
ms
o-
he
nto
e
of

ere
ing
t,

se
y
d

w-
ing
no

-
te
nt
of

6].
n

-
-
s
n-
).
n
ch
n.
s-
es
ni-
ri-
e
of
Analyzing Real-Time Systems1

Jürgen Ruf and Thomas Kropf
Wilhelm-Schickard-Institute

University of Tübingen, Sand 13, 72076 Tübingen, Germany
{ruf,kropf}@informatik.uni-tuebingen.de

http://www-ti.informatik.uni-tuebingen/~ruf

Abstract

Temporal logic model checking is a technique for the auto-
matic verification of systems against specifications. Besides
the correctness of safety and liveness properties it is often
important to determine critical answer and delay times of
systems, especially if they are embedded in a real-time envi-
ronment. In this paper we present an approach which
allows the verification as well as the timing analysis of real-
time systems. The systems are described as networks of
communicating time-extended finite state machines (I/O-
interval structures). We use a compact symbolic representa-
tion to obtain efficient analysis algorithms.1

1. Introduction
Formal verification has become an important task in the
design of software and hardware. Especially automatic
techniques like temporal logic model checking are used to
support or even to replace standard test and simulation
methods. In the area of embedded reactive systems, the ver-
ification of timing constrains plays an important role. E.g.
minimal and maximal reaction times of a controller have to
be guaranteed, setup and hold times of flipflops have to be
kept or wait times of work pieces in pause stations of a pro-
duction automation system should be minimized.

One possibility to verify such timing properties is to use
a real-time temporal logic model checker. In this case, the
designer has to specify the timing properties with temporal
logic formulas and the system as a state transition graph.
After the automated verification process, the model checker
answers yes or no. This means the system satisfies the spec-
ification or not, e.g. the reaction time lies under a certain
time bound or not. But the designer obtains no statement
about the actual value of the reaction time.

Therefore Campos and Clarke developed an analysis tool
(VERUS) which allows the verification of real-time proper-

ties as well as the quantitative analysis of real-time syste
[1]. This tool gets an description of a system as a synchr
nous program, the specifications in temporal logic and t
analysis queries. The system description is translated i
ROBDDs [2] representing the state transition graph. Th
disadvantage of this approach lies in the representation
time. Since time progress is represented by counters, th
exists for every time step a separate state in the underly
graph. Especially if many counters with large values exis
the state space may explode.

Other approaches for real-time model checking u
timed automata [3, 4, 5]. Timed automata allow a ver
detailed description of real-time systems through a fixe
number of clocks defined over a dense time model. Ho
ever, these approaches have very complex model check
algorithms (they are PSPACE-complete) and there exist
analysis algorithms.

In [10] we have presented a new formalism called I/O
interval structure. This formalism expands finite sta
machines by timed state transitions. We developed efficie
model checking algorithms based on a representation
these structures with extended characteristic functions [
These functions are implemented with MTBDDs [7,8]. I
[9] we have presented a method for the composition of I/O
interval structures completely working on the MTBDD rep
resentation, including two minimization heuristics. Thi
approach allows the integration of untimed FSMs (e.g. co
troller) and I/O-interval structures (e.g. timed environment

In this paper we develop analysis algorithms working o
the symbolic representation of interval structures and whi
make optimal use of this MTBDD-Based representatio
These algorithms determine critical times of specified sy
tems, e.g. wait times of production systems, reaction tim
of embedded systems or maximal delay times of commu
cation protocols. Together with the already developed ve
fication algorithms, we now have a powerful tool for th
verification and the analysis of real-time systems out
many domains.

1. This work is supported by the German Research Grant (DFG project
GRASP)

k

s

i-
se
n.
s.
e
t-

e

i-
e
-

is

-
ra-
d
);

is
al
d

ant
Section 1 introduces the real-time model checking
approach which is the basis of the analysis algorithms. First
the modeling formalism (I/O-interval structures) and the
specification logic (CCTL) are introduced. Afterwards we
present the symbolic representation with extended charac-
teristic functions. In Section 3 the different analysis algo-
rithms are introduced. Section 4 describes some
optimizations accelerating the analysis algorithms. Experi-
mental results are shown in Section 5. Section 6 concludes
this paper.

2. Real-time model checking

2.1. Interval structures and I/O-interval structures

Structures are state-transition sys-
tems modeling HW- or SW-sys-
tems. The fundamental structures
are Kripke structures (unit-delay
structures, temporal structures)
which may be derived from
FSMs. The basic models for real-
time systems are interval struc-
tures, i.e., state transition systems
with additional labelled transi-
tions. We assume that each inter-
val structure has exactly one
clock for measuring time. The
clock is reset to zero if a state is
entered. A state may be left if the
actual clock value corresponds to a delay time labelled at
an outgoing transition. The state must be left if the maxi-
mal delay time of all outgoing transitions is reached
(Fig. 2.1). One clock tick is the lowest granularity for the
time modeling.

Definition 2.1.An interval structure (IS) is a tuple
with a set of atomic propositions , a

set of states (i-states), a transition relation between the
states such that every state in has a successor
state, a state labeling function and a transi-
tion labeling function with
and is the potential set operator.

Every state of the IS must be left after themaximal state
time.

Definition 2.2.The maximal state time of a state
is the maximal delay time of all outgo-

ing transitions of , i.e.

. (1)

Besides the states, we also have to consider the currently
elapsed time to determine the transition behavior of the
system. Hence, the actual state of a system, called thegen-

eralized state, is given by an i-state and the actual cloc
value (the elapsed time).

Definition 2.3.A generalized state (g-state) is
an i-state associated with a clock value
(). The set of all g-states in

 is given by:

 (2)

The semantics of ISs is represented by runs.

Definition 2.4.Given the IS and a
starting g-state . A run is a sequence of g-state

. For the g-states of
the sequence holds either

• with or
• with and

.

To expand interval structures by a possibility for commun
cation, we extend them to I/O-interval structures. The
structures carry additional input labels on each transitio
Such an input label is a Boolean formula over the input
We interpret this formulas as input conditions which hav
to hold during the corresponding transition times. Inpu
insensitive edges carry the formula .

Definition 2.5.An I/O-interval structure (I/O-IS) is a tuple
. The set of all input valua-

tions is: .

• The components and are defined as in IS.
• is a finite set of atomic input propositions.
• The transition relation connects pairs of states and th

destination inputs: .1

• is the transition input labeling.

The execution semantics of I/O-interval structures are sim
lar to interval structures. The only difference lies in th
input restrictions. A transition may only be taken if the cor
responding input restriction holds until the delay time
reached and the state is left.

2.2 The logic CCTL

CCTL [9] is a temporal logic extending CTL with quantita
tive bounded temporal operators. Two new temporal ope
tors are introduced to make the specification of time
properties easier. The syntax of CCTL is shown in (3
where is an atomic proposition, and

are time bounds. All interval operators can
also be accompanied by a single time-bound only. In th
case the lower bound is set to zero by default. If no interv
is specified, the lower bound is implicitly set to zero an
the upper bound is set to infinity. If theX-operator has no

Fig. 2.1. Example IS

[1,3] a

a

0 1 2 3 time

ℑ
ℑ P S T L I, , , ,()= P

S
T S S×⊆ S

L:S ℘ P()→
I :T ℘ IN()→ IN 1 …,{ }=

℘

s
MaxTime:S IN→

s

MaxTime s() =

max t s'. s s',() T t max I s s',()()=∧∈∃{ }

1. In the most cases, the input valuations of the target states are irrelev
[10].

s
v

g s v,()=
s S∈ v IN0∈

IN0 0 1 …, ,{ }=
ℑ P S T L I, , , ,()=

G s v,() s S 0 v MaxTime s()<≤∧∈{ }=

ℑ P S T L I, , , ,()=
g0

r g0 g1 …, ,()= gj sj vj,() G∈=

gj 1+ sj vj 1+,()= vj 1 MaxTime sj()<+
gj 1+ sj 1+ 0,()= sj sj 1+(,) T∈
vj 1 I sj sj 1+,()∈+

true

ℑI O⁄ P PI S T L I II, , , , , ,()=
Inp ℘ PI():=

P S L, , I
PI

T S S× Inp×⊆
I I T ℘ Inp()→:

p P∈ a IN∈
b IN ∞{ }∪∈

d
sor
ate
lue

re

re-
rks
M
tes
n-
r i-
e-
e
-
e-
ks

n
a

to
i-
uct
is
il

t-

o-
y
in

g
ets

act
n.
il-
t
e
h.
i-
er

y
xi-
n
y-
time bound, it is implicitly set to one. The semantics of
CCTL is given in [10].

 (3)

2.3 Symbolic representation of interval structures

In contrast to an explicit representation, the symbolic rep-
resentation of FSMs uses characteristic functions. These
functions map states or transitions to true if they belong to
the represented set. This representation avoids the explicit
enumeration of states or transitions and is therefore able to
represent sets of states with more than elements [11].

The representation of g-states in IS need to store the
elapsed time besides the actual state. Therefore we use
extended characteristic functions (ECF, [12]) for a sym-
bolic representation of IS. The following definition of
ECFs is adapted to the representation of IS.

Definition 2.6.Given a set of elements (the universe,
e.g. the set of states) and a subset , where every
element in is associated with a set of natural numbers
(the clock values, also called the attribute set). An extended
characteristic function representing is given by:

 with

 (4)

I.e. we accumulate all clock values of g-states in the clock
set which have the same i-state. The standard set operations
like union or intersection may be extended to this kind of
characteristic functions.

ECFs may also be used to represent the transition rela-
tion. In this case we map pairs of states (the transition) to
the valid delay times. Also I/O-IS may be represented with
ECFs.

2.4 Model checking and composition

The main idea for the model checking algorithm in [6] is to
associate each subformula of the specification with the set
of g-states holding it. E.g. the formula "true" is associated
with the set of all g-states. The atomic proposition
will be associated with the following g-state set:

 (5)

The formula will be associated with the set of prede-
cessor g-states of the g-states associated with . Other
temporal operators may be computed by special fixed point
iterations based on the predecessor computation. This com-

putation may be split in two main operations: the local an
the global predecessor computation. The local predeces
computation takes an ECF representing the actual g-st
set and decrements all attribute sets by one. A zero va
will be removed:

 (6)

For a set of natural numbers, we identify the set whe
each value is decremented with: .

The global predecessor computation computes the p
decessor of zero clocked g-states. This operation wo
similar to the predecessor computation of symbolic FS
traversal techniques. This operation selects the g-sta
with zero clock values and computes together with the tra
sition relation the predecessor g-states in predecesso
states. This operation is more complex than the local pred
cessor computation. More details may be found in [9]. Th
function is the union of the local and the global prede
cessors. The result of this function is exactly the set of pr
decessors of a given g-state set. The function wor
similar and computes the successor g-states.

Model checking as described above works exactly o
one IS, but real-life systems are usually described in
modular way by many interacting components. In order
make model checking applicable to networks of commun
cating components, it is necessary to compute the prod
structure of all submodules. This product-computation
called composition. The composition is described in deta
in [9].

The composition algorithms are also applicable to ne
works of I/O-IS if we work with closed systems, where
every free variable is bounded by a structure. After comp
sition, the efficient model checking algorithms for IS ma
be used for verification. These algorithms are described
detail in [6]. Composition as well as the model checkin
algorithms use the symbolic representation of g-state s
and transition relations with ECFs.

3. The analysis algorithms
The analysis technique should help a designer to extr
important time bounds from his formal system descriptio
An often arising problem is to compute the maximal stab
ity of a signal. E.g. if we want to examine a switch circui
with delay times, it may be very important to determine th
number of time steps, the out put signal stays stable hig
This stability analysis is also useful to compute the max
mal number of time steps, a work piece waits on a buff
until it will be processed.

Other typical problems are minimal and maximal dela
times between events, e.g. how long does it minimal/ma
mal take until the first work piece leaves the productio
cell. In the following two subsections we present the anal
sis algorithms.

ϕ

p | ϕ¬ | ϕ ϕ∧ | ϕ ϕ∨ | ϕ ϕ→ | ϕ ϕ↔
| EX a[]ϕ | EF a b,[]ϕ | EG a b,[]ϕ | E ϕ U a b,[]ϕ()

| E ϕ C a[]ϕ() | E ϕ S a[]ϕ()

| AX a[]ϕ | AF a b,[]ϕ | AG a b,[]ϕ | A ϕ U a b,[]ϕ()

| A ϕ C a[]ϕ() | A ϕ S a[]ϕ()









:=

1020

U
S A U⊆

A

A
ΛA U ℘ IN()→:

ΛA s() α if s A∈ andα IN0 assoc. with s⊆
∅ otherwise




:=

p P∈

g|g G s S∈ . v IN0∈ .g s v,() p L s()∈∧=∃∃∧∈{ }

EXϕ
ϕ

s.local_pre Λ() s()∀ v 1– | v 1 v Λ s()∈∧≥{ }=

A
A 1–

pre

succ

no

n
e

a
er
ere

s-
es-
3.1 The STABLE algorithm

The analysis algorithms do also use the traversal tech-
niques (predecessor computation) of the model checking
algorithms. The program 1 shows the implementation of
the STABLE-algorithms in an imperative (C- or Pascal-
like) programming language.

The algorithm gets a set of g-states to examine (f). This
set may be specified as CCTL formula and may be com-
puted by the model checking algorithm (see Section 2.4).

The algorithm determines the maximal number of steps
(res) such that there exist a run in which the firstres g-
states are members of the set represented byf but the g-
state at positionres +1 is not a member of f .

The computation of the algorithms initializes a set of
actual g-states (act) with the set of the g-states to examine
(f). Then it starts shrinking this set successively by inter-
secting it with its predecessors. If the setact is empty, the
maximal stability is computed. If the algorithm reaches a
fixed point, i.e.act =old , then there exist a cycle inf .

The figure 3.1 illustrates the computation of the STA-
BLE algorithm. The interval structure to examine is shown
at the top. The lower part displays the g-states and the pre-
decessor relation (dotted arrows). The analysis set is given
by the CCTL formula which means, that on all
paths the signal must be reachable within two time steps.
The grey oval includes the actual g-states (act). The num-
bers on the left shows the actual iteration (equal tores).

3.2 The MIN/MAX algorithms

The following two algorithms compute the minimal resp.
maximal number of unit time-steps between a start and an
aim set of g-states. Campos and Clarke introduced algo-
rithms based on an ROBDD representation [13].

The idea of the algorithm in program 2 is to initialize a
set of g-states (act) with the set of start states and then to
expand this set successively by its successors. The algo-
rithm counts the number of predecessor computations
while iterating (the delay time between a g-state and its
successor is exactly one time step). This procedure will be
repeated until at least one aim state is reached or the set

will not change anymore. In the latter case, there exist
path from the start states to the aim states.

The algorithm computing the maximal delay time is show
in program 3. It initializes a set with all g-states except th
the aim set (act). Then it shrinks this set by intersectin
act with its predecessors until no start g-state is left or
fixed point is reached. In the latter case, there exists eith
no connection between the start set and the aim set or th
exist a loop such that the maximal delay time is infinite.

4. Time prediction and time jumps
As already mentioned in Section 2.4, the global predece
sor computation is more expensive than the local predec

1 int stable(ecf f)
2 act := f
3 old := ∅
4 res := 0
5 while (act ≠ old ∧ act ≠ ∅) do
6 old := act
7 act := pre(act) ∩ act
8 res := res + 1
9 if act = ∅ then return res
10 else return ∞

Program 1. The STABLE algorithm

AF 2[]a
a

Fig. 3.1. Illustration of the STABLE-computation.

1 int min(ecf start, aim)
2 act := start
3 old := ∅
4 res := 0
5 while (act ≠ old ∧ act ∩ aim = ∅) do
6 old := act
7 act := act ∪ succ(act)
8 res := res + 1
9 if act ∩ aim ≠ ∅ then return res
10 else return ∞

Program 2. The MIN algorithm

1 int min(ecf start, aim)
2 act := ¬aim
3 old := ∅
4 res := 0
5 while (act ≠ old ∧ act ∩ aim = ∅) do
6 old := act
7 act := act ∩ pre(act)
8 res := res + 1
9 if act=old then return ∞
10 else return res

Program 3. The MAX algorithm

a

a a

3 2
1

AF 2[]a

0

a a1

a a2

a a3

a a4

it-
he
the
e
-

is
al
t
ck
.

ep
e
y

re

h
s
s
2

e

sor computation. But on the other hand, the set of global
predecessor g-states may stay constant during some itera-
tion steps. Upon this observation, we present an optimiza-
tion technique which computes global predecessors only if
they change. This technique (called time prediction) accel-
erates the analysis algorithms enormously.

The idea is to predict the number of computations for
which the global predecessors stay constant. For this num-
ber of steps, the iteration will be performed locally on the
attribute sets of the ECFs. We show this technique exem-
plarily for the STABLE algorithm.

The prediction examines all attribute sets of the actual
state set () and the global predecessors (), computes
the number of steps and returns the minimum:

 (7)

After the prediction is computed, the iteration of line 5 to 9
in program 1 may be performed locally on the attribute
sets. Therefore we introduce a local iteration function
(l_iter) which preforms this iteration on the actual
clock values () and the actual global predecessors () of
one state:

As already defined, the decrementation in line 7 affects all
values in the set. To apply this attribute oriented function to
an ECF, we apply it to every attribute set:

 (8)

With the knowledge of the local iteration, we may
define the local prediction function. The function
receives two sets of natural numbers, the actual clock val-
ues () and the actual global predecessors () of the
examined state. The local prediction has to distinguishe
two cases:

 (9)

The only reason to recompute the global predecessor is
when a zero clock value disappears. A new zero clock
value may never appear. The zero clock value disappears
after steps, when the values 0 to are in the actual
g-state and the value is not an actual clock value.
Moreover there may not exist a value in smaller than

because this value supports the zero value. In this s
uation every iteration step removes one element in . T
first step removes the value , the second step removes
value and so on. This means after steps th
zero clock value will be removed. In program 5 the com

plete algorithm with time prediction is shown.
An additional technique to accelerate the algorithms

called time jump. This technique tries to improve the loc
iteration. If we regard the set of clock values in differen
iteration steps in figure 4.1, we realize, that the actual clo
value set shrinks until it will be supported by a value in

Therefore it is not necessary to perform every iteration st
explicitly, we exploit this regular behavior to execute in on
complex operation iteration steps. Formally we ma
define the time jump for the stability analysis through:

 (10)

This operation is very implementation dependent, therefo
we will not show further details.

Figure Fig. 4.2 shows the computation of figure 3.1wit
time prediction and time jumps. On the right side of thi
figure, the result of the prediction for the next jump i
shown. Because of the time prediction technique only
global iteration steps are necessary.

5. Experimental results
All presented algorithms are implemented in our real-tim
verification toolRAVEN . The ECFs are implemented by

1 set l_iter(set A, G, int n)
2 res := A
3 old := ∅
4 i := 0
5 while i ≤ n ∧ res ≠ old do
6 old := res
7 res := res ∩ (res-1 ∪ G)
8 return res

Program 4. Local iteration function

ΛA ΛG

predict ΛA ΛG,() mins S∈ l_pred ΛA s() ΛG s(),():=

A G

s.∀ iteration ΛA ΛG n, ,() l_iter ΛA s() ΛG s() n, ,()=

l_pred

A G

l_pred A G,() n 1+ if
n. 0 … n, ,{ } A n 1 A∧∉+∧⊆∃
c∀ G∈ .c 0 … n, ,∉

∞ otherwise





:=

n 1+ n
n 1+

G

1 int stable_predict(ecf f)
2 act := f
3 old := ∅
4 res := 0
5 while (act ≠ old ∧ act ≠ ∅) do
6 old := act
7 g := global_pre(act)
8 n := predict(act,g)
9 act := iteration(act,g,n)
10 res := res + n
11 if act = ∅ then return res
12 else return ∞

Program 5. Stable computation with prediction

Fig. 4.1. The behavior of the g-state sets

n 1+
A

n
n 1– n 1+

G

A
G

1.

5.

10.

ite
ra

tio
n

clock value

0 10 20 30

n

jump A G n, ,() v |
v … v n+, ,{ } A ∨⊆
w v.w G∈ v … w, ,{ } A⊆∧≥∃




:=

sis
ep-
he

at-
d

ut
s,
n

nd
is
n.
es

y
s

el

e

-

-

e

d

d
s.

l

-

l,

i.
-

multi terminal binary decision diagrams (MTBDDs). We
compared our implementation with VERUS [1]. We mod-
eled timed transitions in VERUS by loops which wait one
time unit and decrement a counter. We compared only the
min/max algorithms because VERUS do not support the
stable query but on the other hand VERUS offers two que-
ries mincount and maxcount which are actually not sup-
ported by RAVEN . We have chosen the same variable
ordering for the signals.

The examined case studies are the single pulser circuit
enriched by timed gates (SP), a production cell (PC) and
the arbitration mechanism of the J1850 bus protocol. The
first two systems are widely used to compare formal meth-
ods. Details of the examined systems may be found in [10].

For the single pulser we computed the minimal and the
maximal length of the output impulse. In the production
cell we were interested in the minimal and the maximal
time when the first work piece leaves the cell. In the J1850
example we checked the minimal and the maximal delay
time when a node will leave the sending mode. The follow-
ing table compares the runtimes of both tools. For the
VERUS run-times we tried various options and choose the
best results. ForRAVEN we compared the time prediction
(+t) and the prediction together with the time jumps (+tj).

The run-times in the tabel with and without optimiza-
tions seems to show, that these techniques cause only a tiny
speedup. But the run-times shown in the table contain
besides the analyse times also the composition times of the
structures. In all three examples the composition consumes
the major part of the times (11.73 sec. for the single pulser,
2000 seconds for the production cell and 25 sec. for the
J1850). If there will be more than two analysis (as com-
puted in the examples), than the fraction of composition
time to analyse time will shrink and the the optimizations
will cause a larger speedup.

6. Conclusion
In this paper we presented a new approach for the analy
of real-time systems. This approach works on the same r
resentation as real-time model checking. This allows t
verification as well as analysis.

The systems are described by networks of communic
ing I/O-interval structures. These structures include time
transitions and the labeling of these transitions with inp
restrictions. After the composition of the substructure
RAVEN performs the model checking and the analysis o
the resulting interval structure.

Due to the symbolic representation of the structures a
g-state sets with extended characteristic functions, th
approach works very compact in the memory consumptio
Especially if long delay times are specified, the advantag
of this technique are obvious. By exploiting the locall
stored timing information (in the attribute sets), technique
like time prediction and time jumps accelerate the mod
checking and analysis algorithms.

Bibliography
[1] S. Campos, E. Clarke, and M. Minea. The verus tool: A quantitativ

approach to the formal verification of real-time systems. InCAV,
LNCS. Springer Verlag, June 1997.

[2] R. Bryant. Graph-Based Algorithms for Boolean Function Manipu
lation. IEEE Transactions on Computers, August 1986.

[3] R. Alur, C. Courcoubetics, and D. Dill. Model Checking for Real
Time Systems. InLICS, Washington, D.C., June 1990. IEEE CSP.

[4] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Mo-
del Checking for Real-Time Systems. InLICS, Santa-Cruz, June
1992. IEEE Computer Society Press.

[5] M. Bozga, O. Maler, A. Pnueli, and S. Yovine. Some progress in th
symbolic verification of timed automata. InCAV 97. Springer Ver-
lag, June 1997.

[6] J. Ruf and T. Kropf. Symbolic model checking for a discrete clocke
temporal logic with intervals. InCHARME 97, Montreal, Canada,
Oct. 1997. Chapman and Hall.

[7] E. Clarke, K. McMillian, X. Zhao, M. Fujita, and J.-Y. Yang. Spec-
tral Transforms for large Boolean Functions with Application to
Technologie Mapping. InDAC 93, Dallas, TX, June 1993.

[8] R. Bahar, E. Frohm, C. Gaona, G. Hachtel, E. Macii, A. Pardo, an
F. Somenzi. Algebraic Decision Diagrams and Their Application
In ICCAD, Santa Clara, CA, Nov. 1993. ACM/IEEE, IEEE CSP.

[9] J. Ruf and T. Kropf. Using MTBDDs for composition and mode
checking of real-time systems. InFMCAD 1998, Palo Alto.Springer.

[10] J. Ruf and T. Kropf. Modeling and Checking Networks of Real
Time Systems. InCHARME 99,Bad Herrenalb, Germany. Springer
Verlag, Septemper 1999.

[11] J. Burch, E. Clarke, K. McMillan and D. Dill. Symbolic Model
Checking: 1020States and Beyond. InLICS, IEEE Computer Society
press, June 1990.

[12] J. Ruf and T. Kropf. Using MTBDDs for discrete timed symbolic
model checking. Multiple-Valued Logic – An International Journa
1998. Gordon and Breach publisher.

[13] S. Campos, E. Clarke, W. Marrero, M. Minea, and H. Hiraish
Computing quantitive charakteristics of finite-state real-time sy
stems. Technical Report, Pittsburgh, May 1994.

Fig. 4.2. Optimized STABLE-computation

 SP PC J1850

VERUS 118 -a

a. VERUS terminated with an error: „string table overflow“

-b

b. VERUS was terminated due to a memory consumption over 600MB

RAVEN 12 2314 406

RAVEN +t 12 2146 97

RAVEN +tj 12 2044 95

a a0

a a1

a a2

predict =

2

2

∞

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

