
Multi-language System Design

Ahmed Jerraya
TIMA Laboratory
Grenoble, France
Ahmed.Jerraya@imag.fr

Rolf Ernst
Technical University Braunschweig
Braunschweig, Germany
ernst@ida.ing.tu-bs.de

Abstract
The design of large systems, like a mobile

telecommunication terminal or the electronic parts of an
airplane or a car, may require the participation of several
groups belonging to different companies and using
different design methods, languages and tools. The
concept of multi-language specification aims at
coordinating different cultures through the unification of
the languages, formalism, and notations.

This hot topic discusses the main issues and
approaches to multi-language design. Two research
directions are currently explored by the EDA community.
The first is based on the computation models underlying
the languages while the second deals with the
specification languages themselves.

1. Multi-language design

Most existing system specification languages are
based on a single paradigm. Each of these languages is
more efficient for a given application domain. For
instance some of these languages are more adapted to the
specification of state-based specification (SDL or
Statechart), some others are more suited for data
computation (LUSTRE, SILAGE), while many others are
more suitable for algorithmic description (C, C++).

When a large system has to be designed by separate
groups, they may have different cultures and expertise
with different modeling styles. The specification of such
large designs may lead each group to use a different
language which is more suitable for the specification of
the subsystem they are designing according to its
application domain and to their culture.

Figure 1 shows a typical complex system, a mobile
telecommunication terminal, e.g. a G.S.M. handset. This
system is made of four heterogeneous subsystems that are
traditionally designed by separate groups that may be
geographically distributed.

a) The protocol and MMI subsystem :
This part is in charge of high-level protocols and data
processing and user interface. It is generally designed by a
software group using high-level languages such as SDL or
C++.

b) The DSP subsystem :
This part is in charge of signal processing and error
correction. It is generally designed by "DSP Group using
specific tools and methods such as Matlab/Simulink [1] or
COSSAP [2].

Figure 1: Heterogeneous Architecture of a Mobile
Telecom Terminal e.g. a G.S.M. handset

c) the DSP subsystem :
This part is in charge of the physical connection. It is
generally made by an analog design group using another
kind of specific tools and method such as CMS [3].

d) The interface subsystem :
This part is in charge of the communication between the
three other parts. It may include complex buses and a
sophisticated memory system. It is generally designed by
a hardware group using classical EDA tools.

The key issue for the design of such a system is the
validation of the overall design and the synthesis of the
interfaces between the different subsystems. Of course,
most of these subsystems may include both software and
hardware.

 I
 N
 T
 E
 R
 F
 A
 C
 E
 S

Protocol and MMI

DSP

Rf

Figure 2 shows a generic flow for co-design starting
from multi-language specification. Each subsystem of the
initial specification is described in a specific language and
may need to be decomposed into hardware and software
parts. Moreover, we may need to compose some of these
subsystems in order to perform global hardware/software
partitioning. In other words, partitioning may be local to a
given subsystem or global to several subsystems. The co-
design process also needs to tackle the refinement of
interfaces and communication between subsystems.

 The problems of interfacing and multi-language
validation need to be solved. In addition, this model
brings about another difficult issue: language
composition. In fact, in the case where a global
partitioning is needed, the different subsystems need to be
mapped onto a homogeneous model in order to be
decomposed. This operation would need a composition
format able to accommodate the concepts used for the
specification of the different subsystems and their
interconnection.

Figure 2: Multi-language codesign

The research community is currently exploring two
directions to solve the multi-language design problem.
The first direction makes use of the computation models
underlying the languages. In this case formal methods are
developed for reasoning about multi-language
specification and design. The second direction deals with
the specification languages themselves. These directions
are presented in the next two sections

2. Computation models-based approaches

The goal is to focus on the computation models
underlying specification languages and architectures. The
key message delivered here is that despite the
proliferation of specifications there are only a few basic
concepts and models underlying all these languages.

In fact, most co-design tools start by translating their
input language into an intermediate form that corresponds
to a computation model which is easier to transform and
to refine. Specification languages differ mainly in their
approach to provide a view of the basic components, the
link between these components and the composition of
components. Basic components are described as behavior,
these may be reactive or transformative. The links fix the
inter-module communication and the composition fixes
the hierarchy.

Many embedded system applications consist of a
combination of reactive and transformative functions.
Often, several languages with different underlying models
of computation are used for the specification and
modeling of different functions of an individual system.
The languages are selected because of their particular
suitability for certain applications and optimizations, or
because they have become generally accepted as a
standard within an application domain. Traditionally,
flow-oriented models of computation are used in the area
of signal processing or control engineering. In the last two
decades, these were enhanced by models which are more
suitable for the analysis of the design space and thus for
synthesis, from synchronous data flow (SDF) to boolean
data flow to dynamic data flow. A very instructive
comparison of such representations can be found in [4].
These models are already accepted in industrial design,
driven by an extensive set of design tools which also
support application optimization, as for instance MatrixX
(Integrated Systems) or MATLAB/SIMULINK (Math
Works). A similar development can be observed for
event-oriented models of computation, which are of
special importance for reactive systems, e. g.
STATEMATE in automotive engineering or SDL in the
area of telecommunications. The lack of coherency of the
different languages, methods and tools is a substantial
obstacle in design space exploration and system
optimization [5]. Language interfaces and library
standardization or tool efficiency improvements alone
will not be sufficient for improved system optimization as
we will explain in the following.

Design space exploration and system optimization
require the knowledge of resource utilization and timing.
Relevant resources are processors (or hardware),
communication channels and memory. Timing is
required for scheduling. Accuracy and completeness of
this knowledge decide on the possible degree of
optimization. Inaccuracies and incompleteness result from
abstraction, from unknown or from data dependent
behavior. In the context of design with multiple
languages, different abstractions are the main source for
the lack of accuracy and completeness. Unknown timing
or resource utilization is, in general, due to limited
analysis capabilities (practical or theoretical limitations)

Subsystem 1

Language 1

Subsystem 2

Language 2

Subsystem n

Language n

System-Level Validation (e.g. cosimulation)

Hardware Software Other components

CODESIGN

Implementation Validation (e.g. cosimulation)

and becomes a particular problem when third-party
software or „legacy code“ must be included.
Languages differ in the timing and resource utilization
data which they provide. Flow graphs explicitly model the
amount of data which is produced and consumed in each
execution. This simplifies scheduling and resource
allocation, especially when timing constraints are
restricted to input and output sample rates. If data
consumption and production are time or state dependent,
as in boolean data flow graphs, then the sequence of
executions must be modeled for scheduling and resource
allocation, as well, or worst case behavior must be
assumed leading to less efficient solutions. In contrast,
programming languages, such as C, permit almost
arbitrary fixed or data dependent communication which is
difficult to analyze. Such C programs are typically
invoked periodically or in response to input events rather
than activated by the availability of input data tokens. A
third example are SDL processes which expose the data
flow, but communication is state dependent and processes
are activated by input data. Combining such different
execution models in a single scheduling and resource
allocation strategy with verifiable worst case behavior
which exploits the specific information provided by the
different models is a challenging task. There are basically
two approaches. The first one is the definition of a single
model of computation with a single unifying semantics
which covers a variety of models and the second one is
the use of a simpler model with behavior uncertainty
intervals which are just sufficient to model all information
required for scheduling and resource allocation, i.e. for
target system optimization. The presentations review
some of the recent trends which are, e.g. represented by
[6,7] or [8].

3. Language-based approaches

 The second approach to multi-language design is
based on the languages themselves. The key issues with
such a scheme are validation and interfacing. The use of
multi-language specification requires new validation
techniques able to handle a multi-paradigm model.
Instead of simulation we will need co-simulation and
instead of verification we will need co-verification.
Additionally, multi-language specification brings about
the issue of interfacing subsystems which are described in
different languages. These interfaces need to be refined
when the initial specification is mapped onto a prototype.
In fact, the global configuration of the system is a kind of
"system-level netlist" that specifies the interconnection
between different subsystems. Since different languages
may be based on different concepts for data exchange, the
interpretation of the link between subsystems is generally
a difficult task.

There are two main approaches for multi-language
design: the compositional approach and the co-
simulation-based approach.

The compositional approach (cf. Figure 3) aims at
integrating the partial specification of sub-systems into a
unified representation which is used for the verification
and design of the global behavior. This allows to operate
full coherence and consistency checking, to identify
requirements for traceability links.

Figure 3: Composition-based multi-language design

Polis, Javatime and SpecC detailed respectively in [9,
10, 11] introduce a compositional-based codesign
approach. Polis uses an internal model called Co-design
FSMs for composition. Both Javatime and SpecC use
another specification language (Java and SpecC) for
composition.

The cosimulation based approach (cf. Figure 4)
consists in interconnecting the design environments
associated to each of the partial specification. Compared
with the deep specification integration accomplished by
the compositional approaches, cosimulation is an
engineering solution to multi-language design that
performs just a shallow integration of the partial
specifications.

Figure 4: Co-simulation based multi-language design

The cosimulation-based approach is emerging in the
EDA industry with the availability of hardware/software
cosimulation [12, 13, 14]. With these methods hardware
parts are described in VHDL or Verilog and the software

S p e c i f i c a t i o n 1
(L a n g u a g e 1)

S y s t e m M o d e l
C o m p o s i t i o n F o r m a t

S p e c i f i c a t i o n 2
(L a n g u a g e 2)

S p e c i f i c a t i o n N
(L a n g u a g e N)

D e s i g n a n d v a l i d a t i o n t o o l

Specification 1
(Language 1)

Design &
 Validation 1

Design &
Validation 2

Design &
Validation N

Cosimulation Backplane

Specification 2
(Language 2)

Specification N
(Language N)

part is described in C or C++. The configuration of the
overall system is generally described using an ad-hoc
language in order to specify the interconnection between
the hardware blocs and the software block. Most existing
cosimulation methods solve the multi-language design
problem at the RTL-level. However, a new generation of
multi-language approaches is trying to raise the
abstraction level of the design [15, 16]. The goal is to be
able to start from system-specification languages such as
SDL, COSSAP or Matlab/Simulink.

1. MATLAB® 5 / SIMULINK® 2 : Mathworks Inc. -
http://www.mathworks.com

2. Synopsys. 1997 (Jan.). COSSAP (Reference Manuals).
Synopsys

3. HP. 1998. HP Advanced Design System.[ADS]
http://www.tmo.hp.com/tmo/hpeesof/products/ads/adsovie
w.html

4. E. A. Lee, Th. M. Parks. Data Flow Process Networks.
Proceedings of the IEEE, vol. 83, no. 5, 95, pp. 773-799.

5. R. Ernst. Codesign of Embedded Systems: Status and
Trends. IEEE Design & Test, vol. 15, no. 2, 98, pp. 45-54.

6. T. Grötker, R. Schoenen, H. Meyr. PCC: A Modeling
Technique for Mixed Control/Data Flow Systems. Proc.
ED&TC 97, pp. 482-486.

7. E. A. Lee. Modeling Concurrent Real-Time Processes
using Discrete Events. Annals of Software Engineering,
98.

8. D. Ziegenbein, K. Richter. R. Ernst, J. Teich, L. Thiele.
Combining Multiple Models of Computation for
Scheduling and Allocation. Proc. 6th Int. Workshop on
Hardware/Software Co-design CODES, Seattle, March 98,
pp. 9-13.

9. F. Balavin et al. "HW/SW Codesign" The POLIS
approach. Kluwer Academic Publishers, 1997.

10. D. Gajski, R. Dömer and J. Zhu. IP-Centric Methodology
and Design with SpecC Language, chapter in "System-
level Synthesis", NATO ASI 1998 edited by A. Jerraya
and J. Mermet, Kluwer Academic Publishers, 1999.

11. J. Shin et al., The Javatime Approach to Mixed HW/SW
System Design, chapter in "System-level Synthesis",
NATO ASI 1998 edited by A. Jerraya and J. Mermet,
Kluwer Academic Publishers, 1999

12. K.Van Rompaey, D. Verkest, I. Bolsens, and H. De Man.
Coware - a design environment for heteregeneous
hardware/software systems. In Proceedings of the
European Design Automation Conference. Geneve,
September 1996.

13. C.A. Valderrama, A. Changuel, P.V. Raghavan, M. Abid,
T. Ben Ismail, and A.A. Jerraya. A unified model for co-
simulation and co-synthesis of mixed hardware/software
systems. In Proc. European Design and Test Conference
(EDAC-ETC-EuroASIC). IEEE CS Press, March 1995.

14. W.M. Loucks, B.J. Doray, and D.G. Agnew. Experiences
in real time hardware-software cosimulation. In Proc.
VHDL Int'l Users Forum (VIUF), pages 47--57, April
1993.

15. A. Jerraya et al., Multilanguage Specification for System
Design, chapter in "System-level Synthesis", NATO ASI

1998 edited by A. Jerraya and J. Mermet, Kluwer
Academic Publishers, 1999

16. Ph. Le Marrec et al. HW/SW and mechanical cosimulation
for Automotive Applications. RSP'98, Belgium, 1998.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

