
A 50 Mbit/s Iterative Turbo-Decoder

F. Viglione, G. Masera, G. Piccinini, M. Ruo Roch, M. Zamboni

Dipartimento di Elettronica - Politecnico di Torino - Torino, ITALY

Abstract

Very low bit error rate has become an important con-
straint in high performance communication systems that op-
erate at very low signal to noise ratios: due to their impres-
sive coding gains, turbo codes have been proposed for sev-
eral applications, although they suffer a large decoding de-
lay. This paper presents the design of a turbo decoder with
high performances in terms of throughput implemented us-
ing TSPC (True Single Phase Clocking) logic family. In or-
der to achieve the best compromise between cost (in terms of
area) and throughput, several architectural solutions have
been analyzed. The whole system and in particular its core,
the SISO module, has been verified through VHDL simula-
tions. HSPICE simulations show that the system can oper-
ate with a 1 GHz clock and thus it can reach a throughput
of 50 Mbit/s.

1. Introduction

Several applications need high coding gains and perfor-
mances closed to theoretical Shannon’s limit in terms of bit
error rate. High gains and performances can be achieved us-
ing block codes or convolutional codes with long constraint
length: the use of these codes often results in very time
consuming decoding algorithms. Concatenated codes have
the advantage of dividing the encoding/decoding process in
several, simpler steps: inside this family of codes, the most
important ones are the convolutional concatenated codes,
also called “Turbo codes” [1], which have been proved as
the most powerful solution for high coding gain applica-
tions.

Recently, turbo codes have been proposed for satellite
and deep-space communications [2], such as in the ESA’s
mission Rosetta. Other applications of turbo codes are in
wireless communications, such as the third generation of
mobile communications (UMTS) and in standard protocols
for disk drivers [3].

A concatenated encoder is composed of two or more re-
cursive and systematic convolutional encoders connected in
an encoding network [4]. Interleaving blocks are placed

among single encoders: an interleaver is a memory in which
data are read and written in different orders. There are two
principal schemes of connection: parallel concatenated con-
volutional codes (PCCC, the “original” turbo codes) and se-
rially concatenated convolutional codes (SCCC).

PCCC has been used in several cases, while SCCC has
been used fewer. However, SCCC have been shown to yield
performance comparable, and in some cases superior, to
turbo codes [5].

The decoder consists in a network of single decoders cor-
respondent to the encoder network. Each single decoder is
a soft decoder providing an index of reliability (soft infor-
mation) of the decoded bits (hard information). The whole
soft decoder operates in an iterative way and the decoding
process is stopped when the wished level of reliability is
reached. Better correction performance are obtained as the
iteration number is increased; however a large number of
iterations has a negative effect on both decoding speed and
latency (it is a fact that the latency of turbo codes is consid-
ered unacceptable in some telephony applications).

In this paper we present the VLSI design of a fast SCCC
decoder with short decoding delay and high throughput.
Several architectures have been analyzed in order to choose
the best solution for the decoder; the selected architecture
has been implemented making use of TSPC [6] logic library
operating at 1 GHz.

2. The SISO algorithm

In the case of concatenated codes, the decoding is split
into a number of subproblems equal to the number of the
constituent codes. In order to exploit entirely the properties
of turbo codes, single decoders must exchange soft informa-
tion. This soft quantity is the sequence of the distribution
of probability, conditioned by the received signal and by
the knowledge of the code [7]. A solution to the decoding
problem is a modification of the traditional Viterbi’s algo-
rithm into the soft output Viterbi algorithm (SOVA) , which
generates the needed soft information: this algorithm is a
suboptimal solution. A different approach to the problem
is represented by thea posteriori probability (APP) algo-
rithms: the SISO (Soft Input Soft Output) algorithm [8] and

u Encoder

π

c

π

π

π(c)

(c;O)
SISO

(u)

(u;O)

Figure 1. The encoder and the SISO module

its modification implemented in this work belong to this cat-
egory.

The SISO algorithm is the core of the decoding algo-
rithm, which receives the soft informations related to the
decoded bits and refines them iteratively. In the following
the SISO algorithm described in [8] (and derived from [9])
will be shortly presented with reference to Figure 1

In the description of the algorithm we will use the fol-
lowing notations. We will indicate the encoder input and
output symbols withu andc respectively;y will be the sig-
nal received from the demapper, whilesk will indicate the
state of the decoder at timek; e will represent the transition
between the start statesS and the end statesE .

The a posteriori probability can be achieved by

P(ujy) = ∑
Si

σk(Si;u) (1)

whereσk is the a posteriori transition probability

σk
∆
= P(uk = u;sk�1 = Sijy) (2)

as reported in [9]. The SISO routine elaborates the quanti-
tiesπk(c;O) andπk(u;O), correlated toσk, with the follow-
ing equations:

πk(c;O) = log ∑
e:c(e)=c

exp
�

αk[s
S]+πk[u]+

+πk[c]+βk[s
E]
o

(3)

πk(u;O) = log ∑
e:u(e)=u

exp
�

αk[s
S]+πk[c]+

+πk[u]+βk[s
E]
o

(4)

αk(s)= log ∑
e:sE (e)=s

exp
�

αk�1[s
S]+πk[u]+πk[c]

	
(5)

βk(s) = log ∑
e:sS(e)=s

exp
�

βk+1[s
E]+πk+1[u]+

+πk+1[c]
o

(6)

wheresS, sE , u andc depend one. The decoder must eval-
uate expressions like:

a = log

"
L

∑
i

expfaig

#
: (7)

This type of relation could be approximated with the max-
imum of ai; better performances are obtained with the fol-
lowing routine:

a(1) = a1

a(l) = max(a(l�1)
;al)+

+ log[1+exp(�j a(l�1)�al j)] l = 2�L

a � a(L)

The exponential function is mapped to a look-up table.
Equation 6 describes a backward recursion and it implies

that all symbols are received before starting the decoding
procedure. This is not acceptable in continuous transmis-
sions and then the modification described in [8] has been
adopted: the decoder operates on a finite length (NDP) of
received samples. The journey metricsβ are initialized at
stepk as

βk(s) = constant 8s (8)

and the equation 6 is executed from stepk to stepk�NDP.
Simulations have shown that the needed value ofNDP is
equal to 6� 7 times the logarithm of the number of states
N.

3. High speed SISO architectures

The direct implementation in a VLSI architecture of
equations 3 to 6 implies the allocation of RAM memories
to store the branch metrics (π) and the journey metrics (α
andβ) and ACS (Add Compare Select) modules to calcu-
lateα, β, πk(c;O) andπk(u;O). It is worth noting that equa-
tion 5 describes a forward recursion, where newα metrics
are evaluated from the previous ones; on the contrary equa-
tion 6 works in backward direction so requiring the storage
of the received branch metrics for NDP steps. So, while
equation 5 implies that each new evaluatedα depends on
the complete history of the previously received samples, the
β metrics has a finite memory of NDP samples.

In order to achieve high throughput values two main im-
plementation problems must be solved.

1. the use of RAM memories for metrics storage must
be avoided as the RAM access time tends to be the
bottleneck of the decoder;

2. the implementation of equation 5 must be modified as
it introduces a feedback loop in the decoding process:
if this loop is not broken, any speed-up advantage can-
not be obtained by pipelining.

Shift register π
π

O
utput A

C
S

(c;O)
(u;O)π

π
(u)

Init. β1

Init. α 2α 1

Processorα

βProcessor

2β βNDP

NDPα

(c)

Figure 2. Architecture of the SISO module

The first problem is solved by replacing memories with
shift-register modules, which guarantee higher speed. Con-
cerning the second problem, the algorithm has been slightly
modified so that bothα andβ recursions work on a finite
window of NDP samples, starting from the initialization
given in equation 8. As consequence of this modification
equations 5 and 6 result in a continuous decoding process
without feedback loop; the speed of this process can be
strongly increased by using pipelining.

The entire SISO architecture is described in Figure 2: it
includes a shift-register module and three processors. The
first processor elaborates the journey metricsα (processor
α); the second one calculates the journey metricsβ (proces-
sor β); these two blocks receive the input probabilitiesπ(c)
andπ(u) and provide the journey metrics to the last module,
that computes the output probabilitiesπ(c;O) andπ(u;O).
The shift-register module (SRM) has the function of sup-
plying the branch metricsπ(c) andπ(u) to the processing
units at the proper times. The length of the shift register is
a linear function of the latency of theα andβ sections.

The processorsα andβ are composed ofNDP identical
sections connected in cascade.

Each section of modulesα andβ is composed ofN Add-
Compare-Select (ACS) blocks, whereN is the number of
states. A block diagram for the ACS units is reported in
Figure 3. The number of compare operations is equal to the
number of transitions that lead to or originate from a state.
TheAdd part of each ACS block includes two adders: the
first one sumsπ(u) and π(c) while the second one com-
pletes the operation adding the journey metricα or β to the
first partial result.

The first adder operates on the branch metrics, while the
second one adds the journey metric contribution. It is pos-
sible to prove that, using a two complement representation
for all quantities, overflow problem can be neglected [10],
provided that the final result of the Add operation is repre-
sented with three additional bits with respect to the branch
metrics.

π(c)

in
in

π(u)
(c)π

α
β

α
π

in
inβ

β
αout

Add

Log

(u)

out
Mux

Log

Compare-Select

Log

Mux

Mux

+

∆

+

∆

+

∆

+

+

+

+

Figure 3. Block diagram of an ACS module

The Compare and Select operations are achieved from a
binary-tree structure: each node of this structure compares
only two journey metrics. The compare operation is simply
implemented by a subtracter, while the selection operation
must evaluate expressions like:

a = maxfa1;a2g+ log[exp(�ja1�a2j)] (9)

The choice of the maximum is executed by a multiplexer
driven by the sign of the difference calculated during the
compare operation. The logarithmic correction is evaluated
by a combinatorial net.

It is evident that the most important constituent element
of the ACS blocks, and thus of the entire SISO module, is
the adder. Several types have been analyzed and in partic-
ular carry propagate, carry look-ahead, Brent-and-Kung’
and Sklanski’ adders [11].

The structure of the ACS is strongly dependent on the
choice of this component. The carry-propagate adders are
very simple, but they require pre-skew and de-skew blocks
because they provide the bits of the result with different la-
tencies. These blocks increase the cost of the ACS modules
and, because of their high latency, they increase the length
(and thus the cost) of the shift-registers. Brent-and-Kung’
and Sklanski’ adders present an higher latency than carry
look-ahead adder; this backdraw is balanced by an higher
regularity in their structure and by a lower fan-out.

The equations 5 and 6 imply the sum of the input prob-
abilities π(c) and π(u) related to the same instant k and
the same transition e: in order to reduce the number of the
adders, branch metrics have been added only one time at the
input of the SISO module. Furthermore, the cost of SRMs
is reduced as the result of this modification, because only
one probability is stored instead of two.

A cost analysis of the whole SISO module has been
done. It has been performed for different values of the
code and architectural parameters: number of states, num-
ber of symbols of encoder inputs and outputs, number of

0

10

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25

T
ot

al
 c

os
t (

m
m

^2
)

Normalized throughput

’pipe1’
’pipe2’
’pipe3’
’pipe4’
’pipe5’
’pipe6’
’pipe7’
’pipe8’
’pipe9’

’pipe10’

Figure 4. Cost vs Throughput for a code with
rate 1/2 and 4 states.

bits for the representation of the metrics, number of levels
of pipelining, type of the adders and throughput.

As an example of the performed study, in figure 4 the
cost versus throughput is reported for a code with rate 1/2,
four states, using 9 and 7 bits to represent respectively jour-
ney and branch metrics and using Sklanski’ adders. Costs
figures are given for a 0.7µm technology library. The differ-
ent curves are for different values of the number of pipelin-
ing stages; the points along the same curve are related to
architectures where reduced numbers of α and β sections
are shared among the iterations. The highest throughput is
reached with 10 pipelining levels per section and with no
sharing of resources.

4. The architecture of the whole decoder

The encoding network is composed of two convolutional
encoders with four states and rate 1/2. They are connected
in a serial concatenation separated by an interleaver that op-
erates on single bits and not on the entire encoded words.
The first encoder (outer encoder) provides two bits per each
bit generated by the source: thus the second encoder (in-
ner encoder) must operate at double throughput. A block
diagram of the decoder is shown in figure 5.

The decoder includes two SISO modules separated by
the interleaver I (identical to that used in the encoding net-
work) and the de-interleaver I�1, which performs the in-
verse interleaving function. These last two blocks are im-
plemented as external memories. It is worth noting that an
interleaver implemented as a single RAM would became the
system bottleneck, due to the access time limitation; how-
ever a properly designed interleaving permutation can be
mapped to more RAM memories to be addressed in paral-
lel, so increasing the overall interleaver speed.

(u)

SISO 1

π(c)

π(c;O) π

π(u;O)

Outer decoder

I

I
-1

probabilities
A priori

Output
probabilities

(u)

SISO 1

Inner decoder

π(c)

π(c;O) π

(u;O)πllr

Figure 5. Block diagram of the decoding net-
work

The a priori probabilities indicated in the picture are not
usually provided, so that the outer decoder can be simpli-
fied; the π(c;O) of the inner decoder are not used and thus
the correspondent ACS module can be dropped.

Inteleaver and de-interleaver operate on probabilities re-
lated to single bits (logarithmic likelihood ratio, llr) while
SISO modules process quantities related to the encoded
words: interfacing blocks are then needed. To obtain π(c)
and π(u) the following equations have been implemented:

π(u = 0) = 0; π(u = 1) = llr(u0)

π(c = 00) = 0; π(c = 01) = llr(c0)

π(c = 10) = llr(c1); π(c = 11) = llr(c0)+ llr(c1)

while the new llr come from:

llrout(u) = π(u = 0)�π(u = 1)� llrin(u)

llrout (c0) = max�fπ(c = 00); π(c = 10)g+

�max�fπ(c = 01); π(c = 11)g+

� llrin(c0)

llrout (c1) = max�fπ(c = 00); π(c = 01)g+

�max�fπ(c = 10); π(c = 11)g+

� llrin(c1)

Likewise to the encoder, the rate of the inner decoder
must be double with respect to the outer decoder: thus
the two SISO modules must be implemented with differ-
ent schemes. In order to achieve the best performance, the
inner decoder has been implemented with the full speed ar-
chitecture, without any processor sharing. Differently, the
outer decoder uses a folding technique where the number of
sections in the α and β processors has been halved and each
processor is shared among two iterations.

5. The VLSI implementation

In order to achieve the maximum throughput, the dy-
namic logic family TSPC (True Single Phase Clocking) [6]

has been used to implement the decoder. A library com-
posed of required basic cells has been designed and each
cell has been described at two levels: electrical level and
behavioral level.

Using the 0.5µm MIETEC technology, the library has
been designed and then simulated with HSPICE. After tran-
sistor size optimization, all cells have reached the frequency
of 1 GHz; the maximum width of the transistors was 1.6µm.

The description at the behavioral level has been done us-
ing VHDL; timing constraints have been included using the
VITAL standard library, which allows to simulate wire de-
lays and cell intrinsic delays; furthermore it allows to verify
that the timing constraints (set-up time, hold time, maxi-
mum frequency) have been met.

Concerning the number of quantization bits for the met-
rics, the standard solution of 4 bits for the soft inputs (llrs)
has been chosen; with this choice, branch metrics π(c) and
π(u) need 5 bits, while the journey metrics α and β need 8
bits.

From the cost analysis of ACS sections and shift-register
modules in the case of TSPC implementation, the Sklan-
ski’ adder results the best possible choice: the advantage in
terms of transistors is equal to 10% with respect to Brent-
and-Kung’ adders and 20% with respect to carry look-ahead
adders.

Since the synthesis tools do not support dynamic logic
libraries like TSPC, this operation has been executed man-
ually. Thus the entire outer decoder architecture has been
implemented and a VHDL functional simulation has been
run using Leapfrog.

The cost of whole decoder, in terms of number of tran-
sistors, has been evaluated. The outer and inner decoders
need about 235 and 340 thousands transistors respectively,
for a global cost of 575,000 transistors. The critical path of
the synthesized decoder shows a delay lower than 1 ns.

Assuming a clock frequency f0 equal to 1 GHz, ten de-
coding iterations allow a data rate of 50 Mbit/s.

6. Conclusions

In this paper we present the VLSI implementation of a
turbo decoder with high performance in terms of through-
put. The whole system has been verified by VHDL simula-
tions. A library of TSPC cells has been created and HSPICE
simulations show that the decoder is able to operate at the
frequency of 1 GHz: this implies that, with 10 iterations, a
throughput of 50 Mbit/s can be reached.

References

[1] C. Berrou, A. Glavieux, P. Thitimajshima, “Near
Shannon limit error correcting coding and decoding:

Turbo codes” , Proc. 1993 Inter. Conf. Commun., pp.
1064-1070, May 1993.

[2] R. Garello, R. Maggiora, G. Montorsi, P. Coccia,
S. Benedetto, A. Serra, “DSP implementation of turbo
decoders for satellite communications” , Proceedings
of Sixth International Workshop on Digital Signal Pro-
cessing Techniques for Space Applications, DSP98,
Noordwijk, The Netherlands, September 1998, P.1.

[3] T. Sovigner, A. Friedmann, M. Öberg, P. Siegel,
R. E. Swanson, J. K. Wolf, “Turbo codes for PR4: Par-
allel Versus Serial Concatenation” , accepted to Proc.
1999 Inter. Conf. Commun., Vancouver, Canada, June
1999

[4] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara,
“Soft-input Soft-output modules for the construction
and distributed iterative decoding of code networks” ,
European Transactions on Telecommunications , vol.
9, No. 2, March-April 1998.

[5] S. Benedetto, G. Montorsi, “ Iterative decoding of se-
rially concatenated convolutional codes” , Electronics
Letters, July 1996.

[6] Y. Jiren, I. Karlsson, C. Svensson, “A true single-
phase-clock dynamic CMOS circuit technique” , IEEE
journal of Solid-State Circuit, vol. SC-22, pp. 261-
266, 1983.

[7] G.D. Forney Jr., “Concatenated Codes” , Massachus-
setts Institute of Technology, Cambridge, Massachus-
setts, 1966.

[8] S. Benedetto, D. Divsalar, G. Montorsi, F. Pollara,
“Soft-output decoding algorithms for continuous de-
coding of parallel concatenated convolutional codes” ,
The telecommunication and data acquisition progress
report 42-124, October-December 1995, Jet Propul-
sion Laboratory, Pasadena, California, pp. 63-87,
February 1996.

[9] L.R. Bahl, J. Cocke, F. Jelinek, J. Raviv, “Optimal De-
coding of Linear Codes for Minimizing Symbol Er-
ror Rate” , IEEE Transaction on Information Theory,
pp. 284-287, March 1974.

[10] G. Masera, G. Piccinini, M. Ruo Roch, M. Zamboni,
“VLSI Architecture for Turbo Codes” , IEEE Transac-
tions on VLSI, September 1999.

[11] M. Shoji, CMOS digital circuit technology, Engle-
wood Cliffs, New Jersey, Prence-Hall, 1988.

	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

