
ts
r
i-
g
he
ol-
tion
al
g
ow
nt

to
s
ir-
h
e-

its
r-
c-

g.
at
c-

s-
rk
r
to
n
s
re

et

ir

Constructive Library-Aware Synthesis Using Symmetries*

Victor N. Kravets Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan, Ann Arbor, MI 48109

{vkravets, karem}@eecs.umich.edu
 Abstract

In this paper a constructive library-aware multilevel logic
synthesis approach using symmetries is described. It
integrates the technology-independent and technology-
dependent stages of synthesis, and is premised on the goal of
relating the functional structureofa logicspecificationcloser
to the ultimate topological and physical structures. We show
that symmetries interpreted as structural attributes of
functions can be effectively used to induce a favorable
structural implementation. These symmetries are used in
bridging 1) the structural properties of the functions being
synthesized, 2) the structural attributes of the implementation
network, and 3) the functional content of the target library.
Experimental results show that the quality of circuits
synthesized using this approach is generally superior to those
synthesized by traditional approaches, and that the
improvement correlates with the symmetry measure in a
function.

1 Introduction

The separation of technology-independent transforma-
tions from technology mapping has been widely recognized
as potentially detrimental to the overall quality of synthe-
sized circuits. The drawbacks of such separation are becom-
ing more evident in fine-featured ICs where the cost
functions employed at the technology-independent stage are
becoming increasingly inaccurate. In response to these chal-
lenges of deep-submicron designs various post-processing
re-mapping techniques have been proposed [1,7]. In a recent
development [9] decomposition and technology mapping
are combined by strictly defining the possible decomposi-
tion types, and applying them to dynamically explore the
space of possible implementations using a gate level cost
function. The local nature of these transformations, though,
precludes addressing global functional properties which can
be profitably used to improve circuit quality.

The central idea of this paper is based on the premise that
functional specifications have globalstructural attributes,
that can be profitably used to induce a favorable structural
implementation, while reducing the run time complexity of
the synthesis process. These attributes can have a profound
effect on the suitability of one decomposition type over

another. They can be further utilized to study requiremen
on the functionality of library primitives to make a particula
decomposition type effective (see Fig. 1). Thus, by jud
ciously coupling the decomposition type with a library usin
structural attributes of a function we are able to merge t
traditionally separate technology-independent and techn
ogy-dependent synthesis stages. The effect of the integra
leads to improved synthesis quality, reflecting the glob
functional properties in the final circuit structure. Usin
symmetries as an example of structural attributes we sh
that such an approach can indeed yield a significa
improvement in circuit quality.

Symmetries as functional properties have been studied
improve synthesis quality for a long time [5, 6, 14]. In thi
work symmetries establish the key relation between des
able decompositions and the library of primitives whic
makes such decompositions possible. Specifically, symm
tries allow us to define a decomposition type that restricts
decomposition functions to a small library of pre-characte
ized symmetric primitives, and yet achieves support-redu
tion in the composition function. In this work such
decomposition is termed support- and depth-reducin
Through a construction process of the library we show th
its symmetric properties are induced by the symmetric stru
ture of a function being synthesized.

An algorithm incorporating this decomposition succe
sively decomposes the node functions of a Boolean netwo
in topological order. A node in the network is selected fo
decomposition only if each of its fanin nodes corresponds
a library primitive. The effect of such decomposition is a
expansion of the Boolean network from primary input
towards primary outputs as more library-specific nodes a
introduced into the network, and the complexity of the y

Decomposition
type

Library

Structural
attributes of a

function

Structural
attributes of a

synthesized circuit

Fig. 1. Integration of decomposition type and library via
structural attributes of a functional specification, and the
impact on circuit quality

*This work was partially supported by DARPA under contract
DAAH04-94-G-0327, and is supported by SRC-99-TJ-690.



ri-
us
-
re

d,
be

re
A
he
s
re
c-

e

iff

n
f
h

s
. If
e
us
ot

e

e
by

n

unimplemented nodes is reduced. Such a constructive syn-
thesis approach enables us to control decomposition possi-
bilities based on the evolving structure of a network being
synthesized.

The remainder of this paper is organized as follows. Sec-
tion 2 describes support-reducing decomposition. Symme-
tries as structural attributes of a function are described in
Section 3. The symmetry-based primitive library is
described in Section 4. A constructive synthesis algorithm
that integrates these concepts is described in Section 5. The
algorithm is based on the iterative decomposition of a func-
tion. Experimental results are discussed in Section 6.

2 Support- and Depth-Reducing Decomposition

Multilevel synthesis can be viewed as a process of succes-
sive decompositions of a set of functional specifications to
yield an appropriate factored form for these specifications in
terms of a set of primitive operators. Any Boolean function

can be expressed as

where , and are referred to, respectively,
as thedecompositionvariables and functions, and as the
composition function (see Fig. 2-a). Different synthesis
algorithms can be characterized by the restrictions they
impose on this generic decomposition template to achieve
various trade-offs between synthesis efficiency and resultant
circuit quality. In particular, we definesupport-reducing
decompositionby requiring the composition function to
depend on fewer variables than the original function . The
decomposition template in this case becomes

along with the constraint  (see Fig. 2-b).

Support-reducing decomposition is a form of disjoint
decomposition in which the choice of composition and
decomposition functions is carefully coordinated across the
successive decomposition steps to optimize circuit structure.
In addition, the decomposition is depth-reducing since it
reduces the number of logic levels in the synthesized circuits
by selecting decomposition according to the functional con-
tent of library primitives.1

We can now introduce a formal statement of the support-
and depth-reducing decomposition. Referring to Fig. 2-a, in
the generic decomposition case, a function can be decom-
posedwith respect to usingorthonormalexpan-
sion [2] , where ( ); the
set of -variable functions forms anorthonormal basis
in theexpansion.Thedotsabove ’s in theexpansion indicate
either complemented or non-complemented form of the
decomposition functions; their true phases are determined
fromthebinary representationof ateach .Eachof the ’s
in the expansion can be selected from the range

.Thesupport reductioncondition isachieved

by selecting which is vacuous in the decomposition va
ables, and also ensuring that holds. The vacuo
requirementon implies thatwhenever in thedecom
position, is unique, and is selected as a cofactor , whe

is a minterm from the basis function . On the other han
the depth reduction condition designates that ’s must
selected as functions corresponding to library primitives.

For a given set of decomposition variables of size the
may or may not be a support-reducing decomposition.
necessary and sufficient condition for its existence is that t
number of distinct cofactors induced by the minterm
from the space of decomposition variables is . (He
and later we assume that is a completely specified fun
tion.) The distinct cofactors partition the minterms in th
space of decomposition variables intoequivalence classes

such that minterms and are in the same class
.

According to the Roth and Karp classical decompositio
condition [12], a decomposition exists iff there is no pair o
minterms from the distinct equivalence classes whic
belong to the ON-set of a same function . Thisdistinguish-
ability requirementimplies that each of the basis element

must be a subset of exactly one equivalence class
the distinguishability requirement is not satisfied, then w
would not be able to select cofactors that are all vacuo
in the decomposition variables, and therefore may n
achieve support-reducing decomposition.

Example 1 Suppose we would like to decompose th
function

with respect to decomposition variables . Th
distinct cofactors and their equivalence classes induced
the space of these variables are listed below:

Letting in the orthonormal expansion be we ca
1. Note that this is slightly different from FPGA synthesis,
where fanin count is the only notion of node complexity; use of
look-up tables removes functional restrictions.

f x1 … xn, ,( )
f h g1 x1 … xs, ,( ) … gk x1 … xs, ,( ) x1 … xn, , ,, ,( )=

x1 … xs, , g1 … gk, ,
h

h
f

f h g1 x1 … xs, ,( ) … gk x1 … xs, ,( ) xs 1+ … xn, , ,, ,( )=
k s<

f
g1 g2 … gk, , ,

f ti f i∑= ti ġ1ġ2…ġk= 0 i≤ 2k 1–≤
s ti{ }

g

i t i f i

f ti f i≤ f ti+≤

Cofactor, Equivalence class,

0

1

2

3

Fig. 2.Decomposition choices

h

y1

yk

x1

x2

xs

xn 1–
xn

xs 1+

h

g1…gk
x1

x2

xs

xn 1–
xn

xs 1+

a) generic decomposition b) support-reducing decomposi-
tion

…

… …

…

… y1

yk
…

k s<

g1…gk

f i
k s<

f i ti 0≠
f i f m

m ti
g

s

f m
2

s 1–≤
f

Ci{ } m m'
f m f m'=

ti

ti 0≠

f i

f abcde abcd abcd abcde
abcd abcde abcde abcd

+ + + +
+ + +

=

a b c, ,{ }

i f i Ci

de abc

d abc abc, abc,
de abc abc, abc,
d abc

ti{ } Ci{ }



can
as

s

ic
t
n
].

a-
ry
C

t-
le

e

he
st
s.
an
-
in-
r
g

l-

e-
ic
s

s.
y
e
is
en
write  in the factored form as

There is a total of four basis elements which can be encoded
with two decomposition functions. One possible encoding is

These equations have a unique solution

yielding the following decomposed form for function :

■

A support-reducing decomposition degenerates to a non-
disjoint decomposition if one or more functions are
selected as an inverter or a pass-through wire.

In recent years researchers have successfully applied the
Roth and Karp decomposition condition in FPGA synthesis
[8,11,13,18]. However, all these approaches are based on a
recursive decomposition paradigm, and hence do not lend
themselves easily to decompositions in the library-aware
context.

3 Symmetries in Functional Specifications

A function exhibits symmetry in two variables if
exchanging these variables leaves the function invariant [4].
This notion can be generalized to symmetries under phase

assignment, where one of the two exchanged variables
be negated [5]. We term symmetries between variables
first order symmetries. For completely specified function
they form a transitivity relation which can be utilized for the
efficient construction of groups of more than two symmetr
variables in quadratic run time. Methods for the efficien
identification of variable symmetries using binary decisio
diagrams [3] have recently been described in [10] and [15

Symmetries between variables arise in many combin
tional circuits. To illustrate this, Table 1 captures symmet
group counts according to their sizes for some of the MCN
benchmark circuit [19]. They were collected for all the ou
puts of each listed benchmark. Blank entries in the tab
indicate0’s.

The notion of the first order variable symmetries can b
extended to symmetries of ahigher order: groups of inputs
that can be simultaneously swapped without altering t
functions. Higher-order group symmetries may exi
between ordered, or partially ordered groups of variable
Analogous to the first order symmetries, these groups c
be profitably used to improve circuit structure. In the con
structive synthesis approach they tend to contract into a s
gle variable, which can form symmetries with othe
variables in the functional specification of the remainin
unimplemented logic.

Example 2 We consider thet481 circuit from the MCNC
benchmark suite. In its multilevel form it is given having
2072 simple gates, and is highly irregular. However, as fo
lows from Fig. 3, the function of this circuit has a very
compact realization (Fig. 3-a) reflecting the structural repr
sentation of its symmetric attributes (Fig. 3-b). The intrins
symmetry relation depicted in Fig. 3-b can be also written a

where impliesorderonthesymmetricgroupsofvariable
The constructive nature of our algorithm allows us to obe
this higher-order relation by restricting our attention to th
first order symmetries on each iteration of the algorithm. Th
canbeobservedfromtheevolvingsymmetryrelationbetwe
intermediate signals during circuit construction:

f

f abc( )de abc abc abc+ +( )d
abc abc abc+ +( )de abc( )d

+ +
+

=

t0 g1g2=
t1 g1g2=
t2 g1g2=
t3 g1g2=

g1 ab bc ac+ +=
g2 a b⊕ c⊕=

f

f g1g2de g1g2d g1g2de g1g2d+ + +=

gj

Table 1.Symmetries in benchmark circuits

Circuit
Symmetry group counts of size

1 2 3 4 5 6 7 8 9

 rd53 3

 rd73 3

 rd84 4

9symml 1

parity 1

pm1 4 6 7 1 3 1

 misex2 12 9 5 3 2 1 4 4 1

pcler8 24 19 2 2 2 2 2 1 1

z4ml 5 4

 lal 22 31 5 2 1 1 1 1

pm4 3 10 10 5

x4 175 50 39 27 4 9

sct 24 34 6 13

c8 67 2 1 1 1 1 1 2

my_adder 135 17

 count 63 2 1 1 1 1 1 1 1 7

 t481 8

cordic 10 1 6 4

comp 48

mux 21

i2 13 3 5

n

10≥

-unordered -ordered

Fig. 3. Reflection of the symmetric structural attributes ofa
function on a circuit structure

a) circuit b) structure of symmetries in the
circuit function

b a c d f e gh o p k ln m j i b a c d f e g h o p k ln m j i

z

y1 y2 y3 y4 y5 y7 y8y6

y9 y10 y11 y12

y13 y14

b a,{ } c d,{ },{ } f e,{ } g h,{ },{ },〈 〉
n m,{ } o p,{ },{ } j i,{ } k l,{ },{ },〈 〉

,{
}

〈 〉



-
ic
-
s
ri-
e

c
rt-
-
et-
3-

en

-
of

of
ete
in
tric
o-1
o

r-
n
n
e-
e

ys
ed
e

o
rt

on,
t of
rk

h-
,
,

. ■

4 Cell Library Construction

All decomposition functions in the algorithm are
selected as functions from a cell library. Therefore, to guar-
antee feasibility of a support- and depth-reducing decompo-
sition the cell library must be sufficiently complete. By
using such a library we are able to implement a function’s
existing symmetry structure, and utilize its original symmet-
ric attributes as synthesis progresses. In this section we
derive the required primitive libraries.

Construction of complete symmetric libraries is based on
the Roth and Karp condition for the existence of a decompo-
sition. For a given set of decomposition functions the condi-
tion imposes a distinguishability requirement on the
minterms from distinct equivalence classes. This require-
ment is to have at least one decomposition function that
places a pair of minterms from the distinct equivalence
classes separately into its ON-set and OFF-set. Using this
requirement we can derive all gate type combinations
required to achieve support-reducing decomposition for a
particular partition of minterms into equivalence classes.
Thereby all feasible minterm partitions for a particular
decomposition type can be examined, and the smallest gate
library covering all of the expected minterm partitions can
then be constructed.

Table 2 summarizes the results of our derivation of sym-
metric libraries of four or fewer variables. The first column
of the table lists the desired -to- subcircuit, implementing

decomposition variables with -input primitives. The
second column gives one possible smallest gate library for
this type of decomposition, whenever it is possible. Some of
the cells in the table are listed using the notation, where
subscript is a list of numbers identifying minterm weights
in the ON-set of a function. For example, the symbol at
the 3-to-1 entry denotes the function . For each of
the -to- decompositions in the table we have counted the
number of possible complete smallest libraries. These num-
bers are listed in the third column, and their variety counts
are given up to the complement of the cell functions.

It follows from the table that a complete library for 2-to
1 support-reducing decomposition of two symmetr
decomposition variables is . The only vari
ations on this library would replace some of its function
with their complements. To accommodate symmetric va
ables with different phases the library should also includ
an inverter. It is important to note that two symmetri
decomposition variables do not always yield a suppo
reducing decomposition. Similarly, 3-to-1, 4-to-1 and 4-to
2 decompositions are also not always possible for symm
ric decomposition variables. However, there are always
to-2 and 4-to-3 support-reducing decompositions wh
decomposition variables are symmetric.

A smallest complete library for three symmetric decom
position variables corresponds to one of the following sets
primitives (up to their complements): ,

, or . A simi-
lar result for four variables states that a library composed
three gates is the smallest. It follows that a smallest compl
library for support- and depth-reducing decomposition
which at least three decomposition variables are symme
can be selected as a smallest 3-to-2 library, a smallest 2-t
library, an inverter and a wire. A wire makes it possible t
implement only a subset of variables.

5 Overall Synthesis Flow

Our constructive synthesis algorithm is based on the ite
ative application of the following three steps: (1) extractio
of logic to be implemented, (2) a subcircuit implementatio
of the logic, and (3) re-expression of the remaining unimpl
mented logic in terms of the newly created subcircuit. W
describe each of these steps below.

5.1 Support Selection

Since groups of three or more symmetric variables alwa
yield a support-reducing decomposition they are consider
as prime candidates for the decomposition variables. W
also consider the possibility of combining a group of tw
symmetric variables with other variables in the suppo
selection. (A pair of two-variable mutually symmetric
groups always leads to a support-reducing decompositi
except for one case). Among these candidates, a subse
three or four variables is selected which minimizes netwo
depth.

level 2( ) y1 y2,{ } y3 y4,{ },〈 〉 y5 y6,{ } y7 y8,{ }〈 〉,{ }=
level 3( ) y9 y10,{ } y11 y12,{ },{ }=
level 4( ) y13 y14,{ }=

Table 2. Instances of symmetric libraries for the symmetric
support- and depth-reducing decomposition

 Support
reduction An instance of required cell library # of Lib.

Instances

2-to-1 1

3-to-1 1

3-to-2 3

4-to-1 1

4-to-2 15

4-to-3 140

S1 S2 MAJ3S0 3,

MAJ3

S0…S4 S1 2, …S1 4, S2 3, S2 4, S3 4,S0 1, …S04,

S1 2, …S1 4,S0 1, S0 3, S0 4, S2 3, S2 4,

MAJ4

gi

s k
s k s

Sα
α

S0 3,
abc abc+

s k

ab a b ab,⊕,{ }

a b c MAJ3,⊕⊕{ }
a b c abc abc+,⊕⊕{ } MAJ3, abc abc+{ }

function re-express( , , ) {
if then return ;
assert( ) ;
if or then return re-express( , , );

re-express( , , );
re-express( , , );

return ;
}

f gi P
m m', P∈( ) f m∀ f m'= fm

i k≤
P gi≤ P gi≤ f gi 1+ P

f 0 ← f gi 1+ gi P⋅
f 1 ← f gi 1+ gi P⋅

yi f 0 yi f 1⋅+⋅

Fig. 4. The re-express algorithm in the support- and dept
reducing decomposition



d

el
st

ol-

re

ut
e
r-
ly

a-
ry
lly
i-

n
fi-
ted
e
e

xi-

e-
5

When a function has no symmetries we rely on a heuristic
of existentially quantifying one or two variables. If the new
function has symmetric variables, then these variables are
selected along with the quantified variables as decomposi-
tion variables. Such a selection of decomposition variables
using quantification suggests the inclusion of a multiplexer
into the library. If this heuristic fails to yield a feasible
decomposition we greedily select a set of decomposition
variables which yields the least number of equivalence
classes until the decomposition is feasible.

These variables are then implemented with a single level
of logic subcircuit using primitives from the technology
library.

5.2 Subcircuit Construction

In the subcircuit construction step, decomposition func-
tions are selected as library primitives. Their selection is per-
formed by a branch-and-bound procedure which involves
selecting a gate from the library, instantiating it with the
decomposition support, and then trying to extend the par-
tially-built subcircuit. The procedure recursively identifies a
subset of gates such that for any two minterms belonging to
the distinct equivalence classes, there is at least one function

that distinguishes these minterms by placing them sepa-
rately into the ON-set and the OFF-set of .

The result of the computation is a single-level subcircuit
(with possible inverters at the gate inputs) that constitutes the
decomposition functions .

5.3 Re-Expression of a Function

When the decomposition functions are determined,
the function is re-expressed according to the support-
reducing decomposition. The support-reducing decomposi-
tion is not unique, and hence often provides flexibility in
selecting a composition function. We have therefore devel-
oped an efficient algorithm (see Fig. 4) which selects the
composition function to maximize its symmetry. It pre-
sumes an ordering on the decomposition func-
tions and is invoked as , where
denotes the entire minterm space of decomposition vari-
ables. In the algorithm, new auxiliary variables , associ-
ated with each of the functions, become arguments to the
composition function .

6 Experimental results

We have implemented the above concepts in the M31 syn-
thesis tool. All functions are internally represented by BDDs
and manipulated using the CUDD package [17].

To evaluate the performance of M31, we synthesized the
subset of MCNC benchmarks listed in Table 1 and com-
pared them against those generated by the SIS-1.2 synthesis
system [16]. These benchmarks are originally given as two-
level specifications or multilevel netlists. Before synthesiz-
ing benchmarks in the multilevel format, M31 first collapsed

them to two-level form. Synthesis using SIS was performe
using script.rugged. Using this script, multilevel
netlists were synthesized from both the original multilev
specification and the collapsed two-level form and the be
variant is reported. For the my_adder.blif and
comp.blif netlists only the multilevel form was used,
since for these circuits SIS-1.2 was not able to obtain a c
lapsed two-level form due to their large cover sizes.

Experimental results are given in Table 3. The data we
obtained for the mcnc.genlib library which was
extended with three additional gates: 3-input XOR, 3-inp
majority, and a 2-to-1 multiplexer. It is important that asid
from the symmetric gates, the MCNC library provides pa
tially symmetric gates, which enable us to handle partial
symmetric and asymmetric decomposition variables.

As a rough measure of symmetry in the logic specific
tions, we use the reciprocal of the number of symmet
groups: a symmetry measure of 1 corresponds to a fu
symmetric function (1 symmetry group containing all var
ables), whereas ann-input function that lacks any variable
symmetries has symmetry value of 1/n. These ratios, aver-
aged across all circuit outputs, are given in the last colum
of the table. Comparison with SIS-1.2, shows that signi
cantly better implementations are possible: M31-genera
circuits have many fewer logic levels, much lower averag
topological wire length, and fewer connections. Thes
improvements seem to correlate, to a first order of appro
mation, with the symmetry measure.

To demonstrate the extent of spatial and temporal trad
offs that can be explored by the M31 synthesis tool, Fig.

gi
gi

gi

gi
f

h
g1 … gk, ,
re-express f g1 1, ,( ) 1

yi
gi
h

Table 3.SIS and M31 synthesis results

Circuit

nodes logic levels avg. top.
wire length

non-mcnc
gates wires

SIS M31 SIS M31 SIS M31 SIS M31 SIS M31

 rd53  21 10  8  3 1.98 1.15 1 4 48 33 1.00

 rd73  44 8  16 3 2.80 1.25 2 8 92 24 1.00

 rd84  90    23  15  5 2.05 1.34 3 7 214 58 1.00

9symml 120 13  13  6 2.19 1.16 0 8 310 36 1.00

parity 15 8 4 3 1.00 1.04 0 7 30 23 1.00

pm1 33 30 8 4 1.62 1.49 0 0 104 100 0.74

 misex2  62 76  9 6 2.26 1.13 0 5 139 220 0.71

pcler8 61 78 12 7 3.61 1.79 4 12 128 194 0.61

z4ml  22  9  10 3 2.51 1.20 2 7 47 25 0.54

 lal  68  63  12 6 2.09 1.60 4 0 140 127 0.50

pm4 150 41 19 8 3.63 1.51 5 12 341 98 0.45

x4 229 235 16 8 2.95 2.25 2 51 510 518 0.43

sct 52 52 31 6 6.44 1.72 0 3 108 107 0.40

c8 65 65 10 5 2.54 1.43 0 25 168 148 0.29

my_adder 156  96 35 5 4.91 1.32 0 84 285 276 0.20

 count 90  81  20 7 5.39 2.05 0 11 203 198 0.20

 t481  23 23 5 5 1.21 1.20 0 2 38 40 0.12

cordic 45 38 9 7 1.83 1.48 4 4 103 91 0.10

comp  85  55  13 8 2.04 1.46 0 24 168 134 0.06

mux 16 16 5 5 1.32 1.32 15 15 47 47 0.05

i2 81 89 8 12 1.31 1.24 0 3 293 302 0.05

sy
m

m
.



ble
r

al
g
rol
-

n

-
s.

re

o

s.

-

.
n

s.

or
n

ng
c-

-
,

er
.

gives different implementations of a 16-bit adder. The cir-
cuits were synthesized by varying the order in which decom-
position variables were selected on each iteration of the
constructive synthesis algorithm. The circuit in Fig. 5-a is a
ripple-carry adder which has small active area at the expense
of 16 levels of logic. On the other hand, the circuit in Fig. 5-
b is a 5-level variant on a carry lookahead adder, which
needs a larger number of gates.

M31 run times for highly symmetric functions are com-
parable to those of SIS-1.2. Its performance degrades as
functions exhibit more asymmetry. This is hardly surprising
since asymmetric functions possess different structural prop-
erties than those studied in this work. We found that the com-
putation time of M31 is dominated by the subcircuit
identification step of the algorithm. It is also important that
computation of symmetries becomes expensive as the repre-
sentation of a function increases. For completely-specified
functions it is provable, though, that decomposition pre-
serves symmetry in the non-decomposition variables of in
the re-expressed . Thus, they need to be computed only ini-
tially, and then simply updated as synthesis evolves.

7 Conclusions and Future Work

The improved quality of the above implementations is the
result of a coordinated strategy that ties functional structure
(symmetries in this case) to an appropriately outfitted cell
library through a decomposition procedure that is aware of
both. This is evident by examining the results of SIS-1.2

synthesis when these extra library gates are made availa
to it: with one or two exceptions, SIS-1.2 had no use fo
these extra gates.

In our future work we plan to research other structur
attributes, beyond symmetry, that might prove useful durin
decomposition. Differences between datapath and cont
logic functions may provide valuable insights into func
tional structure.

References
[1] L. Benini, P. Vuillod, and G. De Micheli. Iterative re-map-

ping for logic circuits.IEEE TCAD IC, CAD-17(10):948–
964, October 1998.

[2] F. M. Brown.Boolean Reasoning. Kluwer Academic Pub-
lishers, Boston, 1990.

[3] R.E. Bryant. Graph-based algorithms for boolean functio
manipulation.IEEE TC, C-35(6):677–691, August 1986.

[4] D. L. Dietmeyer and P. Schneider. Identification of sym
metry, redundancy and equivalence of boolean function
IEEE TEC, EC-16(6):804–807, December 1967.

[5] C. R.EdwardsandS. L.Hurst.Adigitalsynthesisprocedu
under functionsymmetriesandmappingmethods.IEEETC,
C-27:985–997, 1978.

[6] B.-G. Kim and D. L. Dietmeyer. Multilevel logic synthesis
of symmetric switching functions.IEEE TCAD IC,
10(4):436–446, April 1991.

[7] W. Kunz and D. Stoffel.Reasoning in Boolean Networks.
Kluwer Academic Publishers, 1997.

[8] Y. T. Lai, M. Pedram, and Sarma B. K. Vrudhula. BDD
based decomposition of logic functions with application t
FPGA synthesis. InProc. 30th DAC, pages 642–647, June
1993.

[9] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harknes
Logic decomposition during technology mapping. InProc.
Int. Conf. Computer Design, pages 263–271, 1995.

[10] D. Moller, J. Mohnke, and M. Weber. Detection of symme
try of boolean functions represented by ROBDDs. InProc.
ICCAD, pages 680–684, October 1993.

[11] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli
Optimum functional decompositions using encoding. I
Proc. 31st DAC, pages 408–414, June 1994.

[12] J. P. Roth and R. Karp. Minimization over boolean graph
IBM J. Res. and Develop., 6(2):227–238, April 1962.

[13] H. Sawada, T. Suyama, and A. Nagoya. Logic synthesis f
look-up table based FPGAs using functional decompositio
and support minimization. InIEEE ICCAD, pages 353–358,
November 1995.

[14] H. Sawada, S. Yamashita, and A. Nagoya. Restructuri
logic representations with easily detectable simple disjun
tive decompositions. InDATE, pages 755–759, February
1998.

[15] C. Scholl, D. Moller, P. Molitor, and R. Drechsler. BDD
minimization using symmetries.IEEE TCAD IC, 18(2):81–
100, February 1999.

[16] E. M. Sentovich. SIS: A system for sequential circuit syn
thesis. Technical Report UCB/ERL M92/41, UC Berkeley
May 1992.

[17] F. Somenzi.CUDD: CU Decision Diagram Package. Uni-
versity of Colorado, Boulder, 2.1.2 edition, April 1997.

[18] B. Wurth, K. Eckl, and K. Antreich. Functional multiple-
output decomposition: theory and an implicit algorithm. In
Proc. 32nd DAC, pages 54–59, June 1995.

[19] S. Yang.Logic synthesis and optimization benchmarks us
guide – ver. 3.0. MCNC, Res. Triangle Park, NC, Jan. 1991

Fig. 5. Two adders with different properties synthesized
constructively for themy_adder  MCNC benchmark

b) logic depth minimized adder

a) area minimized adder

f
f


	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


