
Free MDD-Based Software Optimization Techniques

for Embedded Systems

Chunghee Kim Luciano Lavagno Alberto Sangiovanni-Vincentelli
Research Institute of Eng. and Tech., DIEGM, Universita' di Udine Dept. of EECS, U. C. Berkeley

Hanyang Univ., KOREA Via delle Scienze 208 Berkeley, CA94720

(Visiting Researcher at U. C. Berkeley) I-33100 Udine, ITALY

Abstract

Embedded systems make a heavy use of software to per-
form Real-Time embedded control tasks. Embedded software
is characterized by a relatively long lifetime and by tight
cost, performance and safety constraints. Several super-
optimization techniques for embedded softwares based on
Multi-valued Decision Diagram (MDD) representations have
been described in the literature, but they all share the same
basic limitation. They are based on standard Ordered MDD
(OMDD) packages, and hence require a �xed order of evalu-
ation for the MDD variables on every execution path. Free
MDDs (FMDDs) lift this limitation, and hence open up more
optimization opportunities. Finding the optimal variable or-
dering for FMDDs is a very di�cult problem. Hence in this
paper we describe a heuristic procedure that performs well
in practice, and is based on FMDD cost estimation applied
to recursive cofactoring. Experimental results show that our
new variable ordering method obtains often smaller embedded
software than previous (sifting-based) methods.

1 Introduction

Embedded systems include hardware and software compo-
nents operating together to achieve a common goal. Real-
time embedded systems are often characterized by the need
for running several tasks on a limited set of processing units
and react continuously to their environment at the speed of
the environment [1, 2]. These systems are widely used in ve-
hicle control, consumer electronics, communication systems
and so on.
Design of an embedded system includes design speci�ca-

tion, validation and hardware and software synthesis. Em-
bedded software is characterized by tight cost, performance
and real-time constraints. For this reason, embedded soft-
ware design makes heavy use of Finite State Machine-like
speci�cations, and requires better compiler optimization al-
gorithms than general-purpose computing.
Binary Decision Diagrams (BDDs) and Multi-valued De-

cision Diagrams (MDDs) (a generalization of BDDs) have
shown to be a convenient notation to represent and optimize
decision-intensive embedded software modules, since they are
a representation for Finite State Machines (FSMs) that is
quite close to the execution model on an embedded proces-
sor. Several super-optimization techniques for FSMs based
on MDD representations have been described in the litera-
ture [1, 3, 4]. However, they all share the same basic limita-
tion. They are based on standard Ordered MDD (OMDD)
packages, and hence require a �xed order of evaluation for
the MDD variables.
In this research, we have developed a software optimization

technique for embedded softwares based on the use of Free

Multi-valued Decision Diagrams (FMDDs) [5]. An MDD is
called FMDD if each variable is tested at most once on each
path. So an OMDD is an FMDD with the property that on
each path the avriables are tested in a prede�ned order. It
was shown that FMDDs provide a canonical representation
and allow e�ective solutions of the basic tasks in Boolean
manipulation similarly as the well known OMDDs do [5, 6].

We evaluated our algorithms by embedding them in the
publicly available tool POLIS [1]. The POLIS system
is intended for control dominated embedded systems. It
uses a system speci�cation based on a network of extended
asynchronous FSMs called Co-design Finite State Machines
(CFSM). It currently synthesizes software from a CFSM us-
ing an OMDD as an intermediate representation. Moreover,
it o�ers software size and performance estimation capabili-
ties.
All known MDD-based software synthesis approaches are

based on heuristically minimizing the size of the MDD, be-
cause for control-dominated applications1 it tracks well the
size of the �nal software implementation. It is well-known
that the size of an MDD representation of a function (in
this case the sequential function relating embedded software
inputs and outputs) depends heavily on the order of the vari-
ables. Unfortunately, �nding an optimum variable ordering
even for the sub-class of OMDDs is well known to be a co-
NP-complete problem [7].

Of course, things become even worse when one considers
the broader class of FMDDs. This requires the introduction
of heuristic techniques to determine the best variable order
along every computation path. In this paper we present such
a heuristics, based on the key observation that in an FMDD
graph recombination near the leaves is much less frequent
than in an OMDD , essentially due to the di�erent orders
that make sharing much more di�cult. Hence we propose
an e�cient FMDD size estimation technique, given a partial
variable ordering starting from the root, that conservatively
assumes no recombination when estimating the size of the
portion still to be built.

We show experimentally that our heuristics performs bet-
ter than OMDD-based techniques with an acceptable com-
pilation time. We also implemented an exact (but very ex-
pensive) ordering algorithm and we show that the heuristic
technique gives identical results on small examples, where
both techniques are applicable.

The organization of this paper is as follows. The POLIS
design process and previous work are brie
y discussed in Sec-
tion 2. The new variable ordering technique is described in
Section 3. Experimental results and conclusions are given in
Sections 4 and 5.

1I.e., applications in which the complexity of the decision pro-

cess that determines the outputs of the embedded system domi-

nates over the numerical computations.



-1 BEGIN:
1 ASSIGN: o st=2
2 TEST: *RESET==1
3 ASSIGN: o WHEEL PULSES=0
4 ASSIGN: o OC3 START=1024
5 ASSIGN: *o WHEEL PULSES=1
6 ASSIGN: o counter=0
7 ASSIGN: *o OC3 START=1
0 END

2 TEST: *RESET==0
8 TEST: st==2
9 TEST: *OC3 END==1
10 ASSIGN: o WHEEL PULSES=counter
goto 4

9 TEST: *OC3 END==0
11 TEST: *WHEEL PULSE==1
12 ASSIGN: o counter=counter+1
goto 0

11 TEST: *WHEEL PULSE==0
goto 0

8 TEST: st==1

goto 3

Figure 1: An s-graph example.

2 Previous work

2.1 Software Synthesis in POLIS

In the POLIS design process [1], an abstract design descrip-
tion in the form of communicating CFSMs is partitioned
and implemented into software and hardware. The CFSMs
are extended Finite State Machines2 communicating asyn-
chronously by means of bu�ers. The internal representa-
tion of software in POLIS is a restricted Control-Data Flow
Graph (CDFG) called s-graph. It is an extended decision di-
agram (Directed Acyclic Graph) with a source (BEGIN), a
sink (END), and two types of internal nodes. A TEST node
evaluates an expression depending on the CFSM input and
state variables and branches to one of several child nodes de-
pending on the result. An ASSIGN node evaluates a function
and assigns its result to a CFSM output or state variable.
Figure 1 shows a simple s-graph example, describing part

of a dashboard controller. TEST nodes (e.g., the TEST node
number 2, checking if input *RESET has value `1' or `0') are
represented by two rows, identi�ed by the same node num-
ber. The CFSM represented by this s-graph computes the
number of events on input *WHEEL PULSE that occur be-
tween two events on input *OC3 END3. It uses state vari-
ables \ st" (with symbolic values `1' and `2') and \counter"

(an integer). Event *OC3 END arrives periodically4, and
its occurrences are accumulated in state variable \counter".
The CFSM outputs the current value of \counter" on output
o WHEEL PULSES, and signals this fact by assigning `1' to
the corresponding presence bit *o WHEEL PULSES, every
time *OC3 END arrives.
An algorithm taking an OMDD representation of the tran-

sition function of the CFSM and obtaining an s-graph from
it is described in [1]. Assuming that functions computed by
TEST and ASSIGN nodes have almost the same execution
time and size, the algorithm minimizes heuristically:

� execution time, since each function on which the CFSM
output depends is evaluated at most once for each exe-
cution of a CFSM transition,

2FSMs with transition and output functions operating on inte-

ger variables using arithmetic and relational operators.
3Variables with a `*' denote event presence when they have a

value of 1, while variables without a `*' denote event values.
4It is generated by a timer CFSM that receives as input event

*o OC3 START and waits for 1024 clock cycles before producing

*OC3 END.

� code size, since code synthesis heuristically looks for the
ordering of evaluation that yields a small MDD size5.

After the s-graph is constructed and optimized, it is trans-
lated into a C function. A TEST node is translated into an
\if" or \switch" statement, and an ASSIGN node is trans-
lated into an assignment statement. The generated C pro-
gram has the same structure as its original s-graph [8].

2.2 MDD Minimization

The Ordered Binary Decision Diagram (OBDD) [7] and
its generalization to multi-valued variables (OMDD) have
proven to be useful in many applications as an e�cient data
structure for representing and manipulating Boolean func-
tions. BDDs and MDDs have been used in a wide variety of
CAD applications including logic synthesis and veri�cation.
Since �nding the best variable order is co-NP complete,

several heuristics have been developed. Three kinds of ap-
proaches have been used to �nd a good variable order.

1. Methods based on the circuit topology [9, 10, 11, 12]:

Several heuristics have been developed and have been
shown to be practical in real circuits. These methods
are based on the several network topologies [9, 10, 12]
and presence of a don't care sets [11].

2. Iterative improvement methods [13, 14]:

This approach is based on variable exchange from the
initial variable order and is e�ective (generally better
than topology-based methods), but the results depend
on the initial variable orders.

3. Exhaustive methods based on branch and bound [15,
16]:

The key part of these algorithms is a lower bound tech-
nique to �nd optimum solutions. But, these exact meth-
ods are so far applicable to the functions with less than
20 variables and more than 20 in special cases.

In many cases, including software synthesis, FMDD-based
techniques can be superior than OMDD-based techniques. In
contrast to OMDDs, FMDDs allow more e�cient represen-
tations of Boolean functions. For example, FHS-function,
indirect storage access function, and hidden weighted bit
function can be represented by quadratic size FMDDs while
OMDD-representations of these functions are of exponential
size [6].
Figure 2 shows two possible implementations of a portion

of an s-graph. In the top half, the order of the two variables
OR 43 and AND 38 is di�erent on each path in the FMDD.
In the bottom half, even the best OMDD ordering yields a
larger s-graph, due to the need to keep the same ordering on
all paths.
Unfortunately, most of the work on variable ordering has

focused on the simpler problem for OMDDs. For example,
even though [6] proposed an FBDD-based data structure for
Boolean manipulation, its variable ordering technique was
based on a modi�cation of one developed for OBDDs.

3 Variable Ordering for Free

MDDs

In this work we developed a new variable ordering method
for FMDDs, based on a top-down recursive paradigm fol-
lowed by a sub-graph merging step. The approach is based

5Generally this is based on algorithms such as sifting [14] that

are not exact, but yield very small MDDs in a reasonable amount

of compilation time.



�




�

	NEQ2

�




�

	OR43

�




�

	AND38

�




�

	
AND38 assign3

�




�

	
OR43

assign1 assign2 assign4 assign5

�
�

�
��+

Q
Q
Q
QQs

?

@

@
@R

�

�
�	

@

@
@R

�

�
�	

@

@
@R

�

�
�	

@

@
@R

0 1

0 1 0 1

0 1 0 1

�




�

	NEQ2

�




�

	
OR43

�




�

	OR43

�




�

	AND38

�




�

	AND38

�




�

	AND38

assign1 assign2 assign4 assign3 assign5

�
�

�
��+

Q
Q
Q
QQs

?

@

@
@R

�

�
�	

@

@
@R

�

�
�	

@

@
@R

�

�
�	

A

A
AU

�

�
��

@

@
@R

0 1

0 1 0 1

0 1 1 0 0 1

Figure 2: Example of an FMDD and OMDD.

on a heuristic estimation of the size of the MDD obtained by
selecting a new variable for the current recursion level, as-
suming that no sub-graph merging will occur further down.
The new algorithm will be illustrated by using the example

shown in Figure 1. The OMDD order of the four input vari-
ables is *RESET, st, *OC3 END and *WHEEL PULSE6.
In this speci�c example all input variables are tested before
any output variable is assigned, but in general both the orig-
inal algorithm of [1] and our new algorithm can interleave
inputs and outputs (as long as an output appears after its
support [1]).

3.1 Nodes Clustering

In order to reduce the complexity of the problem, we heuristi-
cally merge several ASSIGN nodes executed under the same
set of input conditions into a single cluster . For example,
the ASSIGN nodes in Figure 1 are merged into the following
�ve clusters:

Cluster1 : o st=2
Cluster2 : o WHEEL PULSES=0
Cluster3 : o OC3 START=1024

*o WHEEL PULSES=1
o counter=0
*o OC3 START=1

Cluster4 : o WHEEL PULSES=counter
Cluster5 : o counter=counter+1

Note that the string of ASSIGN nodes 3 to 7 in Figure 1
is split into two clusters, due to the sub-graph sharing from
node 4 (its predecessors are nodes 3 and 10). This essentially
means that our heuristics will never increase the amount of

6Variables *RESET, *OC3 END and *WHEEL PULSE are

binary-valued, and variable st has symbolic values `1' or `2'.

ASSIGN node sharing with respect to the initial s-graph pro-
duced by POLIS. But the main advantage of FMDDs is the
ability to generate \tree-like" s-graphs (without much recom-
bination) that are, as we will show, generally smaller than
the s-graphs generated from OMDDs.
In the rest of the paper we will represent the transition

function before the construction of the FMDD in the form of
a two-level execution table, that associates a cluster number
with an input cube. An input cube is an assignment of a
value or a `-' (meaning don't care) to the input variables
of the CFSM. For example, the ASSIGN statements merged
into Cluster 3 are executed by the CFSM under the following
conditions (disjoint input cubes) on the values of variables
*RESET, st, *OC3 END and *WHEEL PULSE: either \1 -
- -", or \0 2 1 -", or \0 1 - -".
On the other hand, Cluster 1 is executed no matter what is

the value of the input variables7. This means that it can be
executed immediately (as the �rst node of the s-graph after
the BEGIN node), without examining any input variable.
This corresponds to choosing output variable o st as the �rst
variable in the FMDD order.

3.2 Variable Ordering

Figure 3(a) shows the execution table for the example shown
in Figure 1 after Cluster 1 has been chosen as the �rst node
of the s-graph.
Our recursive procedure operates on an execution table as

follows.

1. Minimize (using standard multi-valued two-level mini-
mization techniques [17]) the current execution table.

2. If there exists a line with all input don't cares, the cor-
responding output Cluster can be added to the s-graph,
and the procedure is called again after removing the
rows corresponding to this Cluster.

3. Otherwise, if there exists an input variable that is the
only care column for some output clusters, then this
variable is selected. The execution table is split in as
many sub-tables as the number of values of the variable
(by cofactoring it with respect to the variable), and the
procedure is repeated recursively.

4. Otherwise, the input variable with the minimum esti-
mated cost is selected (see below for a more precise de-
scription of this cost function). The execution table is
split in as many sub-tables as the number of values of
the variable (by cofactoring it with respect to the vari-
able), and the procedure is repeated recursively.

Step 4 is the key to our heuristic procedure. Output
Clusters cannot be chosen at this step, because there is not
enough information in the variables tested so far in the re-
cursion to determine if they can be executed or not (their
support has not been selected yet). So we used a cost based
variable selection method.
Our heuristic sorts variables according to the number of

fewer don't cares and then slightly modi�es the sorted vari-
able order to search a large solution space.
This variable ordering technique based on variables sorting

is reasonable because the size of a generated s-graph depends
on the number of sub-execution tables. If we chose an input
variable with many don't cares in the corresponding execu-
tion table column, this would cause many rows to be dupli-
cated in the cofactors. Since there is little recombination in

7The CFSM performs an initial transition from state 1 to state

2 and remains in state 2 forever.



a b c d

2 1 � � �

2 0 1 � �

3 1 � � �

3 0 2 1 �

3 0 1 � �

4 0 2 1 �

5 0 2 0 1

a = �RESET

b = st

c = �OC3 END

d = �WHEEL PULSE

(a) An execution table for the clusters in Figure 1.

b c d

2 1 � �

3 2 1 �

3 1 � �

4 2 1 �

5 2 0 1

for a = 0

(b) A divided sub-table for a = 0

when variable a is selected.

a b d

2 1 � �

2 0 1 �

3 1 � �

3 0 1 �

5 0 2 1

for c = 0

a b d

2 1 � �

2 0 1 �

3 � � �

4 0 2 �

for c = 1

(c) Divided sub-tables for c = 0 and c = 1

when variable c is selected.

Figure 3: An execution table and variable selections.

FMDDs, this duplication will (most likely) not be recovered
later.
Let us consider now more precisely the cost function used

to sort variables on the current execution table. We sort
variables according to the following cost:

costvariable sort(v) =
P

f
qf;v

where f ranges over all the cubes of the table. The value
of qf;v is 1 if the variable has a de�ned value in the cube,
and the number of values of the variable otherwise. As
mentioned above, this heuristically estimates the number of
copies of the cube generated if v is selected for the recur-
sion. For example in Figure 3(b), costvariable sort(b) = 5 and
costvariable sort(c) = 7.
After variable sorting, we use a heuristic technique to im-

prove the top variable choice, based on an idea similar to
sifting. We move each variable in the order within a speci�ed
range (usually from 5 to 10, in order to keep an acceptable
execution time), and for each order we recursively decompose
the current execution table and estimate its FMDD size. The
order with the minimum cost is saved and the �rst variable
in this order is selected.
The size cost costsize estimation(gr) for an s-graph gr with

variable order r is estimated as follows.

costsize estimation(gr) =
jTEST nodes in grj+ jASSIGN nodes in grj

Rand Polis New

Examples Size Size CPU Size CPU

(nodes) (nodes) (sec) (nodes) (sec)

belt1 149 61 0.1 57 0.1

eng cross display 149 93 0.1 83 0.1

spd cross display 145 91 0.1 79 0.1

controller 107 80 0.1 65 0.1

arbiter 238 106 0.1 112 5.0

bat diag 106 55 0.1 54 0.1

curve 898 214 2.0 211 15.0

curve front 898 214 2.0 211 15.0

curve rear 1322 300 6.0 255 52.0

driver 973 181 1.0 187 86.0

long acc der 47 44 0.1 43 0.1

long spd cal trs 119 86 0.1 85 0.1

long spd cal val 190 99 0.1 89 0.1

long spd diag acc 530 86 1.0 86 18.0

long spd diag par 161 40 0.1 41 0.1

long spd strat 231 174 0.1 66 1.0

mot ctrl damage 318 104 0.1 104 10.0

speed sens 74 46 0.1 45 0.1

steer ang cal init 704 170 1.0 122 24.0

steer ang cal val 1716 202 1.0 193 59.0

steer ang corr 651 167 2.0 176 19.0

steer ang diag 263 93 0.1 101 4.0

steer speed cal 186 76 0.1 76 0.1

steer wheel 807 185 1.0 158 12.0

ver acc diag 137 54 0.1 52 0.1

belt2 127 46 0.1 38 0.1

cross display 113 80 0.1 69 0.1

fuel 126 52 0.1 50 0.1

timer1 4593 97 4.0 97 11.0

belt controller 73 48 0.1 48 0.1

timer2 70 40 0.1 39 0.1

Total 16221 3384 23.1 3092 332.7

Table 1: Comparison with POLIS (the �ve groups

of examples are \DAC DEMO", \TLC", \MCA200",

\DASHBOARD" and \BELT").

The size of TEST and ASSIGN nodes in gr is computed
using the techniques in [1]. The number of test nodes is
computed from the number of sub-execution tables and the
number of assign nodes can be calculated during the recursive
execution-table division.
If a variable is selected, two or more sub-execution tables

will be generated according to the possible variable values.
If a selected variable can have values `0', `1' or `2', three sub-
execution tables have to be generated (one for each value).
For example, if we select variable a in Figure 3(a), we have

two recursions (sub-cases):

� for a=`1' we can immediately select and execute Clus-
ters 2 and 3.

� for a=`0' we generate the table shown in Figure 3(b).

If variable c had been selected in Figure 3(a), two sub-
execution tables would be generated for c=`0' and c=`1', as
shown in Figure 3(c). In the �rst recursion, variable a would
be selected next. In the second recursion, Cluster 3 and
variable a would be selected next.
At the end of the recursive procedure, we obtain an FMDD

that is a tree. Hence we try to merge isomorphic sub-graphs
as much as possible, starting from the leaves [7].



4 Experimental Results

The new variable ordering algorithm for s-graph optimiza-
tion has been implemented in C on a DEC5000 workstation.
We have tested our algorithm on several realistic embedded
system examples available on the POLIS web site [18]. The
size shown in all the tables is the number of s-graph nodes,
that is known to correlate well with code size. The code exe-
cution time on the target processor is practically not a�ected
by the new optimization procedure, since both the old and
the new technique test each input and assign each output at
most once along every execution path. More precise data on
actual code size and execution time will be provided in the
�nal version.
The �rst column gives the name of the CFSM. We used

�ve groups of examples which are \DAC DEMO", \TLC",
\MCA200", \DASHBOARD" and \BELT" on [18]. The sec-
ond column gives the size of the generated s-graph, obtained
with the random variable order provided in the POLIS input
�le.
The third column gives the s-graph size as obtained by

POLIS with the \sift" algorithm [14] (it sifts one variable
at a time up and down and freezes it in the position where
the MDD size is minimized). The �fth column gives the s-
graph size as obtained by our new algorithm. These results
show that the size of the s-graph generated by our algorithm
with Free MDDs is smaller than that generated by using
ordered BDDs. Note how the results of our new algorithm
are especially better on some large s-graphs (e.g., curve rear,
long spd strat). Our FMDD construction method is just a
heuristics, and hence it is not automatically guaranteed to
obtain better results than OMDD-based ones (see, e.g., the
CFSM \arbiter").
The fourth and sixth columns show the s-graph generation

times (in seconds) required by the two methods. Finding
the variable ordering and building the s-graph takes only a
few CPU seconds for most of the examples (52 seconds on
the largest example, curve rear). Our clustering method is
also e�ective in order to reduce the execution time without
increasing the s-graph size. For example, the \curve rear"
example would take 163 CPU seconds without clustering.
For the sake of comparison, we also implemented an ex-

act FMDD variable ordering algorithm, based on exhaustive
search. It could be applied to only the smallest CFSMs of
Table 1, namely long acc der, long spd cal val, speed sens,
steer speed cal, ver acc diag. In all these cases the cost of
the heuristic and exact solution are exactly the same.

5 Conclusions

We have described a new variable ordering technique for
MDD-based software synthesis from Codesign Finite State
Machines. The technique uses Free MDDs, that do not con-
strain the variable ordering along every execution path to be
the same, in order to achieve near-optimum code size with
maximum execution speed for a given CFSM speci�cation.
It is based on a heuristic cost measure that minimizes the
number of row splittings in a tabular representation of the
CFSM transition function.
Our algorithm has been implemented and applied to Real-

Time reactive embedded system examples. The experimental
results show that the new algorithm is more e�ective than
the previous algorithm, in particular when applied to larger
examples. It also achieves optimum results on small exam-
ples to which exact methods can be applied.
In the future, we are planning to develop a more accu-

rate cost estimation procedure for each node during variable
selection. We will also try to use our technique in other ap-
plication areas of FMDDs, such as formal veri�cation, pass

transistor synthesis [19], and asynchronous circuit synthesis
[20].

References

[1] F. Balarin, E. Sentovich, et. al., Hardware-Software Co-
Design of Embedded Systems - The POLIS approach, Kluwer
Academic Publishers, 1997.

[2] S. Edwards, L. Lavagno, et. al., \Design of Embedded Sys-
tems: Formal Models, Validation, and Synthesis," Proc. of
the IEEE, Vol. 85, No. 3, p. 366, March 1997.

[3] P. McGeer, K. McMillan, et. al., \Fast Discrete Function
Evaluation using Decision Diagrams," Proc. of ICCAD, pp.
402-407, 1995.

[4] P. Ashar and S. Malik, \Fast Functional Simulation using
Branching Programs," Proc. of ICCAD, pp. 408-412, 1995.

[5] J. Gergov and C. Meinel, \E�cient Boolean Manipulation
With OBDD's can be Extended to FBDD's," IEEE Trans.
on Computers, Vol. 43, No. 10, pp. 1197-1209, Oct. 1994.

[6] J. Bern, J. Gergov et. al., \Boolean Manipulation with Free
BDD's: First Experimental Results," Proc. of the European
Design and Test Conference., pp. 200-207, 1994.

[7] R. Bryant, \Graph-Based Algorithms for Boolean Function
Manipulation," IEEE Trans. Computers, Vol. C-35, No. 8,
pp. 677-691, 1986.

[8] M. Chiodo, P. Giusto, et. al., \Synthesis of Software
Programs for Embedded Control Applications," Proc. of
ACM/IEEE Design Automation Conference, pp. 587-592,
1995.

[9] S. Malik, A. Wang, et. al., \Logic Veri�cation using Binary
Decision Diagrams in a Logic Synthesis Environment," Proc.
of ICCAD, pp. 6-8, 1988.

[10] M. Fujita, H. Fujisawa and Y. Matsunaga, \Variable Order-
ing Algorithms for Ordered Binary Decision Diagrams and
Their Evaluation," IEEE Trans. on Computer-Aided Design,
Vol. 12, pp. 6-12, Jan. 1993.

[11] Y. Hong, P. Beerela et. al., \Don't card-based BDD Mini-
mization for Embedded Software," Proc. of ACM/IEEE 35th
Design Automation Conference, pp. 506-509, 1998.

[12] H. Fujii, G. Ootomo and C. Hori, \Interleaving Based Vari-
able Ordering Methods for Ordered Binary Decision Dia-
grams," Proc. of ICCAD, pp. 38-41, 1993.

[13] N. Ishiura, H. Sawada, and S. Yajima, \Minimization of Bi-
nary Decision Diagrams Based on Exchanges of Variables,"
Proc. of ICCAD. pp. 472-475, 1991.

[14] R. Rudell, \Dynamic Variable Ordering for Ordered Binary
Decision Diagrams," Proc. of ICCAD, pp. 42-47, 1993.

[15] S. Friedman and K. Supowit, \Finding the Optimal Variable
Ordering for Binary Decision Diagrams", IEEE Trans. on
Comput., Vol. C-39, No. 5, pp. 710-713, May 1990.

[16] R. Drechsler, N. Drechsler and W. Gunther, \Fast Exact
Minimization of BDDs," Proc. of ACM/IEEE 35th Design
Automation Conference, pp. 200-205, 1998.

[17] R. Rudell and A. Sangiovanni-Vincentelli, \ESPRESSO-MV:
Algorithms for Multiple-Valued Logic Minimization," Proc.
of Custom Integrated Circuits Conference (CICC), pp. 230-
234, 1985.

[18] See http://www-cad.eecs.berkeley.edu/�polis/.

[19] M. Tachibana, \Synthesize pass transistor logic gate by using
free binary decision diagram," Proc. of Tenth Annual IEEE
International ASIC Conference and Exhibit, New York, NY,
1997.

[20] K.Y. Yun, B. Lin, D. Dill, S. Devadas, \BDD-based synthesis
of extended burst-mode controllers," IEEE Transactions on
Computer-Aided Design, Vol.17, No. 9, pp. 782-792, Sep.
1998.


	Main
	DATE2000
	Front Matter
	Table of Contents
	Session Index
	Author Index


