIMD CPU sec
TI C62xx

vector add short 1 8 4 0.7
IIR filter short 0 21 17 2.9

convolution short 1 8 6 0.6
FIR filter short 1 15 11 0.9

N complex updates short 1 20 16 3.0
image compositing short 1 14 11 3.1

Trimedia TM1000
vector add short 1 8 4 0.7
IIR filter short 0 22 22 5.1

convolution short 1 8 8 0.9
FIR filter short 1 15 9 0.9

N complex updates short 1 20 20 4.7
image compositing short 1 14 7 3.2

vector add char 3 16 4 5.0
FIR filter char 3 36 18 26.5

Table 1. Experimental results

The experimental results for the TI C62xx are listed in
the upper part of table 1. The unrolling factor specifies the
number of duplications of the loop body, which is necessary
to exhibit enough parallelism for exploitation of SIMD in-
structions. Columns 4 and 5 give the number of generated
machine instructions for the loop body without and with ex-
ploitation of SIMD instructions. Column 6 mentions the re-
quired CPU time (Sun Ultra-1, including both DFG covering
and ILP solving) when using SIMD instructions.

The TI C62xx shows a comparatively limited support for
SIMD instructions, essentially parallel additions and subtrac-
tions on 16-bit subregisters. Therefore, all experiments have
been carried out with ”short” data types. The maximum re-
duction in the instruction count (50 %) was obtained for the
”vector add” example, since using the C62xx SIMD instruc-
tions permits to unroll the loop once without increasing the
code size. The lower part of table 1 shows the corresponding
results for the Trimedia architecture. While for some source
codes, such as the ”IIR filter” and ”convolution”, SIMD in-
structions were not applicable, the code quality gains for

”FIR filter” and ”image compositing” were more significant
as compared to the C62xx. This is due to the more powerful
SIMD capabilities of the Trimedia (e.g. special instructions
for FIR computations), which become particularly obvious
for certain algorithms on 8-bit data. As shown for the ”vector
add” and ”FIR filter” examples, the use of SIMD instructions
for 8-bit ”char” data types results in a reduction of instruction
count of 75 % and 50 %, respectively.

Even though we partially use ILP for code selection, the
runtime consumed by our approach is moderate if the DFGs
to be compiled are not too large. The largest example (FIR
filter on char data), whose DFG comprises 95 nodes, took
26.5 CPU seconds. We believe that this is acceptable for
embedded applications and systems-on-a-chip, where code
quality is of higher concern than compilation speed. Exhaus-
tive compilation times can be avoided (possibly at the ex-
pense of lower code quality) by specifying a threshold value
for the maximum size of DFGs passed to the code selector at
a time.

7. Conclusions

SIMD instructions are so far not really exploited by com-
pilers for media processors. Taking advantage of such in-
structions is only possible, if processor-specific assembly
routines or compiler intrinsics are used, resulting in low
portability of software. The presented code selection tech-
nique is capable of exploiting SIMD instructions without the
need for processor-specific code. Our approach builds on the
classical tree-based code selection paradigm, but it generates
alternative covers. The detailed code selection is performed
only later, when enough information for generation of SIMD
instructions for an entire data flow graph is available. The
applicability has been demonstrated experimentally by com-
piling the same set of C sources for two different media pro-
cessors and exploiting SIMD instructions in both cases.

References

[1] A.V. Aho, M. Ganapathi, S.W.K Tjiang: Code Generation Using Tree
Matching and Dynamic Programming, ACM Trans. on Programming
Languages and Systems 11, no. 4, 1989, pp. 491-516

[2] S. Liao, S. Devadas, K. Keutzer, S. Tjiang: Instruction Selection
Using Binate Covering for Code Size Optimization, Int. Conf. on
Computer-Aided Design (ICCAD), 1995, pp. 393-399

[3] G. Araujo, S. Malik, M. Lee: Using Register Transfer Paths in Code
Generation for Heterogeneous Memory-Register Architectures, 33rd
Design Automation Conference (DAC), 1996

[4] R. Leupers, P. Marwedel: Instruction Selection for Embedded DSPs
with Complex Instructions, European Design Automation Conference
(EURO-DAC), 1996

[5] S. Bashford, R. Leupers: Constraint Driven Code Selection for Fixed-
Point DSPs, 36th Design Automation Conference (DAC), 1999

[6] G.J. Chaitin: Register Allocation and Spilling via Graph Coloring,
ACM SIGPLAN Symp. on Compiler Construction, 1982, pp. 98-105

[7] V. Zivojnovic, J.M. Velarde, C. Schläger, H. Meyr: DSPStone – A
DSP-oriented Benchmarking Methodology , Int. Conf. on Signal Pro-
cessing Applications and Technology (ICSPAT), 1994

[8] A. Peleg, S. Wilkie, U. Weiser: Intel MMX for Multimedia PCs,
Comm. of the ACM, vol. 40, no. 1, 1997

[9] Eindhoven University of Technology: ftp.es.ele.tue.nl/pub/lp solve/

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

