
Illegal State Space Identification for Sequential Circuit Test Generation

M.H. Konijnenburg J.Th. van der Linden A.J. van de Goor
Faculty of Information Technology and Systems

Delft University of Technology, Delft, The Netherlands
E-mail: M.H.Konijnenburg@its.tudelft.nl

Abstract

Test generation for (synchronous) sequential circuits
(STPG) has a huge search space, which often prevents suc-
cessful test generation or untestability proof. In this pa-
per four new techniques are proposed to expand the known
Global Illegal State (GIS) space, in order to reduce the
search space. These techniques use the known GISes to
generate candidate GISes, which have to be proven unjus-
tifiable. This is an effective method to improve STPG per-
formance because the number of stored GISes is reduced,
saving memory and CPU time, while covering a larger part
of the GIS space. To accelerate GIS space identification,
we propose the legal state cache, to avoid useless justifica-
tion repetitions. A data-structure is proposed to reduce the
memory usage of the (G)ISes up to 10 times, and to accel-
erate GIS usage. Experimental results show a significant
improvement in fault efficiency and CPU usage.

1. Introduction

Many significant contributions to the field of STPG have
been made [1...7], yet the fault efficiencies reached often are
low and the required CPU times very large. Especially for
larger circuits, STPG results are disappointing, illustrating
STPG’s complexity. A low density of state-encoding has
been reported as the major cause of this high complexity[8].
Also in our experience, circuits generally have a low density
of encoding; a large part of the state space is functionally
not used and often the states in that part are unjustifiable.
Such states have been named Illegal States (ISes) [1,4,7,8].
ISes often can be very sparsely assigned, i.e., they have only
a few assigned entries compared to the total number of en-
tries, causing the low encoding density. Consider a BCD-
counter: it has 6 fully assigned ISes out of 16 states, which
can be covered by 2 ISes: 1X1X and 11XX; for each BCD-
counter, a circuit has two ISes with only 2 entries assigned.

This work is partially funded by Philips Electronic Design and Tools.

This paper focuses on the identification of the Global
Illegal State (GIS) space. A GIS is an unjustifiable state in
the fault-free circuit, assuming an unknown initial state of
the FlipFlops (FFs). Knowing an as large as possible part of
the GIS space helps to constrain the STPG search space to
justifiable states. As soon as a state inside the known GIS
space is reached, STPG can backtrack. This avoids fruitless
justification attempts, saving CPU time and increasing the
fault efficiency.

(G)ISes are implicitly found during STPG when justifi-
cation of some (fault-free) portion of the state fails[9][2][4].
However, the (G)ISes found in this way are rarely as
sparsely assigned as they can be (i.e., they are over-
specified), so that (too) many, less effective, (G)ISes are
stored, preventing maximal profit, and possibly causing
storage problems. Hence, efficient methods to find as ef-
fective as possible GISes, and to optimize a collection of
GISes as it grows during STPG, are essential to STPG.

Prior art on illegal states in STPG includes: GIS expan-
sion to remove over-specified entries of the known GISes,
by simply unassigning assigned entries in a GIS one by one,
and trying to justify the resulting Potential GIS (PGIS), is
proposed in DUST[3]. Justification failure of PGISes re-
sults in a reduction of the number of GISes while the known
GIS space is increased. This form of GIS expansion is
also used in DAT[4]. In addition, two GIS optimization
techniques were proposed which try to generate PGISes by
merging GISes, based on pairs or sets of similar GISes.

Methods to obtain more effective GISes prior to STPG,
have also been proposed. In [7], a process has been pro-
posed to find GISes, using implicit state enumeration based
on BDDs. Due to the use of BDDs the method is restricted
to small circuits, or partitions. In [6], three techniques are
proposed, using logic simulation of the valid states forward
in time, to find the GISes. The major drawback is that all
reachable states have to be found, in order to find any GISes.
For larger circuits this will be less efficient. In [4], we pro-
posed a simple pre-process GIS learning (called FIS in [4])
to find GISes. PGISes are generated with 1, 2, etc., assigned
entries and tried to be justified. The identified GISes are

1 1 X X X X

1 2 3 4 5 6

A
GIS

group 1

1 X 1 X X X

0 X 0 1 X X

D

E

extend group 1

merge group 1 and 2

X X X X X 0C new group formed

FF

X X X 1 0 XB group 2

FF 1,2 in group 1;GIS A associated to group 1
FF 4,5 in group 2;GIS B associated to group 2

b)

a)

Figure 1. FF-groups based on independent
GISes; FF-groups are added or extended due
to new GISes.

very effective because usually they are sparsely assigned.
In this paper we propose 4 techniques that improve or

add to the 3 techniques from [4], to find new GISes and/or
remove overspecification in existing GISes. It appeared that
the effectiveness of the techniques in [4] is highly circuit de-
pendent. We also noticed that storage and fast handling is an
issue with (G)ISes. The number of GISes can be very high,
urging for compression to limit memory usage. But this
should not significantly decrease the access-time and com-
parison speed of GISes. Therefore, we propose the concepts
of FF-groups and compressed vectors to improve storage
and handling of (G)ISes. In order to speed-up GIS discov-
ery, the Legal State cache (LS cache) is proposed to avoid
useless repetitive justification of known legal states.

The remainder of this paper is organized as follows: Sec-
tions 2 and 3 describe the concepts of FF-groups and com-
pressed vectors. Section 4 describes the proposed tech-
niques to expand the known GIS space. Section 5 describes
the LS cache. Experimental results are given in Section 6;
while Section 7 summarizes the presented ideas.

2. Groups of flipflops

An FF-group is a group of FFs. Each GIS is associated
to one FF-group. The GISes of one FF-group are depen-
dent of each other in the sense that they have common as-
signed entries. The concept of FF-groups is based on the
fact that GISes, in particular the sparse GISes, often do not
have common assigned entries. Figure 1 shows five GISes

. When GIS is stored in the GIS list, FF-group
is defined, consisting of the FFs of the assigned part of

GIS : FF and . Storage of GIS results in FF-group
(FF and FF), because GIS is independent of GIS

(the entries in GIS corresponding to the FFs in group
are all X). During STPG runs, new GISes are stored in the
GIS list, possibly resulting in changes in the FF-groups (see
Figure 1b): New FF-groups can be formed (e.g., due to GIS

), FF-groups can be extended with FF(s) (e.g., insertion of
GIS in the list results in the extention of FF-group with

FF), or two or more FF-groups can be merged, because a
new GIS is stored, that covers two or more FF-groups (e.g.,
GIS). The use of FF-groups saves CPU time in two
ways: First, if during STPG an FF is assigned a value, only
the GISes which are associated to the FF-group of that FF
have to be compared. E.g., if FF is assigned a value, only
GIS has to be checked (see Figure 1a). Second, within
a group, only the FFs of that group have to be compared
to the corresponding entries of the GISes associated to that
group. E.g., consider the two FF-groups in Figure 1a: Only
assignments on FF and have to be compared in group 1;
assignments on FF and in group 2.

3. Compressed vectors

A compressed vector (cvector) is a vector of values in
which each value (the state of one FF) consists of three (as-
suming fault independent GISes) or six (fault dependent)
bits, instead of an integer (usually 32 bits) in the case of a
regular vector. Each bit in such a value corresponds to one
of the basic values , and U. In this way each value of
a cvector is a set of basic values. Within one integer, ten
3-bit values (fault independent) or five 6-bit values (fault
dependent) can be stored, resulting in compression rates of
10 or 5 respectively. An advantage of using set-based val-
ues is that, for example, states 0 X and 1 X are merged into
a single state X, resulting in further reduced storage re-
quirements.

Cvectors reduce the storage requirements of ISes, while
in addition the comparison speed between ISes and between
the current PPI/PPO state and ISes is improved: The values
of the cvectors are compared integer-wise, so 10 or 5 values
are compared in one integer-level step.

4. GIS space discovery

In this section techniques are proposed to expand the
known GIS space by GIS identification, expansion and
merging. Based on the current GIS list, PGISes are gen-
erated which after justification failure become GISes. This
has two advantages: the new GISes each cover one or more
GISes in the list, which can be removed; and always a larger
known GIS space is obtained. In [4], we proposed three
techniques to expand the known GIS space:

T1: Expansion of GISes by generating PGISes for each
assigned entry of a GIS, by unassigning that entry. Pro-
cess Expand-Illegal-States (EIS, called MIS in [4]) executes
technique T1 on the stored GISes, and is performed between
two ATPG stages.

T2: PGIS generation from two similar GISes. This tech-
nique generates a PGIS from the common assigned fraction
of two GISes, with the different entries set to X. Process

Check-Illegal-States (CIS) additionally applies technique
T2, while searching for redundant (covered or duplicate)
GISes.

T3: PGIS generation from ranges of similar GISes. This
technique generates a PGIS based on the common assigned
fraction of a range of successively stored GISes.

Although these techniques perform well for a large class
of circuits, for many other circuits they are not or less ef-
fective, resulting in large GIS lists with many overspecified
GISes. Therefore, additional techniques are needed to bet-
ter handle these hard circuits. In the next four paragraphs,
four such new techniques are proposed.

T4: Direct expansion of a new GIS. Often GISes are
stored in the list, which would not be stored when earlier
found GISes had been expanded using T1 [4], because then
the new GISes would have been covered by these expanded
GISes. However, process EIS, which applies technique T1
is performed between ATPG stages and not immediately af-
ter new GISes are stored.

Technique T4 solves this disadvantage of process EIS:
Using a low backtrack limit (16 or 32), each new GIS that
has at least a predefined minimum of assigned entries, is
expanded by T1 immediately after this GIS is stored.

T5: PGIS from the common assigned fraction of the
range of GISes identified during STPG for one fault.
This technique improves and replaces technique T3. Ex-
periments showed that it was very difficult to make T3 suc-
cessful for a circuit, because the technique (due to parame-
ter weight [4]) is extremely fault and circuit dependent. T5
modifies T3 in such way that it becomes highly indepen-
dent of circuit and fault. Technique T5, like T3 [4], detects
common assigned fractions in ranges of successively stored
GISes. The common fraction has been decided/implied by
the STPG to detect the fault-under-test, but is found to be
unjustifiable later on in the STPG-process. However, af-
ter the common fraction was implied, (and before that frac-
tion is being justified), often more decisions are implied (on
the PPIs) to test the fault. These later decisions are not the
reason this state is unjustifiable, resulting in (successively
stored) over-specified GISes (with a common fraction).

Figure 2a shows five GISes which have been determined
during STPG for a fault. The common fraction of these
five states (X1X01XX) is probably the reason that these
five states have been declared illegal. Figure 2b shows
how the common fraction is detected. An array of integers,
called common fraction array (), is updated each time a
GIS is stored in the list, by comparing each entry of the
GIS () to each entry of the previously added GIS
() according to the following three rules:
Rule 1. if then
Rule 2. if

then ;

Figure 2. PGIS from the common assigned
fraction of a range of GISes.

Figure 3. Generate two PGISes to avoid merg-
ing of two FF-groups.

Rule 3. if
then

A PGIS is generated when the formula F:
becomes true. Here

(which replaces the constant in T3 [4])
; is the maximum value of all entries

of the array cf ; value has been experimentally chosen
(its goal is to provide some margin in the selection of en-
tries that establish the common fraction); denotes
a predefined limit, which defines the minimal number of en-
tries in cf with a value larger than or equal to . F is
evaluated when STPG has been performed for the fault. If
it becomes true, a PGIS is generated: The PGIS is a copy of
the last stored GIS, with those entries unassigned for which
the corresponding entry in cf has a value less than .
For example, consider the GISes shown in Figure 2a. Be-
fore STPG starts with the next fault, F is evaluated. Assume

, than is true;
i.e., the number of entries in cf with value larger than
is larger than , and a PGIS is generated: X1X01XX.

T6: PGISes to preserve existing FF-groups. This tech-
nique generates multiple PGISes from one GIS to preserve
existing FF-groups. In Section 2, FF-groups have been in-
troduced to accelerate comparison between two states and
to reduce the number of to-be-compared states. However,
newly added GISes can cause two or more FF-groups to be
merged into one larger FF-group. Figure 3 shows an exam-
ple: Addition of GIS in the list results in the merge of
FF-groups and ; GISes , , and have common as-

signed entries; hence, they have to be associated to the same
FF-group. Two disadvantages of merging FF-groups can be
mentioned:

1. It increases the number of GISes to be compared to a
circuit state, because all GISes associated to FF-groups
to be merged, become associated to the merged FF-
group.

2. It increases the comparison time per GIS associated to
the merged FF-group, because more FFs are part of the
(merged) FF-group.

Technique T6 tries to avoid group merging, by generating
PGISes for each to-be-merged group. E.g., when GIS
(see Figure 3) is stored in the list, FF-groups and have
to be merged. PGIS 1 is generated using the assigned part
of for FF-group (0X0XXX) and keeping the remaining
entries unassigned. PGIS 2 is generated using the assigned
part for group (XXX1X1). If any of the two PGISes can-
not be justified then GIS is removed, resulting in preser-
vation of FF-groups and .

T7: PGISes by enumeration of the assigned part of
a GIS. This technique generates PGISes from existing
groups of similar GISes to find new GISes for closely re-
lated FFs, such as in BCD-counters, etc. Two reasons
motivate T7: First, before an ATPG stage starts, GIS-
learning [4] is performed to find (sparsely assigned) GISes.
For this process, depending on the number of FFs in the cir-
cuit, PGISes are generated with one, two, or more assigned
entries. Many GISes can be found in this way. However,
due to time limits, for circuits that contain many FFs, only
PGISes are generated with one assigned entry. Second, of-
ten closely related FFs can be found in a circuit, such as the
FFs of a BCD-counter or a one-hot code. Often one or more
states formed by these FFs are GISes. E.g., a BCD-counter
has 6 GISes (up to); for a one-hot code, all states
with two or more 1’s are illegal.

The assigned entries of identified GISes can indicate
closely related FFs. Technique T7 exploits this fact. It
uses the state generator (also used by GIS-learning) on the
assigned entries of an identified GIS (which has no more
than a predefined number of assigned entries) to generate
PGISes to be justified by the STPG. For example, if state
X1XX01 is detected to be a GIS, T7 generates the 7 re-
maining PGISes X0XX00, X0XX01, , X1XX11.

5. The legal state cache

Although often PGISes can be identified as being illegal,
also many PGISes are justifiable. The latter, legal states, of-
ten are justified by states which already have been proven
justifiable earlier in the ATPG process. However, this infor-
mation is not stored and the STPG process continues justi-
fying these PGISes, until the all-unknown state is reached.

1
0
X

0
1
X

X
X
X

X
0
X

already proven justifiable

0
0
0

1
0
1

EF D C B A

Figure 4. State A justified by state sequence
.

For example, Figure 4 shows a state sequence . State
is being justified during GIS learning. To justify state ,

a sequence of five states is generated. However, states , ,
and have already been proven justifiable earlier on by

the GIS learning process, because they have fewer assign-
ments than state . The repeated justification of states ,

, and therefore would be useless. In order to prevent
this, the Legal State cache (LS cache) is proposed to avoid
useless repetitive justifications of known legal states. Each
time a PGIS has been justified, all states of the justification
sequence are legal, and are stored in the LS cache. If during
the justification of a PGIS, the current state covers a state in
the LS cache, justification can stop, since the current state
is justifiable. We use a cache to prevent the identified legal
states from requiring too much memory.

A hit-rate is associated to each stored legal state. The hit-
rate of a legal state is increased each time that a state, being
justified, covers this legal state. The states in the cache are
sorted on the hit-rate (highest first) and then on the number
of assignments (highest first). In order to be covered by
an as large as possible legal state space, the stored states in
the cache should be highly assigned; as opposed to the ISes,
which cover a larger part of the IS space when they are more
sparsely assigned.

6. Experimental results

The ATPG system DAT for combinational and sequential
(3-state) circuits [4][5], implemented in C++, has been ex-
tended with the techniques proposed in this paper. The ex-
periments have been run on a Pentium Pro 200Mhz pro-
cessor with 256Mb main-memory operating under Linux
(Specint95: 8.09 [12]). The time limit of the total ATPG
job was 4 hours. ATPG has been performed as follows:

Pre-processes: Identification of (structurally) uninitializ-
able and unobservable signal lines, resulting in untestable
faults [4], static learning [11] (time limit 15 minutes), and
GIS learning [4] (time limit 1 hour). If the GIS list is com-
plete, then during the remaining ATPG process no further
attempts are made to find or optimize GISes.

ATPG: 4 stages, each using one or more STPG methods
with different search strategies The first two ATPG stages
have low, and the last two have higher backtrack-limits. If

during STPG, the GIS list has been doubled in size, Check-
Illegal-States (CIS) is performed to remove GISes which are
covered by other GISes.

Technique T4 (direct expansion) is performed during the
pre-processes when the number of assignments of a GIS is
10 or higher; and during the ATPG stages when the number
of assignments of a GIS exceeds 50% of the FFs. Technique
T5 (common fraction of a range of GISes) is performed with

. Technique T7 (enumerate assigned part of
a GIS) is performed when a GIS has 4 or less assignments.
These parameters have been experimentally determined and
avoid that the ATPG system spends too much time in those
techniques.

Experiment is performed as described in the previ-
ous paragraphs. Column in Table 1 shows the results
for the ISCAS’89 [1] circuits. These results are compared
to our results published in [4]: Column shows the
results with techniques T1, T2 and T3 active, and column

shows the results without any of T1...T7. The bold val-
ues in the table indicate a significant improvement for an
experiment, when comparing experiment T all with ,
considering the CPU times, fault efficiencies, and the num-
ber of GISes. They show that experiment , which uses
the newly proposed techniques, very often is significantly
better than our previous versions. E.g, for circuits s382,
s526, s1494, and s35932 the CPU times are reduced and
for the circuits s1423, s5378, and s38584.1 fault efficien-
cies are improved. Note the large improvements of the fault
efficiencies for the larger circuits.

For some circuits the CPU times for exp. are in-
creased (e.g., s349, s386, and s838). This is due to the new
techniques which are not (or less) required for these “STPG-
easy” circuits.

We noticed that for circuits with almost 100% fault effi-
ciency, often much CPU time is spent for a very small group
of hard faults (e.g., 1 fault in s382, s400, and s444). For
these circuits, 100% fault efficiency can be reached with a
higher backtracklimit in the last ATPG stage; at the expense
of CPU time (see the footnote with Table 1)

The sizes of the GIS lists are often reduced (see bold
entries in column), although they cover a larger GIS
space, due to the sparser assigned GISes. The smaller GIS
lists often improve the performance of the ATPG, because
less GISes have to be handled (e.g., see results of s1423,
s5378, and s35932). Due to the smaller GIS lists and usage
of cvectors, also the memory usage often is low.

The comparisons prove the effectiveness and efficiency
of our approach to constrain the STPG by (improved) de-
termination of the illegal search space. Only for 5 of the
first 25 benchmark circuits, 100% fault efficiency is not yet
reached.

Table 2 shows the results of DAT in comparison with
HITEC [10] (HP9000 J200; 256 MB memory; SpecInt95:

4.98), MOSAIC [2] (Sun Sparc20-70Mhz; SpecInt95: 3.11)
and DUST [3] (Sun 4/60; SpecInt95: 2.5); note that the
CPU times in the table are not normalized. The table shows
that DAT often reaches better fault efficiencies, sometimes
combined with lower CPU costs (e.g., s382, s526, and
s35932). DAT has a very hard job on circuits s820 and

DAT HITEC [10] MOSAIC [2] DUST [3]
Circuit CPU(s) f.e.(%) CPU(s) f.e.(%) CPU(s) f.e.(%) CPU(s) f.e.(%)

s208 2 100 15 88.4 5 100
s298 5 100 972 94.5 49 99.0 60 100
s344 57 100 484 97.9 9 97.1 30 100
s349 85 100 464 98.6 186 98.0 36 100
s382 1655 99.8 5472 77.7 2340 92.4 485 96.7
s386 307 100 7 100 366 93.2 106 99.5
s400 1684 99.8 4356 84.4 900 90.3 675 96.9
s420 3 100 552 90.9 23 100
s444 2060 99.8 5364 84.0 1026 89.7 754 97.3
s526 3513 99.5 20844 61.1 606 76.5 25425 90.9

s526n 3206 99.6 684 72.0 24478 92.4
s641 36 100 5 100 49 94.2 12 100
s713 175 100 7 100 71 95.0 51 100
s820 14401 91.4 210 100 408 98.1 25282 95.4
s832 14402 92.0 345 100 1146 97.7 25681 95.6
s838 209 100 1782 82.1 71 99.7

s1196 7 100 6 100 11 100 17 100
s1238 8 100 8 100 18 100 25 100
s1423 14401 40.7 50040 48.6 1092 69.8
s1488 4776 97.7 990 99.9 1486 98.9 25643 93.7
s1494 5310 98.2 575 99.9 2028 94.2 25252 95.3
s5378 14402 91.6 66240 74.9 4320 75.9 8881 89.6
s9234 330 100 0.1 100 3 100
s13207 14404 95.6 4680 97.6 3332 98.4
s15850 4694 100 246 99.9 5796 99.9
s35932 6149 99.9 17028 99.4 19008 99.7

Table 2. Comparison of results of DAT, HITEC,
DUST and MOSAIC.

s832; although the complete GIS space has been identified
(the number of FFs in these circuits is very small), the fault
efficiencies are low. We expect that applying IS optimiza-
tion on fault-dependent ISes will improve the performance
for these circuits.

7. Conclusions

An ATPG system (DAT) for sequential circuits has been
presented, which focuses on discovering the Global Ille-
gal State (GIS) space, to constrain the search space. The
GIS space is gradually discovered implicitly during STPG
for faults, and explicitly during the processes GIS learning,
EIS and CIS. These processes use proposed techniques to
expand the known GIS space. Given a current GIS list, they
generate PGISes, which are tried to be justified using the
STPG. A justification failure for a PGIS results in a new
GIS, which covers GISes from the original list; they are re-
moved. This reduces the size of the GIS list and expands the
known GIS space. The four techniques proposed to expand
the known GIS space are:

1. Direct expansion of new GISes (T4)
2. Generate PGISes by determining the common as-

signed fraction of a range of GISes (T5).

Exp. Exp. [4] Exp.
(use T1, T2, T4, T5, T6, T7 and LS cache) (use T1, T2 and T3) (no techniques)

Circuit #nflts #tst #unt seql #GIS CPU(s) f.e.(%) #GIS CPU(s) f.e.(%) CPU(s) f.e.(%)

s208 7 6.68 100 6.16 100
s298 29 18.30 100 18.65 100
s344 484 89.42 100 360.7 100
s349 134 70.26 100 617.2 100
s382 27 5327 99.5 5628 99.3
s386 10 263.7 100 433.1 100
s400 27 4743 99.8 13613 97.8
s420 15 25.18 100 26.34 100
s444 27 4372 99.8 5747 99.4
s526 27 9019 99.3 14402 97.3

s526n 27 9019 99.5 14402 97.3
s641 26 931.6 100 8117 99.8
s713 26 879.3 100 1403 100
s820 6 14403 90.2 14402 79.9
s832 6 14402 88.7 14401 87.8
s838 31 101.8 100 106.0 100

s1196 11 15.60 100 10.42 100
s1238 11 25.10 100 19.52 100
s1423 17730 14403 32.4 14403 32.4
s1488 5 14402 93.4 14402 93.4
s1494 8 14403 94.1 14402 94.0
s5378 11912 14401 85.3 14401 80.8
s9234 0 86.23 100 65.56 100

s9234.1 17654 14403 49.0 14403 49.2
s13207 41 14403 92.3 14401 94.2
s15850 8753 889 100 801 100

s15850.1 1059 14402 40.9 14401 37.2
s35932 1472 14401 92.9 14403 92.9
s38417 3039 14402 3.0 14402 3.0
s38584 10082 14472 28.4 14410 28.4

s38584.1 15200 14441 20.8 14403 20.8

#nflts: total no. of faults #tst: no. of faults detected #unt: no. of untestable faults seql: test sequence length
CPU(s): CPU usage in seconds f.e.(%): total fault-efficiency #GIS: number of GISes after ATPG has been finished

For circuits s382, s400, and s444 100% fault efficiency has been reached after 7532, 7157, 9352 CPU seconds respectively

Table 1. Results of sequential circuit ATPG for ISCAS’89 circuits.

3. Generate PGISes to preserve existing FF-groups (T6).
4. Generate PGISes by enumerating the assigned part of

a GIS (T7).

To accelerate access and comparison of GISes, FF-groups
and cvectors have been proposed. Cvectors also reduce the
storage requirements for the GISes up to a factor 10.

In order to speed-up the justification process of PGISes,
the Legal State cache (LS cache) has been proposed to avoid
useless repetitive justification of known legal states.

The experimental results demonstrate that: Significant
improvement in computing times as well as fault efficien-
cies for many ISCAS’89 (and industrial) circuits has been
obtained, compared to results of DAT in [4], HITEC, MO-
SAIC and DUST. This proves that the proposed techniques
are effective and efficient.

Finally, for future extensions we intend to further im-
prove GIS identification and expansion. Furthermore, we
expect that for very hard faults, the use of the IS identifica-
tion and expansion techniques in the fault-dependent state
space, will yield significant test generation improvements.

References

[1] F. Brglez et al. Combinational profiles of sequential bench-
mark circuits. Proc. of International Symposium on Circuits
and Systems, pages 1929–1934, May 1989.

[2] A. Dargelas, C. Gauthron and Y. Bertrand. Mosaic: a
multiple-strategy oriented sequential atpg for integrated cir-
cuits. Proc. of ED & TC, pages 29–36, March 1997.

[3] N. Gouders and R. Kaibel. Advanced techniques for sequen-
tial test generation. Proc. of ETC, pages 293–300, 1993.

[4] M.H. Konijnenburg, J.Th. van der Linden, A.J. van de Goor.
Sequential test generation with advanced illegal state search.
Proc. of ITC, pages 733–742, November 1997.

[5] M.H. Konijnenburg, J.Th. van der Linden and A.J. van de
Goor. Compact test sets for industrial circuits. Proc. of 13th
VLSI Test Symposium, pages 358–366, 1995.

[6] H.-C. Liang, Chung Len Lee and Jwu E. Chen. Invalid state
identification for sequential circuit test generation. Proc. of
Asian Test Symposium, pages 10–15, 1996.

[7] D. E. Long, Mahesh A. Iyer and Miron Abramovici. Identi-
fying sequentially untestable faults using illegal states. Proc.
of 13th IEEE VLSI Test Symposium, pages 4–11, 1995.

[8] T. E. Marchok, Aiman El-Maleh, Wojciech Maly and Janusz
Rajski. Complexity of sequential atpg. Proc. of European
Design and Test Conference, pages 252–261, 1995.

[9] T. Niermann and J.H. Patel. Hitec: A test generation package
for sequential circuits. Proc. of European Design Automation
Conference, pages 214–218, February 1991.

[10] E. M. Rudnick, Janak H. Patel. Combining deterministic
and genetic approaches for sequential circuit test generation.
Proc. of Design Automation Conference, June 1995.

[11] M. Schulz, E. Trischler and T.M. Sarfert. Socrates: A highly
efficient automatic test pattern generation system. Proc. of
International Test Conference, pages 1016–1026, 1987.

[12] Specint95. The standard performance evaluation corpora-
tion. Website: http://open.specbench.org/.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

