Object-Oriented Reuse Methodologydr VHDL

Cristina Barna
Forschungszentrum Informatik

Haid-und Neustr.10-14, 76137 Karlsruhe, Germany

barna@fzi.de

Abstract

In the reuse domain, the necessity of finding\a, meoe
suitable description langue opposes the need to mak
reuse an accepted gutice and thus elated to standals.
This paper pesents a ng method toeuse VHDL described
components in an IP centric mannéhe basic objeceuse
model uses an object-orientextension of VHDL, Objec-
tive VHDL. In contast to comentional euse appades,
which imply a considetble re-design dbért, this nev
appmoach bridges the gap between design aedse intgra-
tion. The methodofgy is implemented in the form of a Reuse
Management System whitiandles the classification, modi-
fication, adaption, st@ge and etrieval of the euse compo-
nents.

1 Introduction

Reuse of intellectual property in form of haahe mod-
els is an important issue in harawe design. The reuse
methodologies hee esolved in strict interconnection with
the definition of n& means of specificationxpressed by

Wolfgang Rosenstiel
Universitat Tuibingen
Sand 13, 72076 Tubingen, Germany
rosen@fzi.de

reusable designs [9]. The conxitg of the components
available for reuse e requires mechanisms for adaptation;
furthermore, communication between components becomes
an issue [8]. There arevazal attempts to find the best lan-
guage and methodology for description, exgsteng pro-
posals are SLDL, SpecC vda Most of the researchers also
propose complete systems for otating the IP compo-
nents in designs and focus arification and alidation at a
very high leel of abstraction[6].

Our goal is to mak possible the reuse of firm compo-
nents, that is, alreadyailable designs, which we do not
need to redescribe in amdéanguage. That euld speed up
the creation of a publicvailable database, as ibwid only
require an dbrt of creating the adaptation modules. The
present-day standard, which in Europesabout 90% of
the marlet, is VHDL. We concentrate on reusing VHDL
described components, basing on an object-oriertéant
of the language, Objewt VHDL.

2 Model

The idea of IP centric reuse focuses ongraéng com-

hardware description modalities that permitted a more ponents in a functional assemtag close as possible to the

abstract viev on the reusable partsaling a look at the his-
torical development of the hardave description methodolo-
gies, it is olious that the trend is to reach a higheelef
the description. There were, depending on thellef
abstraction reached, arious languages empied for

specification. The attempts to perform reuse in the soéw
domain led to the object-orientation and component soft-
ware paradigms. The successfawof achiging this was

to extend «isting languages to be object-oriented, asais w
the case with C. In the hardve domain, there werevezal

describing and simulating electronic designs. The attentionattempts to add object-orientation to the most popular

was focused on SSI-MSI boards, aftards on MOS ICs,
block-switch and RL gate-switches, then magk driven
comple technologies wlved, implying more comple
modalities of design. At each andeey level, reusing
designs \&s a central issue and a matter of course in tite ne
evolution step.

Present day research addresses thgsvof specifying

description language, VHDL (see [4], [3], [2], [7]) eviely

on the Objectie VHDL description language, shortly
OVHDL, in order to define and manipulate the reusable
objects. The &rnel of the reusable IP will still be nadi
VHDL, in the form one canxpect to get from an IP pro-
vider, while the wrapper will be written in Objeeti VHDL
(see Figurd).

future systems in order to ease automation in design, in par- In this manner reuse is made possible foxkisting

ticular languages for describing hamhe components and
methodologies to store and reteeobjects in a database of

This work has been partially funded by the BMBF as part of the MEDEA
project Euripides.

descriptions, while still taking adwtage of the object-ori-
ented features, lék inheritance, polymorphism andes-
loading, that are supported by thidension of VHDL. V&

will present the object-oriented elements we use in defining
the containers. W will only give a fav elements of the

tecture together with its corresponding entity may contain
OVHDL wrapper subprogram declarations without a corresponding subpro-
Interface gram body

ative VHDL corg

architecture_body::=
‘architecture’ identifier ‘of name ‘is‘[‘abstract]
declarative_part

OVHD wrapper ‘begin‘
Fig. 1 Basic euse component Statement_part
‘end’ [‘architecture’] [name]
Objective VHDL syntax, as it is required for the sustaining Lst. 2 Architecture body

of our model. Br further details on the Objeati VHDL
language definition, please refer to [7].

The derved architecture body must report to an entity
(derived on not) and an architecture. The ancestor architec-
ture must report to an ancestor entityto the same entity as

The etension to VHDL called Objeate VHDL intro- the derved architecture. An abstract architecture cannot be
duces the class concept, class inheritance, type polymortsed to form and instantiate an enthypwvever, a derved
phism and method call or message passing into VHDL,architecture body can supply the missing definitions for the
while keeping the VHDL concurrence. 8\Will conse- declared subprograms.

guently present some object-oriented constructs, which are .
new to VHDL and we are using in our modeleWill be The VHDL type system has beextended by adding the

using the gtended backus naur form to introduce the syntax lass typelt represents a collection of class atités (data

extensions. fields) together with the associated functionalityved
An inheritance mechanisms for entities isyded, in Py subprograms (methods).

the form of thederived entitiegsee definition in Listind.).

A given dewved entity declaration may be shared by multi-

ple design entities, each of which has dedént architec-

ture. The inheritance is nowydlic. A derived entity is a ng

kind of primary unit, similar to simple entities.

3 Definition elements and language extensions

class_type::=
[‘abstract]‘class
class_attributes
class_type_declarative_part
class_type_object_configuration
‘end‘class‘[name]

derived_entity::=

‘entity* identifier ‘is“new* name ‘with* Lst. 3 Class type
header
declarative_part A value of a class type can be assigned to a signal as well
[begin’ as to a wriable of that class type. Polymorphism enables

statement_part]
end [‘entity‘] [name]‘;'
Lst. 1 Derived entity

uniform handling of objects related by inheritance. In par-
ticular, existing source code can handle additional\ebeti
classes without modification. A class type consists of com-

A derived entityheadershares the syntax of an entity Mon declaratie items and specific declarationggteting an
headerhaving the potential to declare ports and generics for instantiation of the class type as signaljable or constant.
communication with the @ironment. The port and generic Declarations of data fields are preceded by #ysvérds
lists of the desied entity header will be joined to the lists of class attrilute, as opposite to signalsanables and con-
its ancestor to form thefettive ports and generics lists of stants, which are themselvobjects obtained by initializing
the derved entity a class. The class body primarily comprises subprogram

The derved entity declamtive part allows to declare body definitions of the subprograms declared in the class
items that are common to all designs thatehihe deried type declaration. Morer, it allows to declare pvate
entity as their inteefce. The déctive identity statement part items. The class configuration implementation distinguishes
is the union of all concurrent statements from thevedri the subprogram bodiesorking on a class type instantiation

entity statement part, all non-labelled concurrent statementgs signal from a class type instantiation asable or con-
from the efective entity statement part of its ancestor entity gtgnt.

and all labelled concurrent statements from ttHecabe

entity statement part of the ancestor entity whose labels do Class-wide types are deduced by application of the

not occur as a label of a concurrent statement of theedieri attribute ‘CLASS. T'CLASS denotes the set of types

entity statement part. including T and all descendant aflf case of a class-wide
The VHDL architecture body (Listing) is extended by type, the subprogram to baeeuted is selected from the

an optional additionaldyword abstiact An abstract archi- class which is denoted by the actual type tag of the class.

4 Extensions to the RMS erironment | | |é|
C; ;

TheReuse Mangement SysteiRMS is a storage, adap- .
tion and retrigal ervironment for manipulating the reuse s the percental weight of the relation between the GA
objects [11]. W& extended it in order to handle the firm IP
cores, together with the class-wide containers. It bases on afind the VCAC.
object-oriented model which | will summarily presentinthe All VCAs constitute aCharacteristic \éctor CV. The
following. characteristic attrites and the correspondingeciors
within a CV describe the components concerning one
aspect, foreampleFunction Within a C\, each component
is assigned tox@ctly one characteristic atttite.

In the RMS terminologya reusable IP is calledCompo-
nent Enironment(CE), composed of @omponent Cear -
which is our future commercial firm IP core, andEawi-

ronment which will be supplied by the RMS and contains Classificationk Specication
the binding of the IP core to an abstract Objeatiass.
A Characteristic Attribute (CA) C represents a feature {i’fered} l
describing a reuse component ¢lirdd multiply). The Clacsicaton
assignment of a CE to a CA is pided with a weight Vector (CV)
g UIN, which indicates he good the CE fulfils the CA
feature.
1+ ;
Vector of CA |
D g(l<g<l)if kfulfils C vem |
1+ |
fa(k) = by intensityg
D . *‘
0o otherwise 1+
A subset of CAs can be added intégeator of Chaacter-
istic Attributes (VCA) C = (Cq, ..., Cp). The assign- Fig. 2 Classification model

ment of a CA to a VCA is also prided with a weight o o) o
In the initial RMS similarity metric, the similarity as

|Ci| DIN . Based on these elements, the RMS creates a clasgefined only between the reuse components CE. Tass w
sification graph. The reusable components are thedeat extended by theconceptual similaritywhich defines the

this classification graph. similarity between tw characteristic attriies related to

the same @ctor Due to the is-a semantic between a taxon-
omy node and his parent, each node can be considered as the
rt;enerallzanon of its child nodes, and this emkhe RMS
taxonomy a specialization hieragch

We further enlaged the RMS by defining conceptual
S|m|Iar|t|es between the internal nodes of the library graph.
The IPs attached to these nodes correspond to coraple

The similarity between CEs is defined as a function of the

graph. In the state of the agrgion of the RMS, the classifi-
cation graph has a depth of three, so thatyetwo con-
nected (thus similar) components are separated by four
branches. The originalay of defining it vas by simply add-
ing the four weights, whichventually led to the erroneous y ; .
result that a componenias more similar to another than to al_allsgat_:t Co_mponer?ts, and fmmlmg_, the di"ed child nodes
itself (because the similarity between the teomponents willbe In ais-a or has-parts relation _tOt em. o

was computed as the sum of four weights, one of whash w The system searches for matching and similar IPs, the

; selected node and all child nodes ar®@ated according to
the weightg). A second unpleasanfeft was that the max- o "Ginilarity metric. Br the matching and similar IPs the

imum similarity L was exceeded during this calculus.eW attributes are nw checled. For similar IPs, only the relant
introduce a ng pondered function to define the similarity of attributes are chedd.
two CEs, &pressed by:

- ; 5 The two layer model
g¢(ky, kp) = averagége (kg kp)| (1<ism), ye
where The model we use is centred on a firm IP core which will
| . | | ~ | be stored in a library of reusable objects (see Figjuréhis
Oc(Kqy, k) = f 2 (k))|Cq + f < (k,)|C> kind of reuse is called gyebox reuse. It allvs controlled
] ¢ _l_ 2_ S _ C, 2 modifications, bt they do not afect the reused code
is the similarity of the tw CEs with respectto the VC&, directly. The grg-box reuse is strongly correlated to the

and object-oriented paradigm.

The components will be included into classes that pro-
vide the necessaryel of abstraction. A class, in its object- N
oriented meaning, pvides an abstract frame for the inte- interface descriptioD . This is a description of the parame-
gration of the IP cores. Objects in the definition of the LRM
[1] are signals, ariables and ports. &/define objects as

The fitting of a firm coreC into W is handled by the

ters of the IP coré , which will further be calledignatue.
The signature describes the type and mode of the param-

entity comparator is eters, and thus implicitly defines the sequence fordhesg
generic (Width: Positive); to be passed as parameters. A setbfas will be passed as
port (a,b: in bit_vector(Width-1 downto 0); parameters when calling a method. This bé&ha approxi-
a_gt_b: out bit); mation works well in the softare domain. Unfortunatelin
end comparator; the hardwre domain there are certain restrictions for the
Lst. 4 Class container application of the signature based modification, that were

analysed in [10].

A signature does not describe thetfthat an interpreta-

n of a signab value may changever time; neither does it
consider the case that not a singidue, lut a waveform is
given back to a callefThe solution is to separate protocol
specification and implementation from the functionality of a
¥nethod. Re-definition of inherited methods must be done
without afecting the protocol parts. Protocolaveforms

entity-relationship pairs.
We accept the classes to be object containers, describeﬁ*i0
in Objective VHDL (see Listindl). They reflect the func-
tional cover of a singular kind of components (e.g. compara-
tors). With respect to the structure of our RMS,ythere
designated by CAs. The firm IP cores are characterized b
means of their communication with theveonment. This

information needs to be prialed by the designer\mer) of passed as parameters of mode must not schedule transac-

the IP : - . L tions during the »xecution or after thexecution of the
Following, the cores that ka a similar functionality will method.

be subordinated to this class contairzex the components

that will contain them are degd by inheritance ancn-

sion from the containeusing the mechanisms described in C = {C

the preious paragraphs.

The database objects can be modelled as a n-uple
C 4 . We defineC,, as the VHDL
source for the IRC andC as the result ofract-

core signatur core

signature

ing the interaice information out of the IE . The definition
of signatures respects the intaxé part of the Objeve
VHDL description.

signature::=
‘(‘parameter‘)‘'semantic’;’

parameter::=
(identifier‘;'type*;‘direction)*

Lst. 5 Signature definition

Both are kys for the search in our database system, as
they are defined as characteristiectors. Accordinglythe
similarity is defined by tw factors. First, the classification
scannable comparator of the component only places it under the corresponding

node of the library graph RL (represented by a CA in the
| | | | | | RMS model). These nodes are further connected through
testable comparator weighted paths. The functionality will be stepwise specified
by adwancing through the classification tree. Additionally to
the «isting system, we define the possibility of adding more
complex components at a highewtd of the graph RL, by

We store tw kinds of objects in the database: allowing multiple levels of CA nodes. Secondlfhe signa-
e there are class containers, which are abstract Comloot_ures of the methods are included under a separate classifica-

nents; thg only have a formal semantic corresponding tion vector CV

to the functional description of the real components, ~ The process of including awéP in the database implies
and analysing the functionality and the int&cé of the compo-

nent. W\ distinguish tw cases:

Fig. 3 Object composition

¢ the firm core componentsS have associated the wrap-
per W, which the inherited from the class container * for the nev IP, there is a container describing the same
The datahase objects are modelled as a tuple functionality All we need to do in this case is to create
N ={C,W}. the dernved type that respects the signature of all the

methods of the meobject, by @erloading or by simply ning under NT Semr 4.0. A screenshot of our retréé sys-
adding n&v methods to the container class. tem is presented in Figude The n&t version of the RMS

* there is no class that close enough describes thie ne Will run under Oracle 8.0.
component, thus the feft of modifying an ®isting
container wuld be rather equal to that required to cre- 7 Conclusion and futue work
ate a nw class; oras an other aspect, including the
component into anxésting functional class is semanti-
cally impossible.
In this latter case, the database administrator has to crea
a nav container class, task that can becorag/ \comple
depending on the intexte of the IPThis will be supported
by the RMS by preiding a template and a clear methodol-
ogy for integration.

The combination of standard and object-oriented VHDL
proves to be a successfuawof including &isting designs
{'Qto future IP centric systems, respecting the definition of
grey-box reuse. While being compliant with the most
widely accepted standard description language, the pre-
sented model éeps up with object-oriented featureselik
inheritance, polymorphism andverloading, thought as
indispensable in future reuse-based design.

. Future vork will address the automated adaption of the
6 Implementation IP cores for design by reuse, as this is still a prodtgti

The model has beeresified on common benchmark issue and a matter of returnvéstment planning. Further
designs. A special interestaw talen in the IEEE1149.1 the transparent coupling to the highdesynthesis will be
compliant designs, as futurevk will address obseability ~ considered. In parallel, adding scanability and testability by
and testability issues. The goals of the IEEE Std 1149.1 aréncluding IEEE1149.1 compliant modules in an early
to provide a standardized approach to testing the intercon-design phase, will be addressed.
nections between ingeated circuits, testing the circuit itself
and observing circuit asity during the normal operation of 8 Refeences

the components. ®/based on the implementation of the
. - [1] IEEE Standard VHDL Language Reference Manual. IEEE
basic components IEEE Std 1149.1-1990 invea¥iHDL standard 1076-1993, 1993.

[5]. At present, some of these components are described ir&] . .
; PJ. Ashenden,.R. Wilsey, and D.E. Martin. SBVE: Painless
OVHDL, others, lile the ‘RP controller hare an /HDL Extension for an Object-Oriented VHDL in Rapid Systems

wrapper and the testbench and thevievel procedures, Prototyping with VHDL. InProc. of the VIUF &Il 1997 Con-

which constitute the functional library of théH, are still ference 1997.

natve VHDL. . _ . [3] J.Benzakki and BDjafri. Object-Oriented Extensions to
An example implementation addressed interconnecting = VHDL - the LaMI Proposal. IrProc. of CHDL97, Toledo,

object-oriented and na&# VHDL designs. Therefore, a Spain 1997.

class container for a comparatoaswdefined (see Figugy [4] D.Cabanis and 9vedhat. Object-Oriented Extensions to

and a nibble-comparat@a scannable and a testable compa- VHDL: The Classification Orientation. Proc. of the VHDL
rator were created by inheriting the wrapper of this class and User Forum Euppe 1996Shaler \erlag, 1996.
including the specific boundary scan components. T [5] P Campbell, MVai, and ZNavabi. Implementation of IEEE

accommodate the boundary scagister four ports had to Std 1149.1-1990 in VHDLProc. of the VHDL International
be added to the scannable and the testable comparator Users’ Forum Confeence 1992.
therefore the intedlce had to be eniged by desiation. [6] D.Eisenbigler and CBlumenréhr Gropius - Adanced
T e I — Reuse Concepts in a WeHardware Description Language.
B - Proc. of the 2nd GI/ITG/GMM Wvkshop Reuseethniques
e for VLSI Design1998.

p Gl AU Ted [7] S.Maginot, W Nebel, W Putzle-Réming, and MRadetzki.
- Final Objectve VHDL Language Definition. &chnical
report, LEDA and OFFI, May 1997.

[8] W. Putzlke-R6ming, M.Radetzki, and \WNebel. A Flible
Message &sing Mechanism for Objeeti VHDL. In Proc.
of DATE'98, Raris, France Feb 1998.

[9] A. Reutter B. MéRner |. Kreutzer and W Rosenstiel. Weder-
verwendung emplexer Komponenten fir Synthese und Sim-
ulation unter ¥rwendung gn VHDL. In L.Peters and
K. Lagemann, editorsEntwurf Intgrierter Shaltungen, 8.
E.l.S.-Vérkshop, &gungsbandApr. 1997.

S S [10] G. Schumacher and Webel. Object-Oriented Modelling of

Fig. 4 Seach for reusable components Egg%llel Hardvare Systems. IRroc. of DATE'98, Raris, Feb
The Reuse Management Systeasumplemented using [11] R. Seepold A Hardware Design Methodolsy with Special
the Oracle Seer 7.3. The database is running under Solaris Emphasis on Reuse and Synthe$lkD thesis, Uni of

2.51 on a Sparc 20 compuytire application seers are run- Tlbingen, 1997.

Select and order Cvs

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

