System Design Based on Single Language and Single-Chip Java ASIP
Microcontroller

Sérgio Akira Ito
Inst. of Computer Science
UFRGS - Brazil
saito@inf.ufrgs.br

Abstract

Microcontrollers have been playing an important role in
the embedded market. However, the designer of microcon-
troller based systems must deal with different languages and
tools in the hardware and software development, despite of
their distinct design process. This paper presents a new
design strategy to implement embedded applications de-
scribed uniquely in Java, while maintaining software com-
patibility throughout the design process. Moreover, the tar-
get hardware is a single chip FPGA, taking benefit from
their low cost and easy reconfiguration to customize the
microcontroller. This papers presents the environment and
some results of system synthesis.

1 Introduction

The requirements of new applications (such as multime-
dia processing) are driving the market of embedded proces-
sors to the range of powerful 32-bit devices [1]. On the
other side, traditional 8-bit microcontrollers are advancing
into new products boosted by their low cost and new capa-
bilities, making the estimated shipments grow up [2].

However, time-to-market pressures and the proliferation
of incompatible devices make the design of embedded soft-
ware hard for consumer device developers. Strategies for
reducing costs on system design based on embedded mi-
crocontrollers are still welcome, since the development of
software for these devices presents some odd challenges.

1.1 The need for a single language

In most applications of microcontrollers, there are at
least three design languages: the assembler of the chosen
processor; some high level language like C; and more re-
cently an abstract system specification language to simulate
the proposed solution. The assembly language is needed

Luigi Carro
Electrical Engineering
UFRGS - Brazil
carro@iee.ufrgs.br

Ricardo Pezzuol Jacobi
Dept. of Computer Science
UnB - Brazil
rjacobi@cic.unb.br

because some functions must still be written by hand, ei-
ther because of the required speed, or because of the limited
memory. This means that whenever a new microcontroller
comes into the market, the decision to change the processor
must be carefully taken, because the availability of a new
efficient C compiler is not granted, and the cost in training
engineers in the new assembler development is high.

Embedded system developers have embraced Java over
the past few years because this technology can provide high
portability and code reuse for their applications [3]. Also, if
one could learn a single language to specify a system and to
program it, then the software design cycle would certainly
shrink.

1.2 The need for a single reprogrammable chip

While most people in the desktop market worries about
Java’s performance, another challenging problem is to fit
an embedded Java application into an available Field Pro-
grammable Gate Array (FPGA). The system to be designed
could then benefit from the decreasing costs of FPGAs, in-
creasing densities, application scalability, and high perfor-
mance attained in a single chip solution. The standardiza-
tion of a single FPGA as the hardware and a single language
to develop all modeling and embedded software could bring
design costs down for all companies working with applica-
tions such as embedded control and home electronics.

However, we have seen that most current solutions fo-
cus at embedded systems with enough resources to fit a
Real Time Operating System (RTOS), garbage collection,
a specific Java Virtual Machine (JVM), multithreading sup-
port, and so forth [4, 5]. A methodology to make Java tech-
nology available to microcontroller-like embedded applica-
tions, based on low cost circuits and boards is missing. This
kind of application demands integrated functions, small
memory footprint (no more than a few KB of RAM) and
low-power constraints (e.g. portable equipment). There-
fore, dynamic linking and object management can be costly
to be supported by the runtime environment.

1.3 SASHIMI proposal

To address these resource constrained embedded appli-
cations we propose a new approach, based on a design en-
vironment for specific applications and on the generation
of Java microcontrollers, SASHIMI (Systems As Software
and Hardware In MIcrocontrollers). In this environment the
designer provides a Java application to be analyzed and op-
timized to run on a Java Application Specific Instruction
Set Processor (ASIP), plus an optional Application Spe-
cific Integrated Circuit (ASIC), both synthesized in single
FPGA chip. This approach is also characterized by highly
integrated functions, simpler runtime environment, no new
compiler development, software compatibility and cross-
platform design possibilities.

This paper is organized as follows: some current solu-
tions for specific Java applications are presented in section
2. Section 3 gives an overview of the SASHIMI methodol-
ogy and embedded Java application design. Some concepts
and rules to application modeling are presented in section 4.
Section 5 discusses some characteristics of the design and
implementation of the Java microcontroller. Finally, future
work and conclusions are presented in section 6.

2 Related work

The suitability of a Java platform to implement embed-
ded applications for devices with 4 to 16-bit CPUs and with
limited amount of memory is the first issue when consider-
ing Java as a design architecture [3]. The Java Card Plat-
form is targeted to develop applications that run in environ-
ments as small as 512 bytes of RAM, 16K of ROM and 8-bit
CPUs. This platform has a two-part JVM, a reduced API,
and supports dynamic object creation. It is exclusively tar-
geted to applications like smartcard, because it depends on
card acceptance devices to run the applications [6].

Some lightweight JVMs have been designed to run dy-
namically loaded applications in embedded systems, as the
Hewlett-Packard’s JVM [7], Kaffe [4] and Spotless Sys-
tem [8]. However, as reported by SunLabs in the Spotless
project, designing a Java platform to devices with a few
kilobytes of RAM available both to the runtime environ-
ment and to applications may be an arduous task. Sun also
claims that PicoJava microprocessor can be configured to
embedded market. However, since its microarchitecture in-
corporates sophisticated mechanisms to gain performance
[9], it seems impossible to PicoJava to be smaller than a
classic microcontroller.

Compiling Java source or bytecodes to native code could
overcome poor performance and could help to maintain the
runtime environment smaller [10]. However, this approach
requires a compiler (or compiler back-end) for each new de-

vice, as it is today in microcontroller market, making soft-
ware portability harder to attain.

The JASIP architecture [5] is an interesting solution to
native execution of multithreaded Java applications. This
architecture requires a processing element for each thread,
early class hierarchy resolution, and supports object allo-
cation at global memory and thread scheduling. However,
its prototype needs an FPGA board with 100K gates and a
module of memory to be implemented, mismatching with
the single chip and low-power applications concept.

Java has also been studied as a specification language for
embedded systems [11], and to specify hardware-software
systems [12]. In this research area, Cardoso presented an
approach to synthesize hardware from system specifications
using Java and some restrictions in the application modeling
[13]. However, this codesign methodology is targeted to
generate pieces of hardware to accelerate Java applications,
making no assumption of resource constraints.

The SASHIMI approach shares some concepts with
these works as system specification using a subset of Java,
CPU customizing, and early resolution of references, as will
be presented in the next section. However, our focus is to
provide a general methodology to support the development
of embedded applications, based on a single language and
single chip approach to reduce costs.

3 Designing with SASHIMI methodology

The next subsections describe the SASHIMI methodol-
ogy to design (model, simulate and program) Java appli-
cations targeted to microcontrollers. Some modeling con-
straints are discussed bellow, because the full support for
Java language is not available for the current environment.

3.1 Modeling constraints

The SASHIMI environment assumes that the modeling
of the system will be made in the Java language, agreeing
with the constraints below. The automated tasks performed
by the development environment are code analysis, perfor-
mance estimation and critical routine identification. A set
of tools can help the designer to predict the final system
performance and costs.

As mentioned early in this paper, not all Java applica-
tions can be synthesized using the current SASHIMI envi-
ronment. The nature of target applications induces some
constraints in the coding style. These restrictions are sim-
ilar to those that make the synthesizable version of VHDL
smaller than the full language. Therefore, a Java applica-
tion to be synthesizable in SASHIMI must conform to the
following conditions:

e the new operator is not allowed, since it would require
virtual memory management;

e only static methods and variables are supported, for
the same reason above;

e no recursive methods are allowed, since this would re-
quire dynamic memory management;

¢ interfaces are not supported, because dynamic binding
represents additional cost at runtime;

o floating-point arithmetic is not allowed, although one
could enable it at the price of a larger FPGA;

e multiple threads are not supported, because most of
microcontroller applications can be described in a sin-
gle thread, lowering design and hardware costs.

The conditions above make SASHIMI targeted to han-
dle typical microcontroller applications, like intelligent sen-
sors, garage doors, no-break controllers, identification and
security systems and the like. This type of applications
forms the core of the microcontroller business in small and
medium size companies.

3.2 The goal of code analysis

Figure 1 illustrates the entire design flow from the Java
source code to the synthesized chip of the microcontroller.
In the SASHIMI environment the user will begin with
Java files representing the application source code. In this
phase, the development process follows the traditional edit-
compile-run cycle in a desktop computer with a standard
Java Development Kit. In this scenario, running the applica-
tion is equivalent to simulating it in a still unavailable hard-
ware, emulated by the Java interpreter in this case. During
the simulation phase, the designer can use some predefined
classes (within threads are allowed) to model the behavior
of some necessary peripherals. Later, in the synthesis step
these classes will be substituted by some code providing the
interface with real components.

When the designer considers the application is ready, the
input vectors provided by the user and the output vectors
obtained by the simulation are saved together to be used
later by the bytecode validation phase. The Code Analyzer
tool takes the executable code (class files) to perform some
analysis like performance and size occupied by the hard-
ware. Performance is estimated using method call informa-
tion, number of instructions per method, cycles per instruc-
tion, and probable frequency to be reached after synthesis.
FPGA area and frequency are estimated by using previous
results obtained by synthesis with different number of in-
structions. Finally, the designer can verify whether the re-
ports generated agree with system requirements or not. It
is necessary to keep in mind that the full Java instruction
set is not supported, and the code analysis must provide the
information to ASIP generation and code adaptation.

,,,,,,,,,,,,,,,,,,,,, Conventional
I Asic Tools
| Generation
I
' _ Sashimi
| ' 1z Tools
[G el
| A ' g
I 5
I E]
' I ™ @ Optional Flow_
I ! g
! Java 2
. Bytecode
| I
I I
i I (Appiication
I
I ' I ! | Validation LJ User
: : : v
! ! I ava Inputs
I | I Interpreter
. \ ! I
L paser ' I
! | i Software
LY I Generation
!/ operaion R Code Instrs
|\ Scheduler e Analiser to Change
N . |
e
I

ASIP.
| |Generation

Bytecode
Adapter

I
|
[P A
- N
! Asic
| _ Generator 7

ware

SASHIMI
Library

VHDL
Model T
(asic) !

Simulation
Tool

Timers RAM
Asic
intr. Ctrl
Java
o ASIP ROM
Ports (Code)

Figure 1. Design flow of SASHIMI

Adapting bytecodes involves some transformations in-
side the class files, while semantic modifications are not al-
lowed. This process transforms complex instructions (e.g.
tableswitch, lookupswitch) in a sequence of simpler instruc-
tions. Class files structures keep inside the maximum stack
size for each method in a class [14], that must be recalcu-
lated to correct execution of the adapted code. After this
step, a new simulation phase is needed, to validate the byte-
code transformation. But now, this process uses the previ-
ously stored output test vectors, and can be automatic.

The criteria that drives the bytecode substitution process
are the instructions supported by the target microcontroller;
the size and speed requirements; the amount of use of each
instruction (perhaps one can change a rarely used hardware
multiplier by a software routine saving circuit area); and the
memory size available to store the application code.

At this point of the design flow one has only a pool of
class files adapted to be compatible with the specific instruc-
tion set that will be implemented in the Java ASIP. The next

step removes unnecessary information (e.g. line numbers
structures), resolves class hierarchy, links and converts the
application code and system level code (libraries to access
hardware resources and to execute complex instructions) in
a unique ROM image.

When performance estimation does not match with the
application requirements, the critical part of the code can be
identified by the Code Analyzer tool, and the designer can
choose whether some instructions will be discarded or not.
Alternatively, the designer can provide an ASIC specifica-
tion to be integrated into the hardware in order to improve
performance. The communication between the ASIC and
the Java ASIP depends of the ASIC behavior, but can be
made through the stack or heap.

3.3 System model and microcontroller generation

The ASIP must be able to run the code stored in ROM.
From attributes (e.g. instructions to implement and RAM
size) extracted by Code Analyzer, a VHDL model of the
optimized microcontroller is generated. Finally, this model
is simulated using the target application and synthesized in
FPGA by a synthesis tool as Maxplus-1II [15] or Synopsys
[16]. The code is stored in a non-volatile memory and only
the necessary classes are linked. Updating of the applica-
tion is made by replacing this memory module or repro-
gramming it if using erasable memories.

The microcontroller can also be updated because it is
synthesized in FPGA. Updating the processor functions can
be done either by creating new instructions required by that
specific application or by synthesizing specific hardware
functions, like timers, watchdogs or even digital filters.

4 Modeling an application

‘We have described a Java code implementing the integra-
tion algorithm of the PODOS system [17], as illustrated in
figure 2. This system is an integrated circuit that measures
the distance a person walks or runs. It is placed on the shoe
and communicates with a display on the person’s wrist. The
complete model of PODOS system has nine classes mod-
eled in Java. Some of these classes are only for simulation
purposes, as Display (representing a LCD display) and Key-
board (simulating user input). The software is represented
by classes that perform some processing (as the class Inte-
grator in figure 2) or by classes that control user interaction.

For the piece of code presented in figure 2, an unsup-
ported instruction is the integer division (idiv). In this case,
a loop executing subtractions or alternatively an arithmeti-
cal right shift could solve the problem. Because the compu-
tation of speed and distance are frequently made in this sys-
tem, the ishr instruction was the preferred solution. Other
instructions like tableswitch were changed to a sequence of

public class Integrator {

public static void receiveNewValue(int newValue) {
if (evenTime) { acceleration0 = newValue; evenTime = false; }
else { acceleration1 = newValue; evenTime = true; }
calculeSpeed();
calculeDistance();

public static void calculeSpeed() {
if (evenTime) { speed0 = (acceleration1 + acceleration0)/2; }
else { speed1 = (acceleration0 + acceleration1)/2; }

public static void calculeDistance() {
distance = distance + (speed0 + speed1)/2;

Figure 2. Valid Java code to SASHIMI

conditional branches. The code was placed in ROM, and a
RAM map was generated because some instructions as put-
static and getstatic can access some positions of memory
representing the constant pool entries.

5 Java microcontroller characteristics

The techniques used to store code and class information
in ROM play an important role on microarchitecture design.
For example, in methods calls the information about the
number and type of each parameter and local variable must
be easily accessed to allow simple hardware structures. The
organization of runtime information in RAM also can help
decrease the footprint memory of an application because
earlier address resolution allows implementing this type of
instruction directly in hardware.

Local ;| Retun

Variables / PC

Frame ,’ Return
Info [D Local |/ | \Variables Local /| Rretum

Operand Variables |/ Return Variables |, 7 PC
Stack Local Frame Frame Frame Return
Variables Info Return Info Variables
Frame Operand |, C. Pool Operand |\ Return
Info Stack |\ |curr. meth Stack | ‘| Frame
\

Operand \ Vector

Stack \| Current

Monitor

(a) JVM Model (b) PicoJava Model (c) FemtoJava Model

Figure 3. Frame allocation onto stack.

Frames to method calls must have a structure similar to
figure 3(a), where local variables are locals of the method,
frame info holds return program counter value and frame
pointers, while operand stack is used to store intermediate
results of operations and parameters to method calls. As we
can see in figure 3(b), the PicoJava processor must manage
several information on method calls. The model used by
our microcontroller, called FemtoJava, is simpler because
stores fewer information in the frame allocation process,
while still maintain the JVM model behavior.

Table 1. Synthesis results

. Logic Freq. Supported
Version Cells ‘ (MHz) | Instructions
PODOS 488 7.97 23
FemtodJava \'Al 838 6.11 40
V2 917 6.13 43
No multiplier 500 3.16 12
MCS8051 Multiplier 695 | 246 13
Device: EPF10K20R240-4 (Altera Flex 10K20)

To validate our ideas we have implemented an 8-bit
stack-based microcontroller to run Java bytecode. The ma-
jor characteristics of this device are reduced bytecode in-
structions set, Harvard architecture, orthogonality of exe-
cution, small size, and easy introduction and removing of
instructions. A first version of this microcontroller was
accomplished by the authors getting a core with 43 in-
structions implemented [18]. The instructions supported
are basic integer arithmetic and bitwise operations, con-
ditional and unconditional jumps, load/store instructions,
stack operations, and four extended bytecodes to arbitrary
load/store. In this core all instructions were executed in 7
cycles, because several instructions are memory bounded.

In order to make some tests, the integration algorithm of
the PODOS system was implemented and simulated. Re-
sults in table 1 suggest that some applications will need
only some few instructions and will demand fewer logic
cells to be implemented. The V2 version is the largest one,
because it has shift instructions, occupying about 79% of
EPF10K20R240-4 Altera’s FPGA. The gain regarding the
occupied area is more evident between the PODOS and V2
version of the FemtoJava. The relationship between these
results and the methodology applied reflect the possibility
of excluding instructions with high cost in hardware.

Table 1 also presents a rough comparison of FemtoJava
with the 8051 processor with reduced instruction set (12 in-
structions). The MCS8051 core including mul instruction is
smaller than the V1 version of FemtoJava with 40 instruc-
tions (including imul). Although with more area, speed of
the FemtoJava is much greater than the 8051 in the same
FPGA with much more instructions.

6 Conclusions

We presented a new system design approach where only
the Java language is necessary for the tasks of system mod-
eling, simulating and programming, based on a single chip
Java microcontroller. The SASHIMI methodology allows
high integration, confirmed by synthesis results, and easy
maintenance, because of the use of FPGAs as the underly-
ing hardware, and Java as the only language interface for
the entire design flow.

For the future, we can also consider multithreading,

while still keeping the runtime environment as small as
possible. To maintain applications with bounded resource
consumption some restrictions are also necessary - as pre-
allocation of all objects, no new operators inside loops, and
no structures dynamically extensible.

The availability of FPGAs chips with greater capacity
will allow new features to be included in our microcon-
troller. Therefore a family of cores can be designed to opti-
mize some features, depending of application needs.

References

[1] M. Schlett. Trends in Embedded-Microprocessor Design.
Computer, 31(8):44-49, Aug. 1998.

[2] R. Grehan. 8-bit microcontrollers grow up... and down.
Computer Design, 36(5):72-78, May 1997.

[3] D. Mulchandani. Java for Embedded Systems. Internet
Computing, 31(10):30-39, May 1998.

[4] M. Barr. A Free Java Virtual Machine for Embedded Sys-
tems. In Proceedings of ESC’98, San Jose, CA, Nov. 1998.
ESC On-line.

[5] M. Mrva, K. Buchenrieder, and R. Kress. A Scalable Archi-
tecture for Multi-threaded JAVA Applications. In Proceed-
ings of DATE’98, pages 868—-874, Paris, Feb. 1998. IEEE.

[6] J. Card. Java Card Applet Developer’s Guide. Technical
Report Revision 1.12, Sun Microsystems, Inc., Aug. 1998.

[7] D. Clark. HP Enters the Java Fray. Computer, 31(6):19,
June 1998.

[8] A. Taivalsaari, B. Bush, and D. Simon. The Spotless Sys-
tem: Implementing a Java™ System for the Palm Connected
Organizer. Technical Report TR-99-77, SunLabs, Feb. 1999.

[9] H.Mcghan and M. O’Connor. Picojava: A Direct Execution
Engine for Java Bytecode. Computer, 31(10):22-30, Oct.
1998.

[10] P. Bothner. Compiling java for embedded system. avail-
able at http://www.cygnus.com/news/whitepapers/ compil-
ing.html, Jan. 1999.

[11] J. S. Young et al. Design and Specification of Embedded
Systems in Java Using Successive, Formal Refinement. In
Proceedings of DAC’98, pages 70-75, San Francisco, CA,
June 1998. ACM.

[12] R. Helaihel and K. Olukotun. Java as a Specification Lan-
guage for Hardware-Software Systems. In Proceedings of
ICCAD’97, pages 690-697, San Jose, CA, Nov. 1997. IEEE.

[13] J. Cardoso and H. Neto. An Approach to Hardware Synthe-
sis from a System Java™ Specification. In Proceedings of
WDTA’98, pages 149—152, Dubrovnik, June 1998.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification. The Java Series. Addison-Wesley, Reading, MA,
1997.

[15] Altera. Altera Corporation. http://www.altera.com, 1999.

[16] Synopsys. Synopsys, Inc. http://www.synopsys.com, 1999.

[17] L. Carro and L. B. de Nale. Podos - Distance Measurement
Device. In Proceedings of SIM’98, pages 165-168, Bento
Gongalves, RS, May 1998. UFRGS.

[18] S. A. Ito, L. Carro, and R. Jacobi. Issues on Designing
Embedded Applications Targeted to a Java Microcontroller.
In Proceedings of ICMP’99, pages 180-184, Campinas, SP,
Aug. 1999. SBMicro.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

