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Abstract

The design and architectures of a microcode-based
memory BIST and programmable FSM-based memory

BIST unit are presented. The proposed microcode-based

memory BIST unit is more e�cient and exible than ex-

isting architectures. Test logic overhead of the proposed

programmable versus non-programmable memory BIST

architectures is evaluated. The proposed programmable

memory BIST architectures could be used to test memo-

ries in di�erent stages of their fabrication and therefore

result in lower overall memory test logic overhead. We

show that the proposed microcode-based memory BIST

architecture has better extendibility and exibility while

having less test logic overhead than the programmable

FSM-based memory BIST architecture.

1. Introduction

Digital systems are composed of data paths, control
paths and memories. The low cost of memory and high
memory demand of high-speed DSP circuits and generic
microprocessors have made the memory subsystem an
important focus of the design.

Defects in memory arrays are generally due to
shorts and opens in memory cells, address decoder and
read/write logic. These defects can be modeled as single
and multicell memory faults [6, 10]. Memories are more
likely to fail than random logic and therefore three classes
of memory tests have been proposed to detect the mem-
ory faults [10, 1, 2]. Application of test sequences to em-
bedded memories using o�-chip testers results in a high
test time and test cost due to the large size of embedded
memories. To overcome this problem, the computed test
sequences are generated on-chip using a memory Built-In
Self Test (BIST) unit.

A memory BIST unit consists of a controller to con-
trol the ow of test sequences and other components to
generate the necessary test control and data. A memory
BIST controller could be designed as a Finite State Ma-
chine (FSM)-based or microcode-based controller. The

FSM-based controllers are the hardware realization of a
selected memory test algorithm. This type of memory
BIST architecture has optimum logic overhead, however,
lacks the exibility to accommodate any changes in the
selected memory test algorithm. This results in re-design
and re-implementation of the FSM-based controller for
any minor changes in the selected memory test algorithm.
In microcode-based controllers, a selected memory test
algorithm is written in terms of a set of supported in-
structions and loaded in the memory BIST controller.
This type of memoryBIST architecture allows changes in
the selected test algorithm with no impact on the hard-
ware of the controller. This exibility might result in
higher logic overhead for the memory BIST controller
[8]. However, the additional logic overhead, if kept in
reasonable levels, could be justi�ed by using the memory
BIST to reduce the cost of diagnostics.

Memories undergo di�erent type of testing during
the course of their design and fabrication. Tests nec-
essary for embedded memories and diagnostics have a
set of requirements on the memory BIST controller.
To satisfy these requirements additional hardware might
have to be added to the memory BIST unit. Compar-
ison of logic overhead of non-programmable versus pro-
grammable memory BIST architectures considering only
the logic overhead of only one type of memory test or
diagnostics might not truly reveal the overhead of one
architecture over another. Therefore, to compare and
evaluate di�erent memory BIST architectures, the over-
all testing and diagnostics requirements of memories and
the exibilities of each memory BIST architecture must
be considered.

Programmable memory BIST controllers that could
accommodate testing requirements of embedded mem-
ories were proposed in [4, 3, 9]. The drawback of the
method described in [4] is that only memory tests where
each component does not have more than two instruc-
tions could be coded e�ciently. Furthermore, it is not
clear if their architecture has the exibility to accom-
modate the test requirements of the memories in di�er-
ent stages of their fabrication. The programmable ar-



chitecture described in [3] considers dividing a test al-
gorithm into smaller sub-tests and loading the necessary
microcodes through multiple loads. This is time con-
suming and might not always be feasible. Also, this ar-
chitecture does not support optimum representation of
the symmetric test algorithms and test algorithms that
consist of several smaller loops such as march test algo-
rithms [5]. The architecture described in [9] is mainly
designed for diagnostics and process monitoring. In this
approach, the test algorithm is loaded in a 32�14 SRAM
using an initialization sequence. This SRAM has 3 to 4
times larger size than the previous programmable meth-
ods. Also, testing the SRAM itself adds to the complex-
ity of the overall testing of the design.

In Section 2 of this paper, we present the details of two
programmablememory BIST architectures that are more
e�cient and do not su�er from the drawbacks of the ex-
isting methods. The test logic overhead and extendibility
of the proposed programmable methods versus a set of
non-programmable architectures are evaluated in Section
3 and Section 4 concludes the paper.

2. Proposed Memory BIST Architectures

The memory BIST controller asserts and de-asserts
a set of controlling signals for the memory array and
other components of the memory BIST unit based on
a selected memory test algorithm. Two programmable
memory BIST controller architectures microcode-based

and programmable FSM-based have been developed and
are described in this section.

2.1. Microcode-Based BIST Controller

In microcode-based memory BIST architecture the
controller consist of 1) storage unit, 2) instruction
counter, 3) instruction selector, 4) branch register, 5)
instruction decoder and 6) reference register as shown in
Fig. 1.

The storage unit is a two dimensional Z�Y bu�er and
stores the necessary microcodes of a memory test algo-
rithm. A 2-bit initialization signal would initialize the
storage unit to the default microcodes or a set of custom
microcodes. The supported microcode is 10-bits wide
and consist of a 2-bit �eld for address generation, 2-bit for
data generation, 1-bit for compare, 2-bits for read/write
and a 3-bit �eld to control the ow of the microcode. A
description of di�erent �elds and an example of memory
test algorithm (March C) are shown in Fig. 2.

The instruction counter is a log2(Z)+1 bit binary
counter that speci�es which instruction should be exe-
cuted next. The Reset signal would initialize the instruc-
tion counter to 0 in the beginning of the memory test.
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Figure 1. Microcode-Based BIST Controller

The last bit of the instruction counter speci�es the end
of the test. This bit could be speci�ed by exhausting the
allowed instruction addresses or by asserting the Ter-

minate signal. Instruction selector is a Z�Y:Y selector
with log2(Z) control lines. The output of the instruction
counter is the control signals of the instruction selector.
The branch register is a log2(Z) bit register and holds
the address of the branch-to instruction. If Save Current
Address signal is asserted, the value of the instruction
counter is copied to the branch register and similarly if
Reset to Branch Register signal is asserted, the value of
branch register is copied back to the instruction register
in the case of a branch.

The instruction decoder interprets the 3-bit condi-
tional �eld (last �eld) of the microcode instruction
and controls the ow of execution of the microcodes
in the storage unit. The Inc. Address signal would
hold/increment the instruction counter while Reset 0,
Reset 1 and Reset Branch Register reset the instruction
counter to the �rst, second or the instruction speci�ed
by the branch register. A combination of Last Port, Last
Data, Last Address and Repeat Loop is used as the neces-
sary conditions for the 3-bit conditional instruction. The
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Figure 2. Microcode-Based Instruction De�nition

signal Save Address Condition allows saving the contents
of the instruction counter in the branch register auto-
matically if a condition occurs. For example, if the last
address is speci�ed as the save address condition, then
every time the Last Address signal is asserted, the con-
tents of the instruction counter is copied in the branch
register. This enables an automatic looping capability
for a set of operations on a given cell. The Inc. Port

signal is asserted by the instruction decoder module if
the next port has to be activated in the case of multiport
embedded memories.

Furthermore, to allow optimum coding of symmetric
test algorithms, ie. March C or March A [10], a 4-bit
reference register is designed to hold the repeat loop bit,
auxiliary address order, auxiliary data and auxiliary com-
pare. The repeat loop bit is asserted by execution of Re-
peat instruction and speci�es that the microcode in the
storage unit is being repeated. If the repeat loop bit is
de-asserted and Repeat instruction is being executed the
address order, data and compare polarity �elds of that in-
struction are stored in their corresponding reference reg-
ister bits. This allows re-execution of a set of microcodes
with di�erent address order, test data and compare po-
larities. The auxiliary address order, data and compare
values stored in reference register are XORed with the
address order, test data and compare speci�ed in each
instruction. The Reset signal initializes the contents of
the reference register to 0. The combination of Repeat
and reference registers enables optimal coding of sym-
metric memory test algorithms.

To further illustrate the instruction set and capabil-
ity of the proposed architecture consider the March C
[10] test algorithm shown mathematically in Eq. 1 and
illustrated in microcodes in Fig. 2.

MarchC = hm (w0) * (r0w1) * (r1w0)

+ (r0w1) + (r1w0) m (r0)i (1)

In Eq. 1, the address order=f*;+;mg: refers to
traversing the address space of a memory from 0 to n-1

(up address order), from n-1 to 0 (down address order)
or either (don't care). The operations wd and rd refer to
write or read logic value d=f0,1g. The �rst instruction
in Fig. 2 writes 0 to each memory cell in up address
order. The second and third instructions indicate that
read memory cell i for expected 0 and write 1 while incre-
menting in each address in up address order respectively.
Similarly, the fourth and �fth instructions indicate the
same sequence of operations as the third and fourth in-
structions while expecting 1 and writing 0. The address
order, test data and compare polarity �elds in the sixth
instruction, set the auxiliary address order, test data and
compare values in the reference register and therefore
in this case the second through �fth instructions are re-
peated with complemented address order, test data and
compare polarities. Since the repeat bit is set after the
�rst execution of the �fth instruction it will be considered
as a no operation in the second execution, however, the
repeat bit is reset to 0. The seventh instruction reads
each memory cell expecting 0 in an up address order.
The eight and ninth instructions are needed if support-
ing word-oriented and multiport memories. If the last
data pattern has not been reached the eight instruction
would increment the data generation unit and reset the
instruction counter else it would reset the data genera-
tion unit and execute the next instruction. Similarly, if
the last port has not been reached the ninth instruction
increments the port and reset the instruction counter to
0 else it terminates the test.

2.2. FSM-Based Memory BIST Controller

Given a set of march test components as shown in Eq.
2 then most march test algorithms could be produced by
using a combination of these test components with di�er-
ent address order, test data and compare values. For ex-
ample, by selecting march test component SM0 with up
address order and data value of 0, followed by SM1 with
up address order, data and compare vlaues of 1 and 0 the
�rst two components of March C are created. Similarly,
the remaining test components of March C could be gen-
erated. Our proposed programmable FSM-based mem-
ory BIST unit consist of a lower parametrized FSM-based
controller and an upper 2-dimensional circular bu�er as
shown in Fig. 3.
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The lower level controller is a parameter driven 7-state
FSM as shown in Fig. 4(a). and is designed to realize
the march test components described in Eq. 2. In state

Idle and Done the lower level controller is de-active. In
state Reset appropriate memory BIST components, ie.
Address Generation, etc., are reset. Depending on the
value of Mode signal, the next 4 R/W states perform
read or write operations on the memory under test. The
signal Last Address is the terminating signal and the en-
tering condition to state Done. If the input signal Hold
is asserted the FSM would stay in Done otherwise would
move to idle state.
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Figure 5. FSM-Based Instruction De�nition

The upper level controller is a 2-dimensional circular
bu�er, as shown in Fig. 4(b), that holds the param-
eters necessary for the low level controller to realize a
march test. The input signal Initialize sets the upper
level controller to a default test algorithm or a set of
custom instructions could be loaded to the upper level
controller if necessary. These instructions contain the
necessary information to set the parameters of the low
level controller and are divided into 5 �elds: the �rst 1-
bit �eld is one of the conditions necessary to hold the
low level controller in its Done state. The next 1-bit
�eld contains the reference address order, the third 2-bit
�eld contains the control signals for the data generation
unit. The fourth 1-bit �eld contains the polarity of the
expected data. These signals are considered as the ref-
erence or base values and the FSM might generate an
address order, write and compare values that would be
XORed with these signals. The last 3-bit �eld speci�es
the mode of the operation of the low level controller. An
example memory test algorithm, March C, is shown in
Fig. 5. The signalNext Instruction allows the upper level
controller to executes the next instruction. To support
memories with di�erent characteristics, ie. word-oriented
and multiport memories, the capability to repeat execu-



tion of di�erent instructions based on a given condition is
necessary. Therefore, for a word-oriented and multiport
memory, for each port and for each data background pat-
tern the entire test algorithm is repeated. This translates
into having a Loop Back Condition signal that allows re-
peating the test algorithm for each port by taking path
A in Fig. 4(b). At the end of the data background,
Loop Back Condition signal changes the ow of execu-
tion of the instruction to path B which allows the port
to be incremented. The input signal Checking Condi-

tion, if asserted, indicates the valid time for checking the
Termination Condition signal.

For example, consider the instruction set for March C
as shown in Fig. 5. The �rst instruction would write
0 in each memory cell in up address order. The second
and fourth instructions would read a cell and expect 0
followed by write 1 in each memory cell in up and down
address orders respectively. Similarly, third and �fth in-
structions read a memory cell and expect 1 and write 0
to each memory cell in up and down address orders re-
spectively. The sixth instruction reads each memory cell
in up address order. The seventh instruction increment
the data generation unit and loops back to the �rst in-
struction until the last data pattern has been reached.
The eight instruction activates the next port in the mul-
tiport memories. These two instruction are to support
word-oriented and multiport memories. The test is ter-
minated once the last port has been processed.

3. Experimental Results

The proposed programmable memory BIST controller
architectures have been designed and their logic overhead
have been evaluated against a set of non-programmable
memory BIST architectures.

In the �rst set of experiments, we assume that the
memory under test is bit-oriented and single port. The
test algorithms are assumed to be symmetric with the
number of operations comparable to March C and March
A [10]. A set of non-programmable FSM-based con-
trollers which are logic realization of March C and March
A and their deviations were designed and used to eval-
uate the logic overhead of the proposed programmable
methods. Deviations of March C and A have the added
capability to detect data retention faults. These algo-
rithms are referred to as March C+, March C++, March
A
+ and March A++. In March C+, two march test com-

ponents Hold *(r
d
wd rd) Hold * (r

d
) are added to the

end of the March C algorithm to allow detection of data
retention faults. In March C

++ each read operation is
replaced by three read operations to excite and detect
disconnected pull-up/down devices in the memory cells.
Similarly, March A

+ and March A
++ are enhanced ver-

sion of March A test algorithm. The results are summa-
rized in Table 1. The �rst column specify the memory
BIST architecture, the second column is the the degree of
exibility that the architecture provides for realizing dif-
ferent types of test algorithms. The third column is the
internal area size(2�2-input NAND gates). The fourth
column is the size of the controller using IBM CMOS5S
(0.35 micron technology).

Table 1. Size of the Memory BIST Methodology For
Bit-Oriented and Single port memories

Method Flex. Int. Area Size �m2

Microcode-Based HIGH 923 0.191
Prog. FSM-Based MEDIUM 890 0.185
March C LOW 264 0.0547
March C+ LOW 277 0.0574
March C++ LOW 388 0.0805
March A LOW 246 0.0510
March A+ LOW 282 0.0585
March A++ LOW 370 0.0767

In addition, to study the extendibility and changes in
the area overhead of the memory BIST architectures, we
have modi�ed the memory BIST units to support word-
oriented and multiport memories. The results are sum-
marized in Table 2.

Table 2. Size of the Memory BIST Methodology For
Word-Oriented and Multiport Memories

Method Word-Oriented Multiport

Int.A. Size �m2 Int.A. Size �m2

Microcode-Based 1007 0.209 1143 0.237
Prog. FSM-Based 979 0.203 1104 0.229
March C 284 0.059 299 0.060
March C+ 295 0.061 309 0.065
March C++ 413 0.086 433 0.090
March A 258 0.054 276 0.057
March A+ 296 0.061 314 0.065
March A++ 391 0.081 403 0.084

Preliminary experimental results show that any reduc-
tion in the area of the storage units of the proposed pro-
grammable memory BIST architectures has the largest
e�ect on the area of programmable memory BIST units.
For microcode-based architecture the storage unit holds
the instructions of the test algorithmwith no dependence
on the functional clock and therefore the storage cells of
the storage unit could be designed much slower, smaller
and less expensive. Particularly, IBM ASICs provides



a set of smaller and slower scan-only storage cells which
could be readily used. These cells are approximately 4 to
5 times smaller than regular full scan registers and oper-
ate in about 1/8 or 1/16 of functional clock rate. In pro-
grammable FSM-based architecture the cells in storage
unit shift for each march test component and therefore
have to satisfy the functional clock rate.

The storage unit of the microcode-based architecture
is designed as scan-only registers. This technique reduces
the testing problem of the storage unit as well. Testing
a scannable register �le, storage unit of the FSM-based
architecture, is simpler than testing a small SRAM or
ROM. However, testing the data paths of the scannable
registers using random logic BIST might require addi-
tional test points or in the case of stored pattern test
methodology requires more test pattens and more com-
plex ATPG tool. The scan-path of the scan-only registers
is easily tested via the scan-in ports and could be used
as a set of stimulus test points to test the entire memory
BIST unit. The area overhead of the enhanced storage
unit is summarized in Table 3. From the presented exper-
imental results the following observations could be made.

Table 3. Adjusted Size of Microcode-Based Con-
troller

Method Adj. Int. Area Adj. Size �m2

Bit-Oriented 405 0.0840
Word-Oriented 423 0.0879
Multiport 475 0.0985

� Re-design of the microcode-based memory BIST
controller result in approximately 60% reduction in
the size of the controller (see entries in Table 1-3).

� The microcode-based memory BIST controller pro-
vides better exibility with lower logic overhead than
programmable FSM-based memory BIST controller.

� By increasing the fault model and enhancing the
test algorithm the area overhead of the non-
programmable memory BIST unit increases.

� The area di�erence between the microcode-based
and programmable memory BIST controllers de-
creases as the capability of the non-programmable
memory BIST unit is enhanced.

4. Conclusion

In this paper, the design of two programmable mem-
ory BIST architectures was presented. The proposed

memory BIST architectures could accommodate changes
in the test algorithm with no impact on the hardware.
Di�erent types of memory test algorithms could be re-
alized using the proposed memory BIST architectures
and therefore memories with di�erent characteristics and
test requirements could use the same memory BIST ar-
chitecture. In addition, the proposed microcode-based
architecture does not su�er from shortcomings of other
published programmable memory BIST architectures.

The re-design of the storage unit of the microcode-
based architecture resulted in an optimized microcode-
based memory BIST architecture with comparable logic
overhead with non-programmable methods. The reduc-
tion in the area overhead combined with the exibilities
of the microcode-based expand its application from diag-
nostics [9] to on-line testing [7] and makes the additional
logic overhead readily justi�ed.
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