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ABSTRACT

A novel library layer, called the “design space layer,” is
proposed, aimed at supporting both, IP-based and tradi-
tional “in-house” design methodologies, during early
design space exploration. Strategies for effectively pruning
the large design spaces characteristic of system-on-a-chip
designs, and for transparently retrieving information on
cores adequate for implementing the system components,
are supported by the proposed layer. The layer is self-docu-
mented and highly compartmentalized into hierarchies of
classes of design objects, and is thus easily scalable. A
design space layer developed for encryption applications is
presented and discussed in some detail.

1 Introduction
The trend towards developing core-based, system-on-a-chip
solutions for complex application specific systems is clearly
irreversible. Increasing the level of design integration is
quite attractive from a reliability, power consumption, and
unit-cost perspective. The use of cores, i.e., macro-cells
developed by third party IP providers, can lead to significant
decreases in design cost and in time-to-market. Reflecting
the tremendous opportunities created by this emerging trend
in the design of application specific systems, the number of
IP providers is booming -- more than 88 are listed in [1],
offering over 1300 reusable blocks.

This paper proposes a new library layer, to be implemented
on top of conventional reuse libraries (see Fig. 1), aimed at
supporting both, IP-based and traditional “in-house” design
methodologies, during early design space exploration. Spe-
cifically, the objective is to assist designers in systemati-
cally considering relevant alternative implementations for
the various components of a system-on-a-chip architecture.
Accordingly, it will be shown that the proposed library
layer, called the design space layer, allows for IP cores, that
are good candidates for implementing specific system com-
ponents, to be quickly and transparently selected from reuse
libraries.

As shown in Fig. 1, the proposed design space layer can be
logically connected to any number of reuse libraries, i.e.,
transparently index/reference designs residing in different
libraries. Each design environment should thus develop its
own design space layer, tailored to the application domains
of interest, and then use such a layer to reference available
cores, stored in reuse libraries maintained by the IP-provid-
ers themselves.

The remainder of the paper is organized as follows. Section
2 gives an overview of the fundamental support mecha-
nisms provided by the proposed layer for assisting concep-
tual design and core selection during the definition of a
system-on-a-chip architecture. Previous work is discussed
in Section 3. The proposed modeling framework is
described in more detail in Section 4. Section 5 presents a
detailed case study on the development of a design space
layer for encryption applications. Some conclusions are
given in Section 6.

2 An Overview of the Design Space Layer
As its name suggests, the proposed layer creates a represen-
tation of the design space, i.e., the space of all feasible
(alternative) implementations for the object under design.
Note that such a representation is not explicit, since the
actual alternative designs may or may not exist in the reuse
libraries that underlie the layer. The design space is thus
implicitly represented by discriminating the areas of design
decision, or design issues, that are on the basis of the cre-
ation of such alternatives. An example of one such design
issue is “implementation style,” discriminating between
hardware and software designs. Note that the cores avail-
able in the reuse library correspond to “points” in the design
space represented in the layer. Accordingly, they are logi-
cally indexed (i.e., referenced) via these same areas of
design decision. Some regions of the design space may be
thus populated by a large number of cores, while others may
not.

The proposed layer is aimed at supporting strategies for sys-
tematically pruning large design spaces and for retrieving
information on available cores (i.e., reusable designs) com-
plying with the system’s requirements and with the design
decisions made so far. Indeed, each design decision made
with respect to a specific architectural component, during
conceptual design, corresponds to a pruning of the compo-
nent’s design space. The reusable designs that fall outside
the selected region are immediately eliminated from consid-
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eration. Critical information on the set of reusable designs
that do comply with the decision, including ranges of per-
formance and power consumption, can be then directly pro-
vided to the designer. In some cases, directly reusable
designs may not be available in the reuse libraries, i.e., the
set of “readily available” design points (within the selected
design space region) is empty. In such cases, the proposed
design space layer still assists the designer in undertaking
conceptual design, adequately supported by early estima-
tion tools, whenever such tools are available. Space limita-
tions preclude us from further discussing this topic.

The adopted design space representation is based on the
design formalism described in [2]. The cornerstone of this
formalism is the concept of a class of design objects. Exam-
ples of classes of design objects are “Adders,” “Inverse Dis-
crete Cosine Transform” (IDCT) blocks [3], and “MPEG II
encoders/decoders.” [4]

A class of design objects is an abstraction used to implicitly
define the design space encompassing all feasible imple-
mentations of a specific behavior or functionality. For
example, the “IDCT” class of design objects abstracts all
possible IDCT implementations, each of which is a point in
the design space, called an IDCT design object. Alternative
designs are differentiated within the “IDCT” class by the
various areas of design decision, or design issues, that are
relevant to the design of an IDCT. Examples of such design
issues are “algorithm” and “layout style.”

Since the design space for complex application specific sys-
tems tends to be quite large, it is important to provide basic
mechanisms to enable an effective and systematic pruning
of the space.

2.1  On the Inadequacy of Traditional Design
Views

In this section we argue that organizing the reusable designs
strictly in terms of the “traditional” algorithm, RTL, logic
and physical design views is not adequate if one wants to
support early design space exploration and IP core selec-
tion. Fig. 2 will be used to illustrate this point. Consider for
example that five IDCT hard-cores are available in the reuse
library. The boxes shown in Fig. 2(b) symbolically denote
how the detailed design data for each of the IDCT cores
would be partitioned into the four levels of abstraction:
algorithm, RT, logic, and physical.

For the sake of the discussion, let us assume that the design

space layer would be defined strictly with respect to this
hierarchical organization of design views. As shown in Fig.
2(a), we would in this case define four “sub-classes” for the
IDCT class -- the first sub-class would represent the design
space of the IDCT at the algorithm level, and the second,
third, and fourth sub-classes would represent it at the RT,
the logic and the physical levels, respectively. So, while
each box in Fig. 2(b) denotes the detailed design data of a
particular view of an IDCT core, the boxes in Fig. 2(a) enu-
merate the areas of design decision (and corresponding
design options) that would need to be considered at each
level of abstraction, when selecting an IDCT. Accordingly,
each of the IDCT cores would be discriminated first at the
algorithm level, then at the RT level, etc.

By exploring the design space in such a way, there would be
no guarantee that the designer would be quickly and coher-
ently guided to the best candidate IDCT core(s). For exam-
ple, Designs 1 and 4, with quite distinct area/performance
characteristics (see Fig. 2(c)), could very well be different
implementations of the exact same IDCT algorithm (say,
one using a 0.35  standard cell library, and the other using a
0.7  standard cell library). So, the design space regions
selected by initially exploring only the algorithm design
space could map into quite uninformative regions in the
evaluation space, as symbolically shown in Fig. 2(c).

The important observation to be made is that, some design
issues may only explicitly appear in the design data at the
logic or lower levels of abstraction (e.g., “layout style,”
“fabrication technology,” etc.), yet they may still have a
major impact on performance, silicon area, and power con-
sumption. Thus lower level decisions such as these may
actually need to be considered very early in design space
exploration process.

2.2  A Design Space Layer Based on Specialization/
Generalization

Consider again the five IDCT cores. (Assume, for simplic-
ity, that all such cores can support the specific “word size,”
“precision,” and other requirements posed by the applica-
tion.) Intuitively, one would expect to see Designs 1 through
5 discriminated into the clusters/groups as shown in Fig.
3(b). This means that the designer should first be presented
with the design issues that result in the significantly differ-
ent area/performance ranges exhibited by the cluster
{1,2,5} and the cluster {3,4}. Only after the designer com-
mits to one of these ranges, by adopting the design options



that are common to the designs within the corresponding
cluster, should options that further discriminate between the
designs within a single cluster be considered. This is sym-
bolically shown in Fig. 3.

We now discuss how this is achieved in our proposed design
space layer. Let us revisit the notion of a class of design
objects, and introduce the notion of a generalized class of
design objects. A generalized class of design objects is one
that considers only a subset of the design issues that need to
be addressed in order to complete conceptual design.1 A
hierarchy of such generalized design classes can be thus
constructed, starting with more general classes and increas-
ingly specializing them, thus defining increasingly “spe-
cific” design space regions, and corresponding families of
design objects, see Fig. 3.

In this paper we argue that the ability to create such general-
ization/specialization hierarchies is fundamental to support-
ing/enabling a systematic exploration of large design
spaces. Modeling mechanisms are proposed in order to sys-
tematically define such hierarchies (see Section 4).

This generalization/specialization hierarchy is to be con-
structed based on common functionality at a desired level of
abstraction/detail, and also on similarities of alternative
designs with respect to achievable ranges of performance,
power consumption, etc. So, as shown in Fig. 3(a), all IDCT
designs would first be generalized into a single family of
design objects, since they implement the same basic func-
tion, the Inverse Discrete Cosine Transform.

A simplified design space layer for the IDCT class is given
in the Fig. 4. The “top” IDCT generalized class contains the
definition of the transform -- all available IDCT cores are
thus indexed through this node.

Many different IDCT algorithms can be found in the litera-
ture.[3] Such algorithms, obviously all derived from the
same basic mathematical definition of the transform, have
however different critical paths, different numbers of opera-
tions, precisions, etc. The speed, power consumption, and
other application-specific requirements, should thus ulti-
mately dictate which algorithmic implementation of the
transform is most suitable for each design.

The proposed layer should thus support such an algorithm-
level design space exploration, whenever required. How-

1. The definition was simplified, for clarity. In section 4 we provide the
precise definition of a generalized class of design objects.

ever, as shown in Fig. 4, the design issue “implementation
style” precedes the design issue “algorithm,” suggesting
that: (1) its overall impact on performance is more signifi-
cant than that of the “algorithm” design issue; (2) it may
impact the definition of the options for the “algorithm”
design issue, e.g., some of the algorithms may only make
sense when implemented in hardware; and/or (3) it may
impact the comparative efficiency of algorithms.

So far we have mostly focused on hardware designs but
software implementations pose no significant challenge to
our modeling framework. For example, consider again Fig.
4. The design issue to be used for further discriminating the
“software” generalized class would be “programmable plat-
form,” with options such as “embedded RISC processor”
and “embedded digital signal processor.” These platforms
would be then further discriminated. The software routines
and the processor cores themselves, would be the “reusable
designs”.

3 Previous Work
The Virtual Socket Interface (VSI) alliance [5] was recently
created to address the challenges posed by core-based sys-
tem-on-a-chip designs. The VSI alliance efforts towards
defining required and recommended design practices for IPs
will be instrumental in defining the complete set of require-
ments and areas of design decision that must be specified
for each IP block.

A number of reuse methodologies have been reported in the
literature, geared towards defining parametrized HDL com-
ponents so as to increase the opportunities for reuse (e.g,
[6]). Note that such design data should reside in a reuse
library (see Fig. 1), and be then properly indexed/refer-
enced, via the design space layer proposed in this paper. In
[7], a methodology for reuse by adaptation was proposed
which relies on a feature-based model. The aim and scope
of our work is different from the above in two fundamental
ways. First, in order to create an “open” design space layer,
capable of referencing populations of cores which are con-
stantly increasing, or changing, our focus is placed not on
the design objects themselves, but on design space that con-
tains such objects. Moreover, our emphasis is on supporting
trade-off exploration, as opposed to automating the selec-
tion of reusable designs.

4 A Modeling Framework for Creating
Design Space Layers

For simplicity, classes of design objects have so far been
presented as “atomic black-boxes.” They are not, however,
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the finest grain modeling construct provided in our design
space representation. At its finest level of granularity, the
design space is actually abstractly characterized (i.e., dis-
cretized) by a set of behavioral and structural properties or
features. Such properties are meta-data used to organize the
myriad of design data characterizing each given design
object. They can be classified into:1

• behavioral and structural descriptions, used to define the
structure or intended behavior of design objects at various
levels of design abstraction (for example, an RTL behav-
ioral description, written in VHDL or Verilog.);

• design requirements, specifying the target performance,
area, etc., for the object under design, as well as other
“problem givens,” such, for example, the required “word
size” for an “adder” or “multiplier,” and the required “pre-
cision” for an “IDCT” block;

• design decisions or restrictions made during conceptual
design with respect to critical design issues, such as the
“implementation style” for the various system compo-
nents.

The properties alluded to above are then organized into a
hierarchy of increasingly specialized classes of design
objects. So, groups/families of alternative algorithms and/or
implementation styles, for example, can be merged/col-
lapsed (i.e., “generalized”) to facilitate the initial explora-
tion phases. By doing so, they become selectable as a
“family of design alternatives,” and can then be incremen-
tally discriminated, as conceptual design progresses.

It is important to note that the specialization alluded to
above is actually realized at the design issue (i.e., property)
level. Generalized design issues, collapsing families of
alternatives, will thus precede more detailed design issues,
whenever that makes sense from the point of view of
aggressively pruning the design space. For example, the
option “hardware” shown in Fig. 4 for the IDCT class, actu-
ally results from collapsing all “layout style” and “imple-
mentation technology” alternatives, enumerated at lower
levels of the specialization hierarchy. The generalized
design issue “implementation style” is thus created in order
to differentiate, up-front, the entire family of hardware
alternatives, from the software family.

This organization of properties into a hierarchy of classes of
design objects defines the design space for the target set of
application domains. Note that a class of design objects
(CDO) may contain at most one generalized design issue.
Each option of a generalized design issue defines a new
CDO descending from the original CDO, i.e., defines a spe-
cialization of the previous class. CDOs with no generalized
design issue are thus the leafs of the hierarchy.

This hierarchy of CDOs provides also a basic schema for
classifying and indexing families of cores residing in the
reuse libraries. Reusable designs (i.e., design objects of a
certain class) are thus no longer monolithically represented
and accessed. Instead, as conceptual design progresses, it is

1. For a more detailed discussion on this classification, see [2].

possible to access families (i.e., groups) of such objects,
with desired ranges of performance, power consumption,
etc., down to single properties of individual design objects
(i.e., down to a single property “value,” say, an HDL model
and test files for behavioral simulation). Thus reuse
becomes naturally merged with design, in that it is not only
a mechanism to minimize the need for re-design, but also a
mechanism to assist conceptual design and estimation,
throughout the entire design process.

Finally, a modeling construct, called consistency constraint
(CC), is used to express relationships among properties.
CCs are one of the key mechanisms provided in our model-
ing framework to support a systematic exploration of large
design spaces. Specifically, CCs allow for establishing gen-
eral consistency relationships among design options across
design issues, and/or among design issues and require-
ments. CCs also allow for establishing a partial ordering
among design issues, considering the degree to which they
impact key requirements, such as performance, area, etc.

CCs are defined by an independent set of properties, a
dependent set of properties, and a relation. The dependent
set can only be addressed by the designer after the indepen-
dent set has been addressed. Moreover, when the indepen-
dent set is modified, the dependent set needs to be re-
assessed. A relation defines the type of dependency between
both sets of properties. The relations defined within a CC
can be quite different in nature. Namely, they may be stated
exactly, using first principles, or be heuristic. They may be
quantitative or qualitative. Moreover, they may directly
state inconsistencies between specific design options, or
identify inferior (i.e., dominated) combinations of such
options. Detailed examples are given in Section 5.

Before concluding this section, we will further clarify the
difference between the coarse-grained “partitioning” of the
design space implemented by generalized design issues, and
the finer-grained design space exploration strategies, imple-
mented by “regular” design issues and consistency con-
straints. On one hand, the options of a generalized design
issue typically collapse a number of options from a number
of design issues into single “artificial” (generalized) alterna-
tives -- this is thus a coarse partitioning of the design space,
discriminating among broad alternatives, created with
respect to important “commonalties/similarities” in: (1)
functionality; and (2) achievable figures of merit. CCs, on
the other hand, establish a finer-grained, trade-off oriented
organization of the design issues defined within each class
of design objects.

5 A Detailed Case Study on Cryptography
In what follows we present a case-study on the application
of our modeling framework to cryptography applications,
e.g., digital signature and public key encryption and
decrypting. [8] These applications use, as a basic operation,

the modular exponentiation, ME mod N, typically per-

formed on integers with values up to 21000. Modular expo-



nentiation, in turn, uses modular multiplication, AxBmod
M, as a basic operation. Due to space limitations, most of
our discussion focuses on modular multiplication.

This case study aims at demonstrating two fundamental
points: (1) the proposed generalization hierarchies are
instrumental to effectively pruning the design space so as to
quickly identify adequate design space regions; and (2) a
trade-off oriented design space exploration can be ade-
quately performed at each stage of the traversal of the gen-
eralization hierarchy, i.e., within the increasingly narrower/
smaller design spaces defined by each specialized class in
the hierarchy.1 In order to demonstrate points (1) and (2)
above, the specifics of the design space layer developed for
modular multiplication will be presented assuming that a
core for implementing modular multiplication is to be
selected, so as to meet the specifications given in [9]for a
modular exponentiation coprocessor to be used in cryptog-
raphy applications.

A number of alternative hardware modular multiplier
designs was developed for this experiment, using the Syn-
opsis Design Compiler and the LSI Physical Design Tools
and Toolkit for the 0.35  G10 library -- a sub-set of these
designs is summarized in Table 1. The software modular
multipliers considered in our case study comprise a set of C
routines and a set of highly optimized assembly routines,
both executing on a Pentium 60, as reported in [10]. These
alternative implementations are thus the cores (i.e., reusable
designs) in our experiment.

5.1  Properties and Generalization Hierarchy
5.1.1  Algorithms for Modular Multiplication

Modular multiplication can be performed using the “Paper
and Pencil” multiplication algorithm, followed by a mod M
reduction. This algorithm, although very intuitive, is usually
not used because of the size of the partial products and the
carry ripple length of the parallel additions. Brickell pro-
posed in [11] a more efficient algorithm. It is based on the
paper and pencil method but starts with the most significant
digit of A and performs a mod M reduction at every partial
product. Finally, for applications in which the module M is
known to be odd, another algorithm, due to Montgomery
[12], can potentially achieve even better efficiency. Fig. 10
shows the behavioral description of the Montgomery algo-
rithm. Although it requires a pre-computation of the Multi-
plicative Inverse for the computation of the quotient Q (line

1. Note that, since generalized design issues partition the design space,
each specialized class in the generalization hierarchy defines a design
space region contained within that defined by its predecessor class.

4) and a post processing (lines 5 and 6), the basic iteration
step has great potential for speedup optimizations.

5.1.2  Hierarchy of Classes of Design Objects

Fig. 5 shows part of the hierarchical organization of classes
of design objects (CDOs) used to define the design space
layer for cryptography applications. The first three levels of
the specialization hierarchy are thus defined with respect to
commonalties in functionality. Specifically, a generalized
class “operator” is first defined, then it is specialized into
“logic/arithmetic” and “modular” operators and, finally, the
various operators defined for each class are discriminated.

In what follows we discuss in detail the Operator - Modular
- Multiplier (OMM) CDO, shown in gray in the Fig. 5.
Because of the inheritance hierarchy (see path in bold), the
properties to be discussed in the following sections may be
part of the CDO in question or of any of its ancestor classes.
(Due to space limitations, only a sub-set of representative
properties is presented.)

5.1.3  Requirements for the Operator - Modular -
Multiplier CDO

Fig. 8 lists some of the requirements specified for the
“Operator - Modular - Multiplier” CDO, with the corre-
sponding values taken from the specification in [9].2 Req1,
Req2, and Req3 are self explanatory. Req4 asks the designer
to specify if the modulo is known to be odd. For cryptogra-
phy applications the modulo is known to be prime, and thus
odd, so the option “Guaranteed” is selected. The target per-
formance is loosely specified in terms of significant perfor-
mance points. For example, a modular multiplication with a
768-bit operand/modulo should take no more than 8 s, as
indicated in Req1 and Req5.

5.1.4  Design Issues for the Operator - Modular -
Multiplier CDO

The only Design Issue defined for the “Operator - Modular -
Multiplier” CDO is “Implementation Style,” with options
“Hardware” and “Software.” (see DI1 in Fig. 8). As in the

2. All such requirements are defined in the layer; during conceptual design,
the designer enters their corresponding values, based on the specifica-
tion of the system under design.
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IDCT example, “Implementation Style” is defined as a gen-
eralized Design Issue, i.e., it partitions the design space into
two sub-spaces which, from then on, will be explored inde-
pendently. Observe that such partitioning is justified by the
fact that hardware and software designs offer radically dif-
ferent ranges of performance for this application, and thus
fine-grained trade-offs cannot be explored based on this
Design Issue. Just to give an idea of such ranges, Fig. 7
shows the execution time (in seconds) of a single modular
multiplication with an operand length of 1024 bits for sev-
eral hardware and software designs.1 The hardware designs
are labeled according to Table 1 -- for example, the label
#2_64 denotes a modular multiplier constructed using a
number of 64-bit slices (see second column under Slice
Width in Table 1), each of which based on Design #2 (see
second row in Table 1).2 The software alternatives comprise
the Assembler (ASM) and C routines reported in [10].

Given the value in Req5 (stating that a modular multiplica-
tion with a 768-bit operand should take no more than 8 s),
the option “Hardware” is selected, i.e., the design space can
be immediately pruned so as to encompass only hardware
designs.

5.1.5  Specialization of the Operator - Modular -
Multiplier CDO

Fig. 6 shows the next specialization level for the “Operator -
Modular - Multiplier” CDO, created by the generalized
“implementation style” Design Issue discussed in the previ-
ous section -- accordingly, two new CDOs, “Hardware” and
“Software”, appear as specializations of that previous (gen-
eralized) class. (Ignore for now the second level of special-
ization also shown in the same figure.) Given that the
“Hardware” option was previously selected, we will focus
on the characterization of the design space for the sub-hier-
archy defined by the “Operator-Modular-Multiplier-Hard-
ware” (OMM-H) CDO, shown in gray in Fig. 6, i.e., we
consider in some detail the properties defined for this (more
specialized) class of design objects.

Six Design Issues are defined for the specialized “Operator-
Modular-Multiplier-Hardware” CDO, namely: “Layout
Style,” “Implementation Technology,” “Algorithm,” “Num-
ber of Slices,” “Slice Width,” and “Radix,” some of which
are shown in Fig. 11.

The Design Issues “Layout Style” (DI5 Fig. 11) and “Fabri-
cation Technology” (DI6 Fig. 11), basically define the
“meaning” of the generalized “Hardware” option, i.e., dis-
criminate the “real” design options collapsed/lumped into
the “hardware” category. The designer can now explore
combinations of these two Design Issues, and consider area-
performance and other trade-offs during such an explora-
tion, so as to identify the combination of options that is

1. The delays shown in the figure for the Montgomery designs correspond
to the execution delay of the loop (lines 3-4 in Fig. 10). Note that this is
the relevant delay in the context of modular exponentiation.

2. Design #2 denotes a modular multiplier implementing the Montgomery
algorithm with radix 2, and using Carry-Save adders.

more convenient for the design at hand. Note that each com-
bination of options selected by the designer (for example,
“standard cell” for “layout style,” and “0.35 m” for
“implementation technology”) filters the set of cores
indexed under the “Operator-Modular-Multiplier-Hard-
ware” CDO accordingly, thus allowing the designer to con-
sider the corresponding performance ranges and other
figures of merit, for each such alternatives.3

The selection of the number and the width of the multiplier
slices to be used to build the Modular Multiplier are also
important Design Issues -- note that given the characteristi-
cally huge Effective Operand Lengths (EOL) in encryption
applications (see Req1 in Fig. 8), the multiplier ought to be
decomposed into a number of slices with widths compatible
with the target clock rate. The designer can thus filter cores
with respect to these two key parameters, in order to explore
the design space with respect to sustainable clock rates vs.
overall execution delay (in number of clock cycles) for a
given Effective Operand Length.

The “Algorithm” Design Issue (DI2 Fig. 11) states that the
modular multiplier can be implemented using two different
algorithms: “Montgomery” and “Brickell.”4 Finally, the
“Radix” Design Issue, allows for the selection of a radix
other than 2 (the default value -- see DI3 in Fig. 11), for any
of the algorithms. This last Design Issue thus allows design-

3. Note that, in practice, the designer may be restricted to a sub-set of
options, but the principle still holds.

4. Since the “Paper and Pencil” algorithm is an inferior solution, it was
eliminated.
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Fig. 10 Supporting Behavioral Decomposition of Complex Design Objects
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1: R := 0; Q0 := 0; B := r
2*B

2: FOR i=1 TO n+1
3: R := (Ai*B + R + Qi*M) div r;
4: Qi := (R0*(r-M0)

-1) mod r;
5: IF (R > M) THEN
6: R := R - M;

Behavioral
Description

Operator CDO’s
(restricted to be of
the above class)

ers to explore the area-performance trade-offs that can be
implemented via this algorithmic parameter.

In what follows, we illustrate again the use of generaliza-
tion, using the “Operator-Modular-Multiplier-Hardware”
class of design objects. Consider again the “Algorithm”
Design Issue. Fig. 9 shows the evaluation space for a num-
ber of reusable designs (available in our reuse library)
implementing the Montgomery and the Brickell algorithmic
alternatives. All such designs share a common “layout
style” (“standard cell”), a common fabrication technology
(“ 0.35 m”), and a common radix (2), but have different
“slice widths” and thus “number of slices.” Note that, in
spite of the different performances exhibited by the various
designs, resulting from the different “slicing” strategies, the
relative superiority (in area and performance) of the Mont-
gomery algorithm with respect to the Brickell algorithm is
consistent, and is significant. This could suggest that solu-
tions based on the Brickell algorithm are inferior, and thus
should not be considered. This is not the case, since the
Montgomery algorithm cannot always be used. (Recall that,
if the Modulo is not guaranteed to be odd in a given applica-
tion, the designer has no other choice but use Brickell’s
algorithm.) Given the above, it should be clear that the
selection between both algorithms is not a “fine-grained,”
trade-off oriented decision. This clearly justifies the up-
front partitioning of the design space based on these two
alternatives, i.e., the use of a generalized Design Issue for
the “Algorithm” Design Issue.

Accordingly, Fig. 6 shows the leaf CDOs, defined by the
generalized Design Issue “Algorithm.” Since our applica-
tion can use the “superior” Montgomery algorithm, we will
focus on the characterization of the design space for the
sub-hierarchy defined by the “Operator - Modular - Multi-
plier - Hardware-Montgomery” (OMM-HM) CDO, shown
in black in Fig. 6.

5.1.6  Behavioral Description and Behavioral
Decomposition for the Operator - Modular -
Multiplier - Hardware - Montgomery CDO

A Behavioral Description (at the algorithmic level of design
abstraction) is provided for the “Operator - Modular - Mul-
tiplier - Hardware - Montgomery” CDO (shown in Fig. 10).
The behavioral description also characterizes the coding
type assumed for the operands, modulo and result (not
shown in Fig. 10). This last information is important, since
it establishes the possible need for conversions, given the
application’s requirements (see Req2 and Req3 in Fig. 8).

We now address design object decomposition, a key strat-
egy used to control design complexity in large designs.
Note that the behavioral description of any complex CDO
(at a given level of abstraction) can always be seen as a
behavioral decomposition.[2] This is so because the behav-
ior of the complex CDO is expressed (in its behavioral
description) in terms of the behavior of other, less complex
CDOs. For example, the behavioral description of the mod-
ular multiplier shown in Fig. 10 utilizes a number of arith-
metic operators, such as adders and multipliers. Some of
these operators are critical to the performance of the modu-
lar multiplier, in particular the additions and multiplications
shown in lines 3 and 4 of Fig. 10.[12]

The conceptual design of such critical operators is realized
by addressing Design Issue DI7 shown in Fig. 11, which
requires the selection of the “Behavioral Description” (BD)
for each of the operators. (The character “*” represents a
“wild card.” Note that the expression forces the consider-
ation of “Hardware” realizations for those operators.) This
design space exploration step is thus performed using other
CDOs in the hierarchy (i.e., the “Arithmetic” “Adders” and
“Multipliers”), as symbolically shown in Fig. 10.

The “Operator - Modular - Multiplier - Hardware - Mont-
gomery” CDO is a leaf node in the specialization hierarchy,
i.e., is the last level of specialization defined in the design
space layer. While exploring trade-offs on this leaf CDO,
the designer is allowed to revisit the non-generalized
Design Issues defined for all of its ancestor CDOs, includ-
ing “Layout Style,” “Radix,” “Number of Slices,” etc.
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Behavioral Decomposition
FOR ALL
Oper:=OPERATORS(BD@*.Hardware)
SetOfValues={SELECT(BD@Oper),USE(Default)};
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Fig. 11 Design Issues for OMM-H and OMM-HMCDOs



5.2  Consistency Constraints
In this section we illustrate the different roles played by con-
sistency constraints in the design space layer. CC1 in Fig. 12
express a consistency relationship between properties, i.e., it
indicates that the modulo must be odd for the Montgomery
Algorithm. Basic relationships between properties values can
also be represented via CCs, so as to assist trade-off explora-
tion. For example, CC2 states that the greater the radix, the
smaller the latency of a single operation (in number of cycles).
Constraints may also eliminate inferior solutions. A consis-
tency constraint could, for example, indicate that the guaran-
tee that the modulo is odd is inconsistent with the selection of
the (inferior) “Brickell” algorithm.

As alluded to above, due to space limitations the design space
exploration discussed in this section only addressed modular
multiplication, one of the critical components of the modular
exponentiation coprocessor of interest [9]. Note, however, that
this exploration could have been part of the design space
exploration performed for the main architectural component,
i.e., the modular exponentiation coprocessor. The exact same
behavioral/structural decomposition mechanisms discussed in
Section 5.1.6 would have supported the transition between the
conceptual design of the main architectural component (i.e.,
the coprocessor) and the conceptual design of its critical
blocks (including the modular multiplier).

6 Concluding Remarks and Work in
Progress

A novel library layer, called the “design space layer,” is pro-
posed, aimed at effectively supporting both, IP-based
design methodologies and traditional “in-house” design
methodologies, during early design space exploration. The
systematic exploration of large design spaces is supported
by defining a hierarchy of generalized classes of design
objects -- such a hierarchy defines increasingly specific
families of alternative designs (i.e., design space regions)
with respect to the figures of merit of interest. When tra-
versed during conceptual design, this generalization hierar-
chy supports an effective design space pruning and trade-off
exploration. The design space representation implemented
in the layer is self-documented and highly compartmental-

ized (into hierarchies of CDOs), and is thus easily scalable.
Moreover, it can be tailored to the needs and resources of
each design environment.

So far we have mostly concentrated on performance vs. area
trade-offs. We are currently incorporating power consump-
tion in our case studies, and investigating the need for sup-
porting the co-existence of different specialization
hierarchies, so as to effectively guide designers based on the
specific trade-offs they may be interested in locally or glo-
bally exploring.
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//Montgomery Algorithm requires odd modulo
Independent_Set={ModuloIsOdd@OMM}
Dependent_Set={Algorithm@OMM}
Relation: InconsistentOptions:

ModuloIsOdd@OMM=NotGuaranteed AND
Algorithm@OMM=Montgomery

C
C

2

// Given an Effective Operand Length, the greater the Radix, the
smaller is the latency in #cycles for a single operation.
Independent_Set={Radix@*.Hardware.Montgomery,

EOL@Operator}
Dependent_Set={LatencySingleOper@OMM}
Relation:

LatencySingleOper@OMM
2 EOL@Operator

Radix@*.Hardware.Montgomery
-------------------------------------------------------------------------------- 1+=

Fig. 12 Consistency Constraints

a. M=Montgomery, B=Brickell
b. Latency and Clk in ns. Latency computed for EOL=Slice width
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Area Latencyb Clkb Area Latencyb Clkb

1 2 M CLA N/A 5436 25 2.73 34491 351 5.40

2 2 M CSA N/A 6307 27 2.37 37299 175 2.60

3 4 M CLA MUL 7433 38 4.21 47533 262 7.91

4 4 M CSA MUL 9912 37 3.33 67106 166 4.60

5 4 M CSA MUX 9075 38 3.39 46604 138 3.81

6 4 M CLA MUX 8013 35 3.84 37829 201 6.08

7 2 B CLA N/A 7326 71 3.93 34391 472 6.37

8 2 B CSA N/A 10433 72 3.78 49296 313 4.17

0.35  standard cell library
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