Analyzing Real-Time System$

Jirgen Ruf and Thomas Kropf
Wilhelm-Schickard-Institute
University of Tubingen, Sand 13, 72076 Tubingen, Germany
{ruf,kropf}@informatik.uni-tuebingen.de
http://www-ti.informatik.uni-tuebingen/~ruf

Abstract ties as well as the quantitative analysis of real-time systems
[1]. This tool gets an description of a system as a synchro-

Temporal logic mode! checking is a technique for the aUtO'nous program, the specifications in temporal logic and the

matic verification of systems against specificati'ons.. I_‘D’eSidegnalysis queries. The system description is translated into
RoBDDs [2] representing the state transition graph. The

|mptortant to de'.[elrlm!][\ﬁl critical answdeé ‘Zn.d delayl f[!mes Ofolisadvantage of this approach lies in the representation of
systems, especially it they are embeddedin a rea-ime e, “since time progress is represented by counters, there
ronment. In this paper we present an approach which

b .) exists for every time step a separate state in the underlyin
allows the verification as well as the timing analysis of real- y P P ying

i) raph. Especially if many counters with large values exist,
time systems. The systems are described as networkst f:state space may explode.

communicating time-extended finite state machines (I/O- 4., approaches for real-time model checking use
interval structures). We use a compact symbolic representa; . 4 automata [3, 4, 5]. Timed automata allow a very

tion to obtain efficient analysis algorithrs. detailed description of real-time systems through a fixed
number of clocks defined over a dense time model. How-
ever, these approaches have very complex model checking

1. Intr ion . ;
t Odu.C?t O. .) algorithms (they are PSPACE-complete) and there exist no
Formal verification has become an important task in theanalysis algorithms.

design of spftware and hgrdware. Espec.ially automatic |, [10] we have presented a new formalism called 1/O-
techniques like temporal logic model checking are used Gneryal structure. This formalism expands finite state
support or even to replace standard test and simulatiop,,chines by timed state transitions. We developed efficient
methods. In the area of embedded reactive systems, the Vfioqe| checking algorithms based on a representation of
|f|§;gt|0n of timing constrains plgys an important role. E.. hese structures with extended characteristic functions [6].
minimal and maximal reaction times of a controller have t0Thase functions are implemented with MTBDDs [7,8]. In
be guaranFegd, setup and hold times of flipflo.ps have to bfg] we have presented a method for the composition of I/O-
kept or wait times of work pieces in pause stations of a proynterya| structures completely working on the MTBDD rep-
duction auto'm.a'tlon systgm shoul_d t_:)e m|n|m|z§d. . resentation, including two minimization heuristics. This
One possibility to verify such timing properties is to use 5555ach allows the integration of untimed FSMs (e.g. con-
a real-time temporal logic model checker. In this case, th§rg|ier) and 1/0-interval structures (e.g. timed environment).
deslgner has to specify the timing properties wnh.temporal In this paper we develop analysis algorithms working on
logic formulas and the system as a state transition graphne symholic representation of interval structures and which
After the automated verification process, the model checket, 51 & optimal use of this MTBDD-Based representation.
answers yes or no. This means the system satisfies the Speg;ese algorithms determine critical times of specified sys-
|f|cat|0n or not, e.g. the reactlon time Iles.under a certaingmg e.g. wait times of production systems, reaction times
time bound or not. But the designer obtains no statement o mbedded systems or maximal delay times of communi-

about the actual value of the reaction time. . cation protocols. Together with the already developed veri-
Therefore Campos and Clarke developed an analysis t0@jcation algorithms, we now have a powerful tool for the

(VERUS) which allows the verification of real-time proper- \erification and the analysis of real-time systems out of
many domains.

1. This work is supported by the German Research Grant (DFG project
GRASP)

Section 1 introduces the real-time model checking eralized stateis given by an i-stats and the actual clock
approach which is the basis of the analysis algorithms. Firstvaluev (the elapsed time).
the modeling formalism (I/O-interval structures) and the pefinition 2.3.A generalized state (g-statg) = (s V) s

specification logic (CCTL) are introduced. Afterwards we an jstates S associated with a clock valued IN,
present the symbolic representation with extended characUN0 ={0,1..}). The set of all g-states in

teristic functions. In Section 3 the different analysis algo- 0 = (p, g T, L, I) is given by:
rithms are introduced. Section 4 describes some

optimizations accelerating the analysis algorithms. Experi- G = {(s V|sU SO0<v<MaxTimes)} (2)
mental results are shown in Section 5. Section 6 concludesThe semantics of ISs is represented by runs.
this paper. Definition 2.4.Given the ISO = (P, S T, L) and a

starting g-stateg, . A run is a sequence of g-states
r = (9o, 9y, ---) - For the g-statesg; = (s;,v;)) G of
2.1. Interval structures and I/O-interval structures the sequence holds either

2. Real-time model checking

Structures are state-transition sys- [1,3] *Gj+1 = (S5 vy *+1) withv;+1<MaxTimg 5) or

tems modeling HW- or SW-sys- Q—’@ *gj+1 = (541, 0) with (s;8,0) 0T and
tems. The fundamental structures Vi +101(s5, 8540 -

are Kripke structures (unit-delay To expand interval structures by a possibility for communi-
structures, temporal structures) cation, we extend them to I/O-interval structures. These
which may be derived from @ - @ structures carry additional input labels on each transition.
FSMs. The basic models for real- Such an input label is a Boolean formula over the inputs.
time systems are interval SthC'@ - @ We interpret this formulas as input conditions which have
tures, i.e., state transition system to hold during the corresponding transition times. Input-
with additional labelled transi- - gs insensitive edges carry the formutaie

tlors.t\/VetassurSe that eat?h mtera%in Definition 2.5. An I/O-interval structure (1/0-1S) is a tuple
val structure has —exactly: one 3 time 0,0 = (P,P,S T, L11). The set of all input valua-

clock for measuring time. The. : .

. . tionsis:Inp:=0(P)) .
clock is reset to zero if a state %g' 2.1. Example IS P (P) _ _
entered. A state may be left if the e The componentB, S L ard are defined asin IS.

actual clock value corresponds to a delay time labelled at * P is & finite set of atomic input propositions.

an outgoing transition. The state must be left if the maxi- * The transition relation connects pairs of states and the

mal delay time of all outgoing transitions is reached destinationinputsT [J Sx SxInp - _

(Fig. 2.1). One clock tick is the lowest granularity for the ~ * I - T — D (Inp) is the transition input labeling.

time modeling. The execution semantics of I/O-interval structures are simi-

Definition 2.1.An interval structure (IS)O is a tuple lar to interval structures. The only difference lies in the

O =(P,S T, L I) with a set of atomic propositionB ,a inputrestrictions. A transition may only be taken if the cor-

set of statesS (i-states), a transition relation between the responding input restriction holds until the delay time is

statesT 0 Sx S such that every state$h has a successorreached and the state is left.

state, a state labeling functioh:S - 0 (P) and a transi- .

tion labeling functionl T — O (N) withN = {1,..} 22 Thelogic CCTL

and O is the potential set operator. CCTL [9] is a temporal logic extending CTL with quantita-

tive bounded temporal operators. Two new temporal opera-

tors are introduced to make the specification of timed

properties easier. The syntax of CCTL is shown in (3);

where pOP is an atomic propositiona IN and

bOIN O{} aretime bounds. All interval operators can

also be accompanied by a single time-bound only. In this
MaxTimé $ = " case the lower bound is set to zero by default. If no interval

— : is specified, the lower bound is implicitly set to zero and

max {0s(s s)0TOt=maxi(s 9} the upper bound is set to infinity. If thé-operator has no

Besides the states, we also have to consider the currently

elapsed time to determine the transition behavior of the

system. Hence the actual state of a system calleglethe 1. In the most cases, the input valuations of the target states are irrelevant
' ' [10].

Every state of the IS must be left after theaximal state
time

Definition 2.2. The maximal state time of a stats
MaxTime:S - IN is the maximal delay time of all outgo-
ing transitions ofs , i.e.

time bound, it is implicitly set to one. The semantics of putation may be split in two main operations: the local and

CCTL is given in [10]. the global predecessor computation. The local predecessor
computation takes an ECF representing the actual g-state
Opl-¢1600 000 [0 -0]0 ¢ set and decrements all attribute sets by one. A zero value
EX[a]d) | EF,, b]¢ | EG, b]¢ | E(d U, b]¢) will be removed:
o= % E(¢ Cy9) [E(d Siy9) (3) Os.local_pre(A)(s) = {v=1|v=10OvOA(s)} (6)
H AX (a0 | APy 56 | AGa 10 | A Ups) For a sefA_of natural numbers, we identfy the set where
%A(q) Cra®) [A(® Sz0) The global predecessor computation computes the pre-

. . . decessor of zero clocked g-states. This operation works
2.3 Symbolic representation of interval structures similar to the predecessor computation of symbolic FSM
In contrast to an explicit representation, the symbolic rep- traversal techniques. This operation selects the g-states
resentation of FSMs uses characteristic functions. Thesewith zero clock values and computes together with the tran-
functions map states or transitions to true if they belong to sition relation the predecessor g-states in predecessor i-
the represented set. This representation avoids the explicistates. This operation is more complex than the local prede-
enumeration of states or transitions and is therefore able tocessor computation. More details may be found in [9]. The
represent sets of states with more tHAR° elements [11]. function pre is the union of the local and the global prede-
The representation of g-states in IS need to store thecessors. The result of this function is exactly the set of pre-
elapsed time besides the actual state. Therefore we useéecessors of a given g-state set. The funcgormc works
extended characteristic functions (ECF, [12]) for a sym- similar and computes the successor g-states.
bolic representation of IS. The following definition of Model checking as described above works exactly on
ECFs is adapted to the representation of IS. one IS, but real-life systems are usually described in a
Definition 2.6.Given a set of elements (the universe, Modular way by many interacting components. In order to
e.g. the set of stateS) and a subsel U, where everyMake model checking applicable to networks of communi-
element inA is associated with a set of natural numbers €ating components, it is necessary to compute the product
(the clock values, also called the attribute set). An extendedStructure of all submodules. This product-computation is

characteristic function representingA is given by: Ccalled composition. The composition is described in detail
An: U = O(IN) with in [9]. » _ _
The composition algorithms are also applicable to net-
Oa if sO Aanda OIN, assoc. with s works of I/O-IS if we work with closed systems, where
Aa(8) =0 (4) every free variable is bounded by a structure. After compo-

OO otherwise sition, the efficient model checking algorithms for IS may

l.e. we accumulate all clock values of g-states in the clock be used for verification. These algorithms are described in
set which have the same i-state. The standard set operationdetail in [6]. Composition as well as the model checking
like union or intersection may be extended to this kind of algorithms use the symbolic representation of g-state sets
characteristic functions. and transition relations with ECFs.

ECFs may also be used to represent the transition rela-])
tion. In this case we map pairs of states (the transition) to 3. The analysis algorithms
the valid delay times. Also I/O-IS may be represented with The analysis technique should help a designer to extract

ECFs. important time bounds from his formal system description.
. . An often arising problem is to compute the maximal stabil-
2.4 Model checking and composition ity of a signal. E.g. if we want to examine a switch circuit

The main idea for the model checking algorithm in [6] is to with delay times, it may be very important to determine the
associate each subformula of the specification with the senumber of time steps, the out put signal stays stable high.
of g-states holding it. E.g. the formula "true" is associated This stability analysis is also useful to compute the maxi-

with the set of all g-states. The atomic propositipf] P mal number of time steps, a work piece waits on a buffer
will be associated with the following g-state set: until it will be processed.
{glg0GOOsO SIVO INg.g=(s Y OpO L9} (5) Other typical problems are minimal and maximal delay

])) times between events, e.g. how long does it minimal/maxi-
The formulaEX¢ will be associated with the set of prede-) take until the first work piece leaves the production

cessor g-states of the g-states associated with . Othege||_ |n the following two subsections we present the analy-
temporal operators may be computed by special fixed pointgjs aigorithms.

iterations based on the predecessor computation. This com-

3.1 The STABLE algorithm 3 2
O (® OP1

The analysis algorithms do also use the traversal tech-
nigues (predecessor computation) of the model checking (2@

AF
algorithms. The program 1 shows the implementation of] i i i -
the STABLE—aIgorithms in an imperative (C- or Pascal- OQ@ @ @ @G
like) programming language. 1 Q:’O"O*@:"@*Ov

1 int stable(ecf f)

2 act:=f -
3 od= O 2OE00P@ @
4 res:=0 -
5 while (act #old Oact #0) do sOPOPO»@-»@+C,:
6

7

8

9

1

old := act
act:=pre(ac) n act YOOGS OR OR O O
res:=res+1 Fig. 3.1. lllustration of the STABLE-computation.
if act= [then return res will not change anymore. In the latter case, there exist no
0 else return © path from the start states to the aim states.
Program 1. The STABLE algorithm 1int min(ecf start, aim)
The algorithm gets a set of g-states to examfrje This 2 act := start
set may be specified as CCTL formula and may be com-| 3 old:= O
puted by the model checking algorithm (see Section 2.4). 4 res:=0
The algorithm determines the maximal number of steps| 5 while (act #old Oact naim =0)do
(res) such that there exist a run in which the fires g- 6 old := act
states are members of the set representetl byt the g- 7 act := act 0 succ(act)
state at positiones +1 is not a member df . 8 res:=res+1
The computation of the algorithms initializes a set of | 9 if act n aim # 0 then return res
actual g-statesaCt) with the set of the g-states to examine 10 else return 0

(f). Then it starts shrinking this set successively by inter-
secting it with its predecessors. If the set is empty, the _ _ . o
maximal stability is computed. If the algorithm reaches a The algorithm computing the maximal delay time is shown
fixed point, i.eact =old , then there exist a cycle in in program 3. It initializes a set with all g-states except the
The figure 3.1 illustrates the computation of the STA- theaim set @ct). Then it shrinks this set by intersectin

BLE algorithm. The interval structure to examine is shown act with its predecessors until no start g-state is left or a
at the top. The lower part displays the g-states and the prefixed point is reached. In the latter case, there exists either
decessor relation (dotted arrows). The analysis set is giverno connection between the start set and the aim set or there
by the CCTL formulaAF[Z]a which means, that on all exist a loop such that the maximal delay time is infinite.
paths the signad must be reachable within two time steps. 1 int
The grey oval includes the actual g-statast(). The num-

Program 2. The MIN algorithm

min(ecf start, aim)

_ . 2 act:= =-aim
bers on the left shows the actual iteration (equedgo). 3 old = 0
3.2 The MIN/MAX algorithms 4 res:=0 .
)) o 5 while (act #old Oact naim =0)do
The following two algorithms compute the minimal resp. 6 old := act
maximal number of unit time-steps between a start and an | 7 act = act n pre(act)
aim set of g-states. Campos and Clarke introduced algo-| g res ‘= res + 1
rithms based on an ROBDD representation [13]. 9 if act=old then return .
The idea of the algorithm in program 2 is to initialize a 10 else return res

set of g-statesact) with the set of start states and then to .
expand this set successively by its successors. The algo- Program 3. The MAX algorithm
rithm counts the number of predecessor computations

while iterating (the delay time between a g-state and its 4. Time prediction and time jumps
successor is exactly one time step). This procedure will beAs already mentioned in Section 2.4, the global predeces-
repeated until at least one aim state is reached or the se$0r computation is more expensive than the local predeces-

sor computation. But on the other hand, the set of global n + 1 because this value supports the zero value. In this sit-
predecessor g-states may stay constant during some iterasation every iteration step removes one elemerin . The
tion steps. Upon this observation, we present an optimiza-first step removes the value , the second step removes the
tion technigue which computes global predecessors only ifvalue n—1 and so on. This means after 1 steps the
they change. This technique (called time prediction) accel- zero clock value will be removed. In program 5 the com-

erates the analysis algorithms enormously. - .
The idea is to predict the number of computations for Lint stab.l_e_predlct(ecf N
. . 2 act:=f
which the global predecessors stay constant. For this num- o
) . . 3 old := g
ber of steps, the iteration will be performed locally on the _
. . . 4 res:=0
attribute sets of the ECFs. We show this technique exem- :
. . 5 while (act #old Oact #0) do
plarily for the STABLE algorithm. o
-~) . 6 old := act
The prediction examines all attribute sets of the actual 7 = global_pre(act)
state set{\,) and the global predecess#g (), computes 9 o global_p
o) 8 n := predict(act,g)
the number of steps and returns the minimum: o)
9 act := iteration(act,g,n)
predict(Ap Ag) :=ming; gl_pred(Ax(s), Ag(s)) (7) 10 res:=res+n
After the prediction is computed, the iteration of line 5 to 9 11 if act= O then return res
in program 1 may be performed locally on the attribute 12 else return ©

sets. Therefore we introduce a local iteration function program 5. Stable computation with prediction
(L_iter) which preforms this iteration on the actual

clock values A) and the actual global predecessGrs () Ofplete algorithm with time prediction is shown.

An additional technique to accelerate the algorithms is

one state: called time jump. This technique tries to improve the local
1 set |_iter(set A,G, int n) iteration. If we regard the set of clock values in different
2 res:=A iteration steps in figure 4.1, we realize, that the actual clock
3 od:= O value set shrinks until it will be supported by a valu&in
4 =0 RN O O
5 while i <n 0Ores #old do s A
6 old := res clock value >
7 res := res n(es-1 0OQ LB mes I £ 2
8 return res

iteration
(52

Program 4. Local iteration function

As already defined, the decrementation in line 7 affects all
values in the set. To apply this attribute oriented function to
an ECF, we apply it to every attribute set:
; ; — 1 Therefore it is not necessary to perform every iteration step
Usiteration(Ax Ag, n) = 1_Iter(A(s). Ag(s). n) (8) explicitly, we exploit this regular behavior to execute in one
complex operationn iteration steps. Formally we may
define the time jump for the stability analysis through:

10. I

Fig. 4.1. The behavior of the g-state sets

With the knowledge of the local iteration, we may
define the local prediction function. The functibnpred
receives two sets of natural numbers, the actual clock val-
ues (A) and the actual global predecessdgs () of the . 0 {v,.,v+ntOAD
examined state. The local prediction has to distinguishe Jump(A G 0= HVI OvzvwOGO{v,..,w} OA
two cases:

(10)

This operation is very implementation dependent, therefore
B {0, ...n} 0AONn+10ADO we will not show further details.

|_pred(A @:=g" +1if O0c0G.cOO,n (9) Figure Fig. 4.2 shows the computation of figure 3.1with
time prediction and time jumps. On the right side of this
figure, the result of the prediction for the next jump is
The only reason to recompute the global predecessor isshown. Because of the time prediction technique only 2
when a zero clock value disappears. A new zero clock global iteration steps are necessary.
value may never appear. The zero clock value disappears

aftern+1 steps, when the values Onto are in the actual 5. Experimental results

g-state and the value+1 is not an actual clock value. All presented algorithms are implemented in our real-time
Moreover there may not exist a value @ smaller than verification tool RAVEN. The ECFs are implemented by

0o otherwise

predict= 6. Conclusion

0 Q@@-p@-»@ﬁ 2 In this paper we presented a new approach for the analysis

of real-time systems. This approach works on the same rep-

1 - ,@_ ,() ,(} . resentation as real-time model checking. This allows the
Q m 2 verification as well as analysis.

- The systems are described by networks of communicat-

_ _ _ _ _ \ 0]
ZQ ’() ’() ’@ ’() ’Ov ing I/O-interval structures. These structures include timed
Fig. 4.2. Optimized STABLE-computation transitions and the labeling of these transitions with input

multi terminal binary decision diagrams (MTBDDs). We restrictions. After the composition of the substructures,
compared our implementation with VERUS [1]. We mod- RAVEN perfqrms the model checking and the analysis on
eled timed transitions in VERUS by loops which wait one the resulting interval structure.
time unit and decrement a counter. We compared only the Due to the symbolic representation of the structures and
min/max algorithms because VERUS do not support the 9-state sets with extended characteristic functions, this
stable query but on the other hand VERUS offers two que- @PProach works very compact in the memory consumption.
ries mincount and maxcount which are actually not sup- Especially if long delay times are specified, the advantages
ported by RAVEN. We have chosen the same variable Of this technique are obvious. By exploiting the locally
ordering for the signals. stored timing information (in the attribute sets), techniques
The examined case studies are the single pulser circuitike time prediction and time jumps accelerate the model
enriched by timed gates (SP), a production cell (PC) andchecking and analysis algorithms.
the arbitration mechanism of the J1850 bus protocol. The _.. .
first two systems are widely used to compare formal meth- Blbllography
ods. Details of the examined systems may be found in [10]. [1] S. Campos, E. Clarke, and M. Minea. The verus tool: A quantitative
For the single pulser we computed the minimal and the approach to the formal verification of real-time systemsCIAV,
maximal length of the output impulse. In the production LNCS. Springer Verlag, June 1997. _ _
cell we were interested in the minimal and the maximal [2] R.Bryant. Graph-Based Algorithms for Boolean Function Manipu-
. . . lation. IEEE Transactions on Computeisugust 1986.
time when the first work p|ec_e .Ieaves the cell. ln,the J1850 [R. Alur, C. Courcoubetics, and D. Dill. Model Checking for Real-
example we checked the minimal and the maximal delay ~ Time systems. InICS Washington, D.C., June 1990. IEEE CSP.
time when a node will leave the sending mode. The follow- [4] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Mo-
ing table compares the runtimes of both tools. For the del Checking for Real-Time Systems. IiCS, Santa-Cruz, June
VERUS run-times we tried various options and choose the ~ 1992. IEEE Computer Society Press. _
best results. FARAVEN we compared the time prediction [5] M. Bozga, O._ Malgr, A Rnuell, and S. Yovine. Some progressin the
(+t) and the prediction together with the time jumps (+t]) symbolic verification of timed automata. LAV 97 Springer Ver-
! ; . . L lag, June 1997.
. The run-times in the tabel with an.d without opt|m|za-_ [6] J.RufandT. Kropf. Symbolic model checking for a discrete clocked
tions seems to show, that these techniques cause only atiny temporal logic with intervals. ICHARME 97 Montreal, Canada,
speedup. But the run-times shown in the table contain Oct. 1997. Chapman and Hall.
besides the analyse times also the composition times of thd?] E. Clarke, K. McMillian, X. Zhao, M. Fujita, and J.-Y. Yang. Spec-
structures. In all three examples the composition consumes tral Transfprms for large Boolean Functions with Application to
the major part of the times (11.73 sec. for the single pulser, Technologie Mapping. IDAC 93 Dallas, TX, June 1993.

. [8] R.Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, and
2000 seconds for the prOdUCtlon cell and 25 sec. for the F. Somenzi. Algebraic Decision Diagrams and Their Applications.

J1850). If there will be more than two analysis (as com- In ICCAD, Santa Clara, CA, Nov. 1993. ACM/IEEE, IEEE CSP.
puted in the examples), than the fraction of composition [9] J. Ruf and T. Kropf. Using MTBDDs for composition and model
time to analyse time will shrink and the the optimizations checking of real-time systems. FIMCAD 1998 Palo Alto.Springer.
will cause a |arger speedup. [10] J.Ruf and T. Kropf. Modeling and Checking Networks of Real-
Time Systems. ICTHARME 99Bad Herrenalb, Germany. Springer
Verlag, Septemper 1999.
SP PC J1850 [11] J. Burch, E. Clarke, K. McMillan and D. Dill. Symbolic Model
VERUS 118 a -0 Checking: 189 States and Beyond. IdCS, IEEE Computer Society
RAVEN 12 2314 406 [12] .F])reRssf’ ;:geTliigbf Using MTBDDs for discrete timed symbolic
.Ru . . Usi i i y i
RAVEN +t 12 2146 97 model checking. Multiple-Valued Logic — An International Journal,
RAVEN +j 12 2044 95 1998. Gordon and Breach publisher.

[13] S.Campos, E.Clarke, W. Marrero, M. Minea, and H. Hiraishi.
Computing quantitive charakteristics of finite-state real-time sy-
stems. Technical Report, Pittsburgh, May 1994.

a. VERUS terminated with an error: ,string table overflow*
b. VERUS was terminated due to a memory consumption over 600MB

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

