
Specification and validation of
distributed IP-based designs with JavaCAD

Marcello Dalpasso
DEI – Università di Padova

Via Gradenigo, 6/A – 35131 Padova, Italy
dalpasso@dei.unipd.it

Alessandro Bogliolo, Luca Benini
DEIS – Università di Bologna

Viale Risorgimento, 2 – 40136 Bologna, Italy
fabogliolo,lbeninig@deis.unibo.it

Abstract

This paper presents JavaCAD, a new Java-based CAD
framework for the design, validation and simulation of sys-
tems using third-party components with reciprocal intellec-
tual property (IP) protection. The designer can use remote
components with a dedicated and secure Internet protocol,
that guarantees IP protection and supports a smooth tran-
sition between component evaluation and purchase.

1 Introduction

The increasing complexity of VLSI designs can be tack-
led only relying on design methodologies that emphasize
the re-use of previously developed hardware components.
In this line of evolution, the design of a large digital system
will be centered on the selection, evaluation and acquisi-
tion of intellectual property (IP) components designed by
others, and the construction of dedicated interfaces for their
communication. A new generation of CAD tools is required
to address the issues raised by the widespread diffusion of
IP-based designs. In this paper we propose a new computer-
aided design environment that has been conceived with the
specific purpose of enabling and fostering IP-based design.

One of the main implications of IP-based design is the
greater need for communication of valuable information be-
tween IP providers and users. The usefulness of design envi-
ronments that facilitate communication and data exchange
has been recognized in the past [16]. More recently, the
explosive growth of computer networking in general, and
the World-Wide Web in particular, has spurred the devel-
opment of networked (or web-based) EDA tools and tool
frameworks [8, 1, 10, 13, 7, 2, 4, 3].

In this work, we focus on the problems raised by the
use of IP components provided by third-party vendors over
the Internet. We envision the following scenario. A de-
signer (IP-user) is potentially interested in employing an IP

component developed by a third party (IP-provider). Before
purchasing the IP component, she/he wants to verify that the
component complies with the specification of the design un-
der development. Such specifications may be functional or
may constrain design cost metrics such as speed, area, power
or testability. Ideally, the IP-user would like to be able to
perform accurate simulation/evaluationof the IP component
within her/his design, estimate its cost and finally decide on
the purchase. On the other hand, the IP-provider cannot
promptly disclose the complete information to the IP-users
for several reasons. First, his intellectual property would
be made available to the user at no charge. Second, for the
purpose of evaluation, the provider may want to make sure
that the user is deploying the component in a correct fashion,
so that comparison with other competing products would be
fair.

Our Java-based simulation environment, called Java-
CAD, provides a solution to safe and effective IP evaluation
during design specification/exploration. In the JavaCAD
framework a designer can instantiate third-party IP compo-
nents and simulate them together with proprietary blocks in
a seamless fashion. Multiple IP components from multiple
IP providers can be simulated and the protection of intel-
lectual property is guaranteed for all providers involved; the
intellectual property of the user with regards to the providers
is protected as well.

We provide methods for enabling the negotiation between
IP user and provider about the amount of information that
can be made available during simulation. Thus, JavaCAD
supports a smooth transition between evaluation and pur-
chase.

JavaCAD is built around a flexible event-driven simu-
lation engine, that supports hierarchy, multiple levels of
abstraction, distributed and parallel simulation. Designs are
specified directly in Java using a mixed structural-behavioral
style that is widely supported in common hardware descrip-
tion languages such as Verilog and VHDL.

The paper is outlined as follows: the next Section ac-

counts for the most significant previous efforts in this field;
Section 3 introduces the main features of the JavaCAD de-
sign framework and gives some details about its architec-
ture; Section 4 outlines a scenario for using JavaCAD in
a distributed, Web-based design environment that involves
IP-users and third-party IP-providers; Section 5 concludes
the work.

2 Previous work

Improving data communication among design tools and
providing a uniform user interface were the main goals of
several framework initiatives [16]. The definition of stan-
dard formats for design descriptions such as VHDL and
EDIF has been another important milestone in this direc-
tion. With the explosive growth of networked computing
new paradigms have emerged for organizing the access to
design-specific information [10, 13, 11]: geographically dis-
tributed information can be automatically collected and vi-
sualized by exploiting the World-Wide Web. Web servers
for management and diffusionof design-critical information
have been developed by all major companies in the semi-
conductor business, as well as by EDA companies.

A more radical paradigm shift has been proposed [7,
2, 4, 3]: the World-Wide Web can be exploited not only
to share information, but also to actually perform design-
critical tasks, such as validation and optimization. In this
more aggressive view, a designer is a client in a client-
server architecture and he/she can request services from a
variety of servers. CAD tool usage is a type of service, as
well as intellectual property delivery. More recent research
initiatives [4, 3] try to push the concept of client-server
interaction and collaborative,distributed design even further.

Similarly to previous work, we assume a client-server
architecture where clients are IP users and servers are IP
providers. On the other hand, we focus on IP-related issues,
more than trying to provide a common framework for gen-
eral EDA-related interactions. We assume that hardware
designs are specified in Java. Java-based system specifi-
cation styles have been studied in [14, 6]. These works
have assessed the suitability of Java as an abstract hardware-
software specification language.

3 JavaCAD: Functionality and Architecture

The JavaCAD framework for system design, validation
and simulation, has been developed entirely in Java [5]. We
exploited the object-oriented features of Java to effectively
express the component-based design semantics of modern
digital systems. The key feature of JavaCAD is the capabil-
ity of handling designs containing “local” (owned by the de-
signer) and “remote” (provided by a third-party developer)

X

Y

Zadd

mult

mult

Figure 1. A simple RTL circuit that computes
the sum of squares of two input words, X and
Y , and stores the result in register Z.

components. Any design and simulation tool can exploit
JavaCAD protocols (based upon JavaSoft Remote Method
Invocation – RMI [12]) to seamlessly deal with remote com-
ponents as if they were local. The hardware description
language (HDL) for system designs used in JavaCAD is the
Java language itself. The framework includes full support
for hierarchical design at multiple levels of abstraction.

The JavaCAD framework has been designed as a set of
Java packages that must be used both by the IP provider and
by the IP user: such packages contains the super-classes of
any actual component developed by the user as well as by
the IP provider, and all the utility classes that are required
for the JavaCAD framework to work.

JavaCAD contains a multi-level event-driven simulator.
The choice of the simulation engine was motivated by the
generality and flexibility of event-driven simulation, as op-
posed to more specialized simulation techniques that target
high efficiency at the expense of generality. Furthermore,
JavaCAD has direct and full support (based on Java threads)
for concurrent simulations of different parts of a design or
of different setups for the same design.

Design specification requires the instantiation of Java-
CAD classes that describe design components taken ei-
ther from the standard JavaCAD packages, or from a user-
designed library, or from third-party IP libraries. Design
validation and simulation is performed by running the main
JavaCAD class that implements the whole design under de-
velopment.

Example 1 Consider the simple RTL circuit shown in Fig-
ure 1. Assume that the designer (IP-user) wants to use a
high-performance proprietary multiplier developed by an
IP-provider. Before purchasing the multiplier, the IP-user
wants to instantiate the IP multiplier in the design to verify
its functional correctness. Furthermore, the IP-user wants
to accurately estimate the register-to-register propagation
delay to set the clock period.

The IP-provider releases (through a JavaCAD server)
the public interface of the multiplier, containing an abstract
functional model (i.e., out = in1 � in2). The public inter-
face allows the designer to perform functional simulation.

However, timing analysis requires the knowledge of the de-
tailed gate level structure of the multiplier (which belongs
to the not-yet-disclosed IP). The designer can perform tim-
ing analysis using the RMI features of JavaCAD, by calling
a method that traverses the netlist of the multiplier. The
method is run on the IP-provider server and only the final
result is communicated to the IP-user. Notice that the adder
and registers are local components. Their methods for tim-
ing analysis are invoked in the same way, but they are run
locally on the IP-user machine.

3.1 Basic data structures

Any design component in JavaCAD is a subclass of the
Module class. The Module object is specialized by: i)
a set of methods that are executed when events reach the
component (for instance, methods specifying functionality
and cost metrics), ii) a set of connections, each one tied to a
different Connector.

The behavior of the component can be specified at dif-
ferent levels of abstraction: gate and register-transfer level
are actually supported in JavaCAD, but higher levels are
planned and under development. As detailed in Section 3.3,
a Module instance can be either local or remotely accessed
through the Internet on the IP-provider server.

A Connector ties two Modules together, and it
performs no other function but Token-passing between
Modules (see Section 3.2); the connection of Modules
can exist only through a Connector, thus it is easy to en-
force any communication semantics between Modules by
means of a custom Connector. For instance, bit-level and
word-levelConnectors are provided by JavaCAD to han-
dle gate-level and word-level variables respectively (please
note that word-level variables can have any word length).

SinceConnectors represent point to point connections,
special Modules are needed to handle multiple fan-out nets
and represent net delays. This gives the designer a high
degree of flexibility: for instance, custom FanOutmodules
can provide different delays for the propagation towards
different target Connectors.

In a similar way, custom Modules can be designed to
handle an interface between a part of the design that is
specified at the gate level, and another part that is described
at the register-transfer level.

As an example of using Java as an HDL in JavaCAD,
Figure 2 shows a class that describes the circuit given in
Figure 1.

3.2 Simulation & Event Handling

The event-driven simulation engine of JavaCAD takes
care of everything is needed to perform the actual validation
and simulation of a distributed IP-based design, as well as to

x mxrx
x2

x1

zPIx

PIy

Rx

Ry

FOx

FOy

Mx

My

A Rz POz

my

public class Example extends Design {
public void design() throws Exception {

int width = 16;
Connector x = new WordConnector(width);
Connector rx = new WordConnector(width);
...

Module PIx = new PrimaryInput(x);
Module Rx = new Register(x, rx);
Module FOx = new Fanout(rx, x1, x2);
Module Mx = new RemoteMult(x1, x2, mx);
Module A = new Adder(mx, my, z);
...

Circuit C = new Circuit(PIx, Rx, FOx, Mx,
A,);

Simulator s = new Simulator(c);
...
s.start();

}
}

Figure 2. The JavaCAD specification of the
simple design of Figure 1. Squares and cir-
cles in the block diagram denotes Modules
and Connectors respectively. The Java code
is partially reported for the sake of concise-
ness.

perform the negotiation of parameters and the configuration
of parameter estimators in the simulation set-up. The super-
class for any event is the Token, and Tokens are handled
(i.e., scheduled and delivered) by a Scheduler.

It is possible to instantiate multiple Schedulers and
to run them in concurrent threads, thereby providing full
support for concurrent simulations running over the same
design. During simulation, internal state information for
each component is stored in lookup tables addressed by
unique identifiers associated with the Schedulers.

Notice that Tokens do not represent only functional
events (i.e., changes of signal values), but they are used
as a general communication method to traverse the design,
collect information from modules, set up run-time param-
eters etc. In other words, Tokens implement a general
message-passing engine for design manipulation.

3.3 Remote Method Invocation (RMI)

Java Remote Method Invocation (RMI, [12]) is a JavaSoft
implementation of a CORBA-like distributed object model

for the Java language that retains the semantics of the Java
object model, making distributed objects easy to implement
and use. The key features of RMI exploited by JavaCAD
are:

� creation of local instances of remote classes
(Modules) without having their byte-code available
(such classes are IP components);

� invocation of methods of remote classes, with a proper
handling of parameters and return value;

� handling of a secure Internet communication channel
between the client (the IP-user) and the server (the IP-
provider).

3.4 Security

Security is a key issue in JavaCAD, and guaranteeing
security poses additional problems as compared to tradi-
tional security issues in distributed Internet-based client-
server computing [15]. In fact, not only the communication
between the client and the server must be secured from third-
party intrusions, but even the client and the server cannot
completely trust each other (for IP-protection goals).

Both these problems have been solved in JavaCAD by ex-
ploiting RMI features, and through an innovative use of the
enhanced security model that comes in JDK 1.2 [9]. Tra-
ditional communication security over the Internet is com-
pletely handled by the RMI protocol, that uses sockets for
communication; such sockets are customizable and can be
as secure as the client and the server want and agree upon
(e.g., SSL, DES, RSA).

3.4.1 Security as protection of the IP provider

Security for the IP provider has been implemented in Java-
CAD by splitting the actual component specification in two
main parts:

� the IP-protected part of the component specification
is located on the IP-provider server as a private class,
whose byte-code is not sent to the client even during
the actual simulation;

� the public part of the component specification is given
to the IP-user by the IP-provider and is used to instan-
tiate the remote component within the actual design.
Such a public part (an RMI stub [12]) handles the invo-
cation of remote methods to be run on the IP-provider
server.

3.4.2 Security as protection of the IP user

Security as protection of the IP of the designer that uses
remote components has been implemented in JavaCAD by

a careful usage of parameter marshalling in RMI (Object
Serialization, [12]).

Bounding each Module with Connectors allows the
JavaCAD framework to completely inhibit the transmission
of sensitive information (the other actual Modules used
in the design as well as their properties and mutual re-
lationships). Since the remote IP-component (a Module
itself) needs only information that are available at its own
Connectors to perform any possible estimation and sim-
ulation, only such information is transmitted over the RMI
channel.

In addition, the downloaded public and stub classes that
make up the package supplied by the IP provider has no
permission when executing in the designer environment,
since they are marked as “non trusted” and consequently
handled by the Java security manager.

4 Using JavaCAD

The JavaCAD framework consists of a set of Java pack-
ages (distributed as a JAR file) that must be used both by the
IP-user and by the IP-provider.

4.1 The IP-provider perspective

An IP-provider wishing to use JavaCAD to promote
the usage of its custom components without complex non-
disclosure agreements must use Java as an HDL to write its
CustomModule class, by subclassing the Module root
class outlined in Section 3.1. Such a CustomModule im-
plements the full functionality and support for simulation
and validation that is available for the component, with no
problem for the IP protection, since its IP-sensitive methods
reside on the provider server only.

To make the component available to remote designers for
evaluation, the IP provider should set-up a public Web server
with pages that describe the key features of its component,
and a link to JAR files for the download of the public and
the stub parts of its component (i.e., the necessary classes
for an IP-user to instance the remote component in her/his
design).

In addition, the IP-provider must set-up an RMI registry
server and an RMI daemon (see [12]) where the IP-protected
part of its component is active and ready to reply to incom-
ing requests for estimation, simulation and validation, by
means of the JavaCAD protocol, inclusive of negotiation
capabilities as well as full logging of client connections and
activities.

It is important to mention that RMI does raise perfor-
mance issues. If remote methods are called very often,
simulation performance will be bound by the limited (and
unpredictable) bandwidth of Internet connection. For this
reason, remote methods should be used sparingly, either to

process rare events or to perform static once-for-all analy-
ses, and they should be concerned with the real protection of
the IP only. It is responsibility of the IP-provider to design
remote methods that limit performance losses.

Referring to the example of Figure 1, it would not be
a good choice to implement the procedure that computes
the results of the multiplication as a remote method. Such
method is called during simulation every time an event ar-
rives at the inputs of the multiplier, and it must complete
execution before simulation can proceed. In addition, such
a procedure does not carry any intellectual property, since
the multiplier functionality can be considered public.

On the other hand, the timing analysis method is generally
called a limited number of times, and its performance impact
is much smaller. Such a method should be really remote,
since its evaluation needs the gate-level description of the
multiplier, that is the actual IP that must be protected.

4.2 The IP-user perspective

The designer using JavaCAD develops his/her circuit
specification as an interconnection ofModules, freely mix-
ing local components and remote IP-protected components
using Java as an HDL. During validation and simulation of
the design, the access to remote IP-protected components
is transparently handled by the JavaCAD framework, possi-
bly interacting with the user when money is required by the
IP-provider for returning information.

Typically, the user should have access to the Web servers
of different IP-providers, select the actual components to
use in her/his design, download their public and stub part as
JAR files, and instance such remote Modules. When the
simulation set-up is started by the designer, the JavaCAD
protocol establishes the Internet communication with the
IP-provider, while ensuring the IP protection for both the
designer and the provider.

After successful validation and simulation of the design,
the IP-user’s company can proceed to standard commercial
relationship to use the IP-protected component, but no pre-
vious agreement was necessary.

5 Conclusions and future work

We have presented a new framework for system design,
validation and simulation targeting IP-based design flows.
Java Remote Method Invocation is used to guarantee IP pro-
tection while allowing the designer to perform accurate sim-
ulation of her/his design before actually purchasing (some
of) the involved IP components. JavaCAD supports hierar-
chical design, multiple levels of abstraction, distributed (on
the Internet) and parallel simulation. The Java language is
directly used as a hardware description language.

Future and undergoing developments will address higher
levels of abstraction (currently, gate and register-transfer
level are supported) and flexible simulation setup with in-
teractive client-server negotiation of simulation parameters.

References

[1] A. Bedenfeld and R. Camposano. Tool integration and con-
struction using generated graph-baseddesign representation.
Proc. of the Design Automation Conference, pages 94–99,
1995.

[2] D. Lidsky and J. Rabaey. Early power exploration - a World
Wide Web application. Proc. of the Design Automation Con-
ference, pages 27–32, 1996.

[3] F. Chan, M. Spiller and R. Newton. WELD - An environ-
ment for Web-based electronic design. Proc. of the Design
Automation Conference, pages 146–151, 1998.

[4] H. Lavana, A. Khetawat, F. Brglez and K. Kozminski. Ex-
ecutable workflows: a paradigm for collaborative design on
the Internet. Proc. of the Design Automation Conference,
pages 553–558, 1997.

[5] J. Gosling, B. Joy and G. Steele. The Java Language Speci-
fication. Addison-Wesley, 1996.

[6] J. Young et al. Design and specificationof embeddedsystems
in Java using successive, formal refinement. Proc. of the
Design Automation Conference, pages 70–75, 1998.

[7] L. Benini, A. Bogliolo and G. De Micheli. Distributed EDA
tool integration: the PPP paradigm. Proc. of the International
Conference on Computer Design, pages 448–453, 1996.

[8] L. Geppert. IC Design on the World Wide Web. IEEE
Spectrum, June 1998.

[9] L. Gong. The Java Security Model and Architecture.
Addison-Wesley, announced.

[10] M. J. Silva and R. H. Katz. The case for design using the
World Wide Web. Proc. of the Design Automation Confer-
ence, pages 579–585, 1995.

[11] M. Spiller and R. Newton. EDA and the Network. Proc. of
the International Conference on Computer-Aided Design,
pages 470–475, 1997.

[12] P. Chan. The Java Developers Almanac. Addison-Wesley,
1998.

[13] P. G. Ploger et al. WWW Based structuring of codesigns.
Proc. of the International Symposium on System Synthesis,
pages 138–143, 1995.

[14] R. Helaihel and K. Olukotun. Java as a specification lan-
guage for hardware-software systems. Proc. of the Interna-
tional Conference on Computer-Aided Design, pages 690–
697, 1997.

[15] S. Hauck and S. Knoll. Data security for Web-based CAD.
Proc. of the Design Automation Conference, pages 788–793,
1998.

[16] T. J. Barnes et al. Electronic CAD frameworks. Kluwer
Academic Publishers, 1992.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

