
Abstract

In the reuse domain, the necessity of finding a new, more
suitable description language opposes the need to make
reuse an accepted practice, and thus related to standards.
This paper presents a new method to reuse VHDL described
components in an IP centric manner. The basic object reuse
model uses an object-oriented extension of VHDL, Objec-
tive VHDL. In contrast to conventional reuse approaches,
which imply a considerable re-design effort, this new
approach bridges the gap between design and reuse integra-
tion. The methodology is implemented in the form of a Reuse
Management System which handles the classification, modi-
fication, adaption, storage and retrieval of the reuse compo-
nents.

1 Introduction

Reuse of intellectual property in form of hardware mod-
els is an important issue in hardware design. The reuse
methodologies have evolved in strict interconnection with
the definition of new means of specification, expressed by
hardware description modalities that permitted a more
abstract view on the reusable parts. Taking a look at the his-
torical development of the hardware description methodolo-
gies, it is obvious that the trend is to reach a higher level of
the description. There were, depending on the level of
abstraction reached, various languages employed for
describing and simulating electronic designs. The attention
was focused on SSI-MSI boards, afterwards on MOS ICs,
block-switch and RTL gate-switches, then market driven
complex technologies evolved, implying more complex
modalities of design. At each and every level, reusing
designs was a central issue and a matter of course in the next
evolution step.

Present day research addresses the ways of specifying
future systems in order to ease automation in design, in par-
ticular languages for describing hardware components and
methodologies to store and retrieve objects in a database of

This work has been partially funded by the BMBF as part of the MEDEA
project Euripides.

reusable designs [9]. The complexity of the components
available for reuse now requires mechanisms for adaptation;
furthermore, communication between components becomes
an issue [8]. There are several attempts to find the best lan-
guage and methodology for description, e.g. existing pro-
posals are SLDL, SpecC, Java. Most of the researchers also
propose complete systems for integrating the IP compo-
nents in designs and focus on verification and validation at a
very high level of abstraction[6].

Our goal is to make possible the reuse of firm compo-
nents, that is, already available designs, which we do not
need to redescribe in a new language. That would speed up
the creation of a public available database, as it would only
require an effort of creating the adaptation modules. The
present-day standard, which in Europe takes about 90% of
the market, is VHDL. We concentrate on reusing VHDL
described components, basing on an object-oriented variant
of the language, Objective VHDL.

2 Model

The idea of IP centric reuse focuses on integrating com-
ponents in a functional assembly, as close as possible to the
specification. The attempts to perform reuse in the software
domain led to the object-orientation and component soft-
ware paradigms. The successful way of achieving this was
to extend existing languages to be object-oriented, as it was
the case with C. In the hardware domain, there were several
attempts to add object-orientation to the most popular
description language, VHDL (see [4], [3], [2], [7]). We rely
on the Objective VHDL description language, shortly
OVHDL, in order to define and manipulate the reusable
objects. The kernel of the reusable IP will still be native
VHDL, in the form one can expect to get from an IP pro-
vider, while the wrapper will be written in Objective VHDL
(see Figure1).

In this manner, reuse is made possible for existing
descriptions, while still taking advantage of the object-ori-
ented features, like inheritance, polymorphism and over-
loading, that are supported by this extension of VHDL. We
will present the object-oriented elements we use in defining
the containers. We will only give a few elements of the

Object-Oriented Reuse Methodology for VHDL

Cristina Barna
Forschungszentrum Informatik

Haid-und Neustr.10-14, 76137 Karlsruhe, Germany
barna@fzi.de

Wolfgang Rosenstiel
Universität Tübingen

Sand 13, 72076 Tübingen, Germany
rosen@fzi.de

Objective VHDL syntax, as it is required for the sustaining
of our model. For further details on the Objective VHDL
language definition, please refer to [7].

3 Definition elements and language extensions

The extension to VHDL called Objective VHDL intro-
duces the class concept, class inheritance, type polymor-
phism and method call or message passing into VHDL,
while keeping the VHDL concurrence. We will conse-
quently present some object-oriented constructs, which are
new to VHDL and we are using in our model. We will be
using the extended backus naur form to introduce the syntax
extensions.

An inheritance mechanisms for entities is provided, in
the form of thederived entities(see definition in Listing1).
A given derived entity declaration may be shared by multi-
ple design entities, each of which has a different architec-
ture. The inheritance is non-cyclic. A derived entity is a new
kind of primary unit, similar to simple entities.

A derived entityheader shares the syntax of an entity
header, having the potential to declare ports and generics for
communication with the environment. The port and generic
lists of the derived entity header will be joined to the lists of
its ancestor to form the effective ports and generics lists of
the derived entity.

The derived entity declarative part allows to declare
items that are common to all designs that have the derived
entity as their interface. The effective identity statement part
is the union of all concurrent statements from the derived
entity statement part, all non-labelled concurrent statements
from the effective entity statement part of its ancestor entity
and all labelled concurrent statements from the effective
entity statement part of the ancestor entity whose labels do
not occur as a label of a concurrent statement of the derived
entity statement part.

The VHDL architecture body (Listing2) is extended by
an optional additional keyword abstract. An abstract archi-

tecture together with its corresponding entity may contain
subprogram declarations without a corresponding subpro-
gram body.

The derived architecture body must report to an entity
(derived on not) and an architecture. The ancestor architec-
ture must report to an ancestor entity, or to the same entity as
the derived architecture. An abstract architecture cannot be
used to form and instantiate an entity, however, a derived
architecture body can supply the missing definitions for the
declared subprograms.

The VHDL type system has been extended by adding the
class type. It represents a collection of class attributes (data
fields) together with the associated functionality provided
by subprograms (methods).

A value of a class type can be assigned to a signal as well
as to a variable of that class type. Polymorphism enables
uniform handling of objects related by inheritance. In par-
ticular, existing source code can handle additional derived
classes without modification. A class type consists of com-
mon declarative items and specific declarations targeting an
instantiation of the class type as signal, variable or constant.
Declarations of data fields are preceded by the keywords
class attribute, as opposite to signals, variables and con-
stants, which are themselves objects obtained by initializing
a class. The class body primarily comprises subprogram
body definitions of the subprograms declared in the class
type declaration. Moreover, it allows to declare private
items. The class configuration implementation distinguishes
the subprogram bodies working on a class type instantiation
as signal from a class type instantiation as variable or con-
stant.

Class-wide types are deduced by application of the
attribute ‘CLASS. T’CLASS denotes the set of types
including T and all descendant of T. In case of a class-wide
type, the subprogram to be executed is selected from the
class which is denoted by the actual type tag of the class.

Fig. 1 Basic reuse component

Native VHDL core
New

OVHDL
methods

OVHDL wrapper

OVHDL wrapper

Interface

Interface

derived_entity::=
‘entity‘ identifier ‘is‘‘new‘ name ‘with‘

header
declarative_part
[‘begin‘

statement_part]
end [‘entity‘] [name]‘;‘

Lst. 1 Derived entity

architecture_body::=
‘architecture‘ identifier ‘of‘ name ‘is‘[‘abstract‘]

declarative_part
‘begin‘

statement_part
‘end‘ [‘architecture‘] [name]

Lst. 2 Architecture body

class_type::=
[‘abstract‘]‘class‘

class_attributes
class_type_declarative_part
class_type_object_configuration

‘end‘‘class‘[name]
Lst. 3 Class type

4 Extensions to the RMS envir onment

TheReuse Management System RMS is a storage, adap-
tion and retrieval environment for manipulating the reuse
objects [11]. We extended it in order to handle the firm IP
cores, together with the class-wide containers. It bases on an
object-oriented model which I will summarily present in the
following.

In the RMS terminology, a reusable IP is called aCompo-
nent Environment (CE), composed of aComponent Core -
which is our future commercial firm IP core, and anEnvi-
ronment, which will be supplied by the RMS and contains
the binding of the IP core to an abstract Objective class.

A Characteristic Attribute (CA) represents a feature
describing a reuse component (like add, multiply). The
assignment of a CE to a CA is provided with a weight

, which indicates how good the CE fulfils the CA’s
feature.

A subset of CAs can be added into aVector of Character-

istic Attributes (VCA) . The assign-
ment of a CA to a VCA is also provided with a weight

. Based on these elements, the RMS creates a clas-

sification graph. The reusable components are the leaves of
this classification graph.

The similarity between CEs is defined as a function of the
weights on the path between the CEs in the classification
graph. In the state of the art version of the RMS, the classifi-
cation graph has a depth of three, so that every two con-
nected (thus similar) components are separated by four
branches. The original way of defining it was by simply add-
ing the four weights, which eventually led to the erroneous
result that a component was more similar to another than to
itself (because the similarity between the two components
was computed as the sum of four weights, one of which was
the weight). A second unpleasant effect was that the max-

imum similarity was exceeded during this calculus. We
introduce a new pondered function to define the similarity of
two CEs, expressed by:

,

where

is the similarity of the two CEs with respect to the VCA ,
and

is the percental weight of the relation between the CA

and the VCA .

All VCAs constitute aCharacteristic Vector CV. The
characteristic attributes and the corresponding vectors
within a CV describe the components concerning one
aspect, for exampleFunction. Within a CV, each component
is assigned to exactly one characteristic attribute.

In the initial RMS similarity metric, the similarity was
defined only between the reuse components CE. This was
extended by theconceptual similarity, which defines the
similarity between two characteristic attributes related to
the same vector. Due to the is-a semantic between a taxon-
omy node and his parent, each node can be considered as the
generalization of its child nodes, and this makes the RMS
taxonomy a specialization hierarchy.

We further enlarged the RMS by defining conceptual
similarities between the internal nodes of the library graph.
The IPs attached to these nodes correspond to complex or
abstract components, and following, the derived child nodes
will be in a is-a or has-parts relation to them.

The system searches for matching and similar IPs, the
selected node and all child nodes are evaluated according to
the similarity metric. For the matching and similar IPs the
attributes are now checked. For similar IPs, only the relevant
attributes are checked.

5 The two layer model

The model we use is centred on a firm IP core which will
be stored in a library of reusable objects (see Figure1). This
kind of reuse is called grey-box reuse. It allows controlled
modifications, but they do not affect the reused code
directly. The grey-box reuse is strongly correlated to the
object-oriented paradigm.

C̃

g IN∈

f
C̃

k()
g 1 g L≤ ≤() if k fulfils C̃

by intensityg

0 otherwiseî





=

C C̃1 … C̃n, ,()=

C̃i IN∈

g

L

g f k1 k2,() averagegCi
k1 k2,() 1 i m≤ ≤()=

gC k1 k2,() f
C1
˜ k1() C̃1 f

C2
˜ k2() C̃2+=

C

C̃i
C̃i

L
--------=

C̃i

C

C
�

haracteristic

Classification
�

V
�

ector of CA

1+

1+

1+

Attribute (CA)

Classificat
�

ion
V

�
ector (CV)

C
�

omponent
Environment

Reuse
�

C
�

omponent

S
�

pecification

1+

{specific candidate}

{ordered}

(VC
�

A)

Fig. 2 Classification model

The components will be included into classes that pro-
vide the necessary level of abstraction. A class, in its object-
oriented meaning, provides an abstract frame for the inte-
gration of the IP cores. Objects in the definition of the LRM
[1] are signals, variables and ports. We define objects as

entity-relationship pairs.
We accept the classes to be object containers, described

in Objective VHDL (see Listing1). They reflect the func-
tional cover of a singular kind of components (e.g. compara-
tors). With respect to the structure of our RMS, they are
designated by CAs. The firm IP cores are characterized by
means of their communication with the environment. This
information needs to be provided by the designer (owner) of
the IP.

Following, the cores that have a similar functionality will
be subordinated to this class container, as the components
that will contain them are derived by inheritance and exten-
sion from the container, using the mechanisms described in
the previous paragraphs.

We store two kinds of objects in the database:
• there are class containers, which are abstract compo-

nents; they only have a formal semantic corresponding
to the functional description of the real components,
and

• the firm core components have associated the wrap-
per , which they inherited from the class container.
The database objects are modelled as a tuple

.

The fitting of a firm core into is handled by the

interface description . This is a description of the parame-

ters of the IP core , which will further be calledsignature.

The signature describes the type and mode of the param-
eters, and thus implicitly defines the sequence for the values
to be passed as parameters. A set of values will be passed as
parameters when calling a method. This behaviour approxi-
mation works well in the software domain. Unfortunately, in
the hardware domain there are certain restrictions for the
application of the signature based modification, that were
analysed in [10].

A signature does not describe the fact that an interpreta-
tion of a signal’s value may change over time; neither does it
consider the case that not a single value, but a waveform is
given back to a caller. The solution is to separate protocol
specification and implementation from the functionality of a
method. Re-definition of inherited methods must be done
without affecting the protocol parts. Protocol waveforms
passed as parameters of mode must not schedule transac-
tions during the execution or after the execution of the
method.

The database objects can be modelled as a n-uple

. We define as the VHDL

source for the IP and as the result of extract-

ing the interface information out of the IP . The definition
of signatures respects the interface part of the Objective
VHDL description.

Both are keys for the search in our database system, as
they are defined as characteristic vectors. Accordingly, the
similarity is defined by two factors. First, the classification
of the component only places it under the corresponding
node of the library graph RL (represented by a CA in the
RMS model). These nodes are further connected through
weighted paths. The functionality will be stepwise specified
by advancing through the classification tree. Additionally to
the existing system, we define the possibility of adding more
complex components at a higher level of the graph RL, by
allowing multiple levels of CA nodes. Secondly, the signa-
tures of the methods are included under a separate classifica-
tion vector CV.

The process of including a new IP in the database implies
analysing the functionality and the interface of the compo-
nent. We distinguish two cases:

• for the new IP, there is a container describing the same
functionality. All we need to do in this case is to create
the derived type that respects the signature of all the

entity comparator is
generic (Width: Positive);

port (a,b: in bit_vector(Width-1 downto 0);
a_gt_b: out bit);

end comparator;

Lst. 4 Class container

Fig. 3 Object composition

is-acomparator

nibble comparator

scannable comparator

testable comparator

inheritance

derivation

is-a

C̃
W̃

Ñ C̃ W̃,{ }=

C̃ W̃

D̃

C̃

C̃ Ccore Csignature{ , }= Ccore

C Csignature

C

signature::=
‘(‘parameter‘)‘semantic‘;‘

parameter::=
(identifier‘;‘type‘;‘direction)*

Lst. 5 Signature definition

methods of the new object, by overloading or by simply
adding new methods to the container class.

• there is no class that close enough describes the new
component, thus the effort of modifying an existing
container would be rather equal to that required to cre-
ate a new class; or, as an other aspect, including the
component into an existing functional class is semanti-
cally impossible.

In this latter case, the database administrator has to create
a new container class, task that can become very complex
depending on the interface of the IP. This will be supported
by the RMS by providing a template and a clear methodol-
ogy for integration.

6 Implementation

The model has been verified on common benchmark
designs. A special interest was taken in the IEEE1149.1
compliant designs, as future work will address observability
and testability issues. The goals of the IEEE Std 1149.1 are
to provide a standardized approach to testing the intercon-
nections between integrated circuits, testing the circuit itself
and observing circuit activity during the normal operation of
the components. We based on the implementation of the
basic components IEEE Std 1149.1-1990 in native VHDL
[5]. At present, some of these components are described in
OVHDL, others, like the TAP controller, have an OVHDL
wrapper, and the testbench and the low-level procedures,
which constitute the functional library of the TAP, are still
native VHDL.

An example implementation addressed interconnecting
object-oriented and native VHDL designs. Therefore, a
class container for a comparator was defined (see Figure3)
and a nibble-comparator, a scannable and a testable compa-
rator were created by inheriting the wrapper of this class and
including the specific boundary scan components. To
accommodate the boundary scan register, four ports had to
be added to the scannable and the testable comparator,
therefore the interface had to be enlarged by derivation.

The Reuse Management System was implemented using
the Oracle Server 7.3. The database is running under Solaris
2.51 on a Sparc 20 computer, the application servers are run-

ning under NT Server 4.0. A screenshot of our retrieval sys-
tem is presented in Figure4. The next version of the RMS
will run under Oracle 8.0.

7 Conclusion and future work

The combination of standard and object-oriented VHDL
proves to be a successful way of including existing designs
into future IP centric systems, respecting the definition of
grey-box reuse. While being compliant with the most
widely accepted standard description language, the pre-
sented model keeps up with object-oriented features like
inheritance, polymorphism and overloading, thought as
indispensable in future reuse-based design.

Future work will address the automated adaption of the
IP cores for design by reuse, as this is still a productivity
issue and a matter of return investment planning. Further,
the transparent coupling to the high-level synthesis will be
considered. In parallel, adding scanability and testability by
including IEEE1149.1 compliant modules in an early
design phase, will be addressed.

8 References

[1] IEEE Standard VHDL Language Reference Manual. IEEE
standard 1076-1993, 1993.

[2] P.J. Ashenden, P.A. Wilsey, and D.E. Martin. SUAVE: Painless
Extension for an Object-Oriented VHDL in Rapid Systems
Prototyping with VHDL. InProc. of the VIUF Fall 1997 Con-
ference, 1997.

[3] J.Benzakki and B.Djafri. Object-Oriented Extensions to
VHDL - the LaMI Proposal. InProc. of CHDL’97, Toledo,
Spain, 1997.

[4] D. Cabanis and S.Medhat. Object-Oriented Extensions to
VHDL: The Classification Orientation. InProc. of the VHDL
User Forum Europe 1996. Shaker Verlag, 1996.

[5] P. Campbell, M.Vai, and Z.Navabi. Implementation of IEEE
Std 1149.1-1990 in VHDL.Proc. of the VHDL International
Users’ Forum Conference, 1992.

[6] D. Eisenbiegler and C.Blumenröhr. Gropius - Advanced
Reuse Concepts in a New Hardware Description Language.
Proc. of the 2nd GI/ITG/GMM Workshop Reuse Techniques
for VLSI Design, 1998.

[7] S.Maginot, W. Nebel, W. Putzke-Röming, and M.Radetzki.
Final Objective VHDL Language Definition. Technical
report, LEDA and OFFI, May 1997.

[8] W. Putzke-Röming, M.Radetzki, and W. Nebel. A Flexible
Message Passing Mechanism for Objective VHDL. In Proc.
of DATE’98, Paris, France, Feb. 1998.

[9] A. Reutter, B. Mößner, I. Kreutzer, and W. Rosenstiel. Wieder-
verwendung komplexer Komponenten für Synthese und Sim-
ulation unter Verwendung von VHDL. In L. Peters and
K. Lagemann, editors,Entwurf Integrierter Schaltungen, 8.
E.I.S.-Workshop, Tagungsband, Apr. 1997.

[10] G. Schumacher and W. Nebel. Object-Oriented Modelling of
Parallel Hardware Systems. InProc. of DATE’98, Paris, Feb.
1998.

[11] R. Seepold.A Hardware Design Methodology with Special
Emphasis on Reuse and Synthesis. PhD thesis, Univ. of
Tübingen, 1997.

Fig. 4 Search for reusable components

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

