
ATPG tools for Delay Faults at the Functional Level *

S. Tragoudas M. Michael

Electrical and Computer Engineering Department

The Univerity of Arizona

Tucson, AZ 85721

Abstract We propose and evaluate two frameworks
for functional level ATPG for delay faults in combina-
tional circuits. Although functional delay fault models
have been recently proposed [9, 13, 10], no systematic
methodologies for ATPG have been presented in the
literature. The proposed frameworks apply to any pro-
posed fault model, and utilize established techniques
such as Reduced Ordered Binary Decision Diagrams
(ROBDDs) and Boolean Satis�ability (SAT).

1 Introduction

The objective of delay testing is to detect timing de-
fects, which could degrade the performance of the
circuit{under{test. In the case where a gate{level
description of the circuit{under{test is not available
or does not accurately describe the circuit, as is of-
ten in the case in embedded core designs with Intel-
lectual Property (IP) considerations, functional{level
test generation must be performed.

Previous work on functional test generation for de-
lay faults can be found in [9, 13, 10], where func-
tional delay fault models are proposed. [13] presents
an ATPG tool for gate{level descriptions that may
contain functional modules with a small number of
inputs. The focus of the work in [9] is on fault model-
ing and not on ATPG. However, a brute{force ATPG
approach is also presented in order to evaluate alter-
native fault models. Our experiments show that it
aborts many faults and results into low fault cover-
age, especially for large circuits. The absence of well{
de�ned, systematic methodologies for functional test
generation for delay faults has led to this work.

We propose ATPG tools that utilize established
frameworks such as satis�ability (SAT) and reduced
ordered binary decision diagrams (ROBDDs) that
have already been applied successfully in other CAD
contexts. See [5, 8, 6, 1], among others. Both frame-
works provide with exact ATPG algorithms that guar-
antee the generation of a test for each non redundant
fault. Exact algorithms will be substituted by approx-

imation algorithms when the exact algorithms fail due

*Partially supported by NSF grant CCR-9815229

to space or time limitations. Each generated pair of
patterns must guarantee function{robust propagation
(FRP) [10, 13].

De�nition: A two{pattern input combination <

u; v > is said to function{robustly propagate a tran-
sition tI from input I as a tO transition to an output
O, if the value on O changes if and only if the value
on I changes.

The list of faults consists of all (I;O; tI; tO) combi-
nations. Transitions TI and TO can be either rising
(r) or falling (f). The goal is to generate (one or
more) pairs of test patterns per fault that guarantee
FRP. When all pairs per faults are generated all possi-
ble robust path delay faults will be detected under any
possible gate implementation. Since this is too time
consuming, [13] proposes a model (we call it M1) in
which only one pair of test patterns must be generated
per fault. [9] proposes that � di�erent test patterns
are needed per fault, where � is a positive integer that
varies from function to function but is always in the
low hundreds. We call this fault model M2.

ATPG may allow for single{input transitions (SIT)
or multi{input transitions (MIT) in each generated
pattern. In the case where logic hazards exist, only
SIT pairs of test patterns, referred to as SIT tests, can
be considered for function{robust propagation. Re-
sults in [9] indicate that SIT tests are more e�ective
in detecting path delay faults than MIT tests. Fur-
thermore, any SIT test guarantees FRP whereas for
any MIT generated test, the ATPG tool must explic-
itly verify that the FRP property is satis�ed. Thus,
MIT tests are generated only when there are no any
SIT tests [9]. Our experimental results show SIT test
generation results in very high fault coverage.

The rest of this paper is organized as follows. Sec-
tion 2 presents the ROBDD{based approach for SIT
ATPG and Section 3 the SAT{based approach for SIT
ATPG. Both sections give exact as well as approxima-
tion algorithms. Both frameworks have been extended
to handle MIT ATPG [12] but due to space limita-
tions we omit their description. Section 4 gives ex-
perimental results on the ISCAS'85 benchmarks, and
compares the two frameworks. Section 5 concludes.



2 ROBDD{based ATPG

We propose a solution to the functional test gener-
ation problem, in which Boolean functions are repre-
sented by Reduced Ordered Binary Decision Diagrams
(ROBDDs) [3, 2]. Let u and v be ROBDD nodes at
levels i and i+1, respectively. Let h be also a ROBDD
node at level j; j > i+ 1. The value(u) 2 f0; 1; Xg of
an ROBDD is 0 if low(u) = v, 1 if high(u) = v, and X

if low(u) = h or high(u) = h. If value(u) = X we say
that node u bypasses node v in the ROBDD. Section
2.1 presents an exact algorithm. For some faults the
algorithm fails to generate any tests due to memory
limitations. Section 2.2 presents an approximation al-
gorithm that handles these faults.

2.1 Exact ROBDD{based ATPG

The problem of �nding the number of SIT tests for a
given (I;O; tI; tO) fault amounts to constructing an
ROBDD for an appropriate function and counting the
number of paths in the ROBDD that terminate at the
terminal node 1.

Given an (I;O; tI; tO) fault, we use f to de-
note the function of the output O. Let also
fI and f

�I denote the cofactors of f with respect
to I and �I, respectively. Let F = fI � �f

�I , if
(I;O; tI; tO) 2 f(I;O; r; r); (I;O; f; f)g or F = �fI � f�I ,
if (I;O; tI; tO) 2 f(I;O; r; f); (I;O; f; r)g. The ATPG
problem (for both models M1 and M2) amounts to
�nding an assignment of values on the variables that
satis�es F .

The general structure of the algorithm is given be-
low. T denotes the number of (I;O; tI; tO) tests found
for all faults. M denotes the number of faults for
which the ROBDD of F cannot be constructed (i.e.,
the number of faults missed). Both values are initial-
ized to 0.

FOR each (I;O; tI; tO) fault DO
IF (tI; tO) 2 f(r; r); (f; f)g THEN

construct ROBDD for F = fI � �f�I
ELSE IF (tI; tO) 2 f(r; f); (f; r)g THEN

construct ROBDD for F = �fI � f�I
IF ROBDD of F is constructed

count number of paths to terminal 1
IF no paths exist fault is redundant
ELSE add their cardinality in T

ELSE increment M

Theorem 2.1 All (I;O; tI; tO) SIT tests can be gen-

erated by examining the paths from the root to the ter-
minal node 1 of the ROBDD of F .

The proof of the theorem is omitted here. The the-
orem indicates that that the presented algorithm ap-
plies to both M1 and M2 models.

2.2 Approximation ROBDD{based

ATPG

Given an (I;O; tI; tO) fault, we use f to denote the
function of the output O. The algorithm constructs
an ROBDD for function f instead of the function F

of the previous section. Our intent is to operate on an
ROBDD of reduced complexity.

In the M1 model, the algorithm�nds a pair of paths
per fault. The two paths connect the ROBDD root to
the two terminals so that the constraints imposed by
the (tI, tO) combination are satis�ed. Under the M2
model, � di�erent pairs of paths will be constructed
for the same fault.

For each fault (I;O; tI; tO), the approach distin-
guishes between two steps. The �rst step �nds path p

from the root to a terminal node, such that value(I) =
0(1) if tI is a r (f) transition. If tO is r (f), the path
terminates at the 0(1) terminal node of the ROBDD.
The second step �nds path p0 such that value(I) =
1(0) if tI is r (f), the terminating constant node has
a value 0(1) if tO is r (f), and and each remaining
variable has a value that satis�es one of the follow-
ing three conditions: (i) If value(i) = X; i 2 p then
value(i) 2 f0; 1; Xg; i 2 p0, (ii) If value(i) = 0; i 2 p

then value(i) 2 f0; Xg; i 2 p0, (iii) If value(i) = 1; i 2
p then value(i) 2 f1; Xg; i 2 p0.

At step 1, the algorithms insists that a shortest
length path is calculated. (This only requires linear
time.) This heuristic measure ensures that many vari-
ables are assigned a don't care (X) value, and it is
therefore easier to �nd the second path.

If no such pair of paths is found, the algorithm
chooses the next shortest path to be the p path, and
attempts to �nd a matching p0 path. A (I;O; tI; tO)
test is found only if a pair of paths is generated.

It is known that functions such as arithmetic multi-
plication have ROBDDs with exponential size regard-
less of the variable order [3]. In such cases, f cannot
be represented by an ROBDD, and the approximation
algorithm needs to be modi�ed.

An ROBDD is constructed for a simpli�ed func-
tion which obtained by preassigning a small cardinal-
ity subset I0 of the input variable set I to either 0
or 1. Once the ROBDD for the simpli�ed function is
constructed, a pairs of paths (p, p0) is found as de-
scribed earlier. That way we can only target faults
(I;O; tI; tO) with I 62 I0. For the remaining faults, the
algorithm selects a small cardinality subset I00 2 InI0,
presets all inputs in I00 to either 0 or 1, proceeds as
before. This completes the description of the approx-
imation for the M1 model.

The approximation ROBDD{based algorithm has
been modi�ed to accommodate the M2 model, where
� SIT (I;O; tI; tO) tests per fault are needed. For
each fault, � pairs of paths that result to SIT tests are
generated. Once a pair of paths (p, p0) has been found,



don't care assignments can be utilized e�ectively, and
the maximumnumber of SIT tests based on the pair is
generated. This is a very powerful optimization step
in the ATPG process.

3 SAT{based Functional Test

Generation

The problem of �nding a set of test patterns for a
given (I;O; tI; tO) combination is reduced to solving
a CNF satis�ability formula. A di�erent formula is
constructed for each (I;O; tI; tO). We use f to denote
the function of the output O of the given (I;O; tI; tO)
combination, and functions fI and f�I to denote the co-
factors of f with respect to I and �I , respectively. The
problem amounts to �nding an assignment that satis-
�es the formula fI � �f�I (or �fI � f�I). The algorithm uses
procedure Generate CNF(F ) to transform both cofac-
tors or their compliments to a CNF satis�ability for-
mat. We omit here the details of Generate CNF(F ).
It follows arguments of predicate logic.

The general structure of the SAT{based functional
test generation algorithm for SIT ATPG and model
M1 is given below. T denotes the set of (I;O; tI; tO)
tests found.

Set T = ;.
FOR each (I;O; tI; tO) fault DO
IF (tI; tO) 2 f(r; r); (f; f)g THEN

F = fI � �f�I .
ELSE IF (tI; tO) 2 f(r; f); (f; r)g THEN

F = �fI � f�I .
Generate CNF(F ); Solve the SAT formula using [4].
IF CNF{SAT is satis�ed add the test vector to T .

Theorem 3.1 An (I;O; tI; tO) test is found if and

only if the respective CNF formula is satis�ed.

The theorem indicates that the algorithm is ex-
act for the M1 model. It is known that for circuits
with many fan{out reconvergences (such as the c6288
ISCAS'85 benchmark) the size of the SAT formula
is prohibitive. In such cases, the exact algorithm is
transformed to an approximation algorithm that con-
sists of two phases: The �rst phase simpli�es the func-
tion by assigning a small subset I0 of the input vari-
able set I to either 0 or 1. Then all faults (I;O; tI; tO),
I 62 I0 are targeted. The second phase works similarly,
by initially simplifying the function after assigning a
small subset I00 � I n I0 to either 0 or 1, and then
targeting all the remaining faults.

The above description refers to model M1 and SIT
ATPG. The same technique, i.e., selecting subsets of
the input variables and assigning them to either 0 or

1 is used to derive an approximation SIT ATPG al-
gorithm for model M2. If the SAT solver returns a
partial input variable assignment we take advantage
of the don't cares in order to generate additional test
patterns for the same fault.

4 Experimental Results

We present here an experimental comparison and eval-
uation of the proposed methodologies. The ATPG
tools were implemented in C, and run on a 270MHz
SUNW, Ultra{5 workstation . We executed on the IS-
CAS'85 benchmarks. Our focus here is on comparing
the two frameworks for SIT ATPG under both M1 and
M2 models, in terms of fault coverage and time perfor-
mance. Each fault at the functional level corresponds
to an (I;O; tI; tO) tuple.

We do not provide any results on the gate{level
path delay fault coverage. [9] determine how many
tests per (I;O; tI; tO) tuple are needed in order for the
gate{level path delay fault coverage to be satisfactory
for some gate{level implementation. Our goal is to
evaluate the performance of the proposed tools for SIT
ATPG on established models that indicate that one
or more SIT tests must be generated per (I;O; tI; tO)
tuple.

Table 1 gives results for the exact and the approx-
imation ROBDD{based ATPG algorithms of Section
2. We consider the M1 model where one test per fault
is generated. It is known that the ROBDD of circuit
c6288 cannot be constructed. We constructed ROB-
DDs for c6288 by simplifying the function after ran-
domly preselecting inputs (approximately 23%) , as
described in Section 2. (This is noted by an asterisk
in Table 1.)

Column 2 lists the number of faults for each cir-
cuit. The ROBDDs were generated using the CUDD
Decision Diagram Package [11]. Column 3 gives the
size of the ROBDD (no. of nodes). Columns 4{6 list
the results taken for the exact algorithm and Columns
7{9 the results taken for the approximation algorithm.
The number of generated tests for each approach are
listed in Columns 4 and 7. Columns 5 and 8 give in-
formation about the time performance of the ATPG
tools. Columns 6 and 9 give the fault coverage ob-
tained by each of the proposed tools.

It is interesting to observe that the fault coverage is
signi�cantly high in both cases. In fact, this percent-
age is even higher when considering that many faults
are SIT redundant. The latter information is given
later on Table 2 when the SAT{based tool is evalu-
ated.

In both approaches, a fault is aborted when the
corresponding ROBDD cannot be constructed due to
memory limitations. The approximation algorithm
aborts a fault when no pair of paths is found within



5 minutes. The information in Columns 6 and 9 very
clearly demonstrate that the both the fault coverage
and the time performance are better when the exact
ROBDD{based algorithm is used. The only exception
is c6288.

An important observation is that the faults covered
by the exact algorithm are not a superset to those cov-
ered by the approximation. This led us to the follow-
ing approach, we call it the combined ROBDD{based
approach. For every fault, the exact algorithm was
performed �rst. When the exact algorithm fails to
generate tests for a non-redundant fault the approx-
imation algorithm was applied. For cases where the
approximation algorithm was unable to construct the
ROBDD for the given function the variable preassign-
ment heuristic allowed for test generation. Columns
10 and 11 list the total number of tests found and
the fault coverage for the combined ROBDD{based
approach. Observe the increased fault coverage. The
time performance of the combined scheme is very close
to the time performance of the exact solution.

Next, we proceed to evaluating the SAT{based
framework for SIT ATPG under the M1 model. The
results are listed in Table 2. For circuit c6288 (marked
with an asterisk), the SAT formula was obtained by
function simpli�cation through variable presettings, as
described in Section 3. (Approximately 28% of the
variables were preset each time.)

Table 2 provides with information similar to that
in Table 1. The results were obtained using the SAT
solver in [4]. For most of the cases, the solver termi-
nated in microseconds. For circuits with many recon-
vergencies, such as c3540 and c6288 the solver required
an average of 1.3 seconds, ranging from microseconds
to almostminutes for a few SAT instances. The results
show that the time performance of the SAT{based
ATPG is comparable (always slightly worst) to the
performance of the ROBDD{based ATPG of Section
??. Note that the SAT{based ATPG does not abort
any faults, i.e., the fault coverage listed in Column 5
of Table 2 is the maximumpossible for SIT ATPG for
model M1. Column 6 lists the percent of redundant
faults in each circuit.

In contrast, the fault coverage obtained by the test
generation procedure in [9] is consistently poor for the
ISCAS'85 circuits. The fault coverage for SIT ATPG
on model M1 is listed in Column 7 of Table 2. We
observed that the time performance of the approach
in [9] is very poor. The approach terminated in less
than a day for very few circuits. Therefore the results
of Column 7 for circuits c2670, c3540, c5315, c6288
and c7552 were obtained based on the number of faults
targeted and the number of tests found within the �rst
day of the execution of the tool, i.e., we assumed that
the ATPG tool would cover the same percentage of
faults in the list if it were to execute forever.

We also experimented for SIT ATPG under model

M2. Table 3 provides results obtained for the
ROBDD{based approach and the SAT{based ap-
proach. Note that the exact ROBDD-based solution
returns the maximum number of SIT tests for every
fault. Therefore, its time performance is the same for
both M1 and M2 models.

We have applied the combined ROBDD{based al-
gorithm on the M2 model. The results are listed in
Columns 2 and 3 of Table 3. Column 2 lists the aver-
age number of SIT tests per fault (�) found in each
circuit. This number is calculated by dividing the total
number of SIT tests by the number of non-redundant
faults. Column 3 gives the time performance of the
SIT ROBDD{based approach for model M2. We have
used a time limit of 5 minutes per fault every time one
of the approximation algorithms was invoked. Note
that the number of faults that have at least one SIT
test is, of course, the same for both M1 and M2 mod-
els (see Table 1,Column 10). Thus, the fault coverage
of ROBDD{based SIT ATPG for M2 is the same as
the one shown in Column 11 of Table 1 for ROBDD{
based SIT ATPG for model M1. Columns 4 and 5 list
the results obtained for the SIT SAT{based approach
for model M2. Note that the SAT{based tool is no
longer an exact algorithm for model M2 (see Section
3). (Again, we have a time limit of 5 minutes for every
targeted fault). It is clear that the ROBDD{based ap-
proach is superior to the SAT{based approach, both in
terms of time and number of tests generated. The per-
formance of the SAT{based technique is attributed to
the heuristic approach of variable preassignment that
we used in order to generate more than one SIT tests.

5 Conclusions

We presented two frameworks for functional ATPG
for path delay faults. They are based on ROBDDs
and SAT, respectively. Our experimental study shows
that most faults have many SIT tests. The SAT{based
tool is recommended when one SIT test per fault is
required. Otherwise, the ROBDD model is preferable.

References
[1] D. Bhattacharya, P. Agrawal, D. Agrawal, \Test Gener-

ation for Path Delay Faults using Binary Decision Dia-
grams", IEEE Trans. on Computers, vol. 44, pp. 434{447.

[2] K. Brace, R. Ruddel, R.Bryant, \E�cient Implementation
of a BDD Package", in Proc. 1990 Design Automation
Conference, pp.40{45.

[3] R. Bryant, \Graph{basedAlgorithms for BooleanFunction
Manipulation", IEEE Transactions on Computers, Vol.C{
35, No.8, August 1986, pp.677{691.

[4] J. Crawfort, NTAB:Propositional Satis�ability Checker,
CIRL, The University of Oregon, 1996.

[5] S. Devadas, K. Keutzer, S. Malik, A. Wang, \Computation
of 
oating mode delay in combinational circuits: Practice
and Implementation", IEEE Transactions on Computer{
Aided{Design, 12(12):1924{1936, December 1993.



[6] R. Drechsler, \BiTes: A BDD based Test Pattern Gener-
ator for Strong Robust Path Delay Faults", in Proc. 1994
EDTC, pp. 322{327.

[7] J. P. Marques Silva, K. A. Sakallah, \GRASP{A New
Search Algorithm for Satis�ability", IEEE Transactions
on Computers, 1996, pp.220{227.

[8] P. C. McGeer, A. Saldanha, R. K. Brayton, A.
Sangiovanni{Vincentlli, \Delay models and exact timing
analysis. In T. Sasao, editor Logic Synthesis and Optimiza-
tion, pages 167{189, Kluwer Academic Publishers, 1993.

[9] I. Pomeranz, S. M. Reddy, \Functional Test Generation
for Delay Faults in Combinational Circuits", in Proc.
1995 Intl. Conf. on Computer{Aided{Design, Nov. 1995,
pp.687{694.

[10] I. Pomeranz, S. M. Reddy, \On Testing Delay Faults in
Macro{based Combinational Circuits", in Proc. 1994 Intl.
Conf. on Computer{Aided{Design, Nov. 1994, pp.332{339.

[11] F. Somenzi, CUDD:CU Decision Diagram Package, Re-
lease 2.2.0, Department of Electrical and Computer Engi-
neering, The University of Colorado at Boulder, 1998.

[12] S. Tragoudas, M. Michael, \ATPG Tools for Delay Faults
at the Functional Level", Technical Report CENG{TR{
98{118, ECE Dept., The University of Arizona.

[13] B. Underwood, W. O. Law, S. Kang, H. Konuk, \Fastpath:
A Path{Delay Test Generator for Standard Scan Designs",
in Proc. 1994 Intl. Test Conf., Oct. 1994, pp.154{163.

Table 1: Exact and Approximation ROBDD{based SIT
ATPG for model M1.

Exact ROBDD Approx. ROBDD Comb. ROBDD

Circuit Num BDD Num tests Time % Flt Num tests Time % Flt Num tests % Flt
Flts Size found (hours) Covrd found (hours) Covrd found Covrd

c432 832 1064 801 0.03 96.2 783 0.49 94.1 804 96.6

c499 4329 25866 3915 3.42 90.4 3801 6.79 87.8 3915 90.5

c880 1368 4053 1320 0.12 96.5 1315 1.09 96.1 1321 96.6

c1908 3224 5526 3148 1.65 97.6 3130 2.31 97.1 3153 97.8

c2670 4018 1174 3955 1.98 98.4 3941 2.43 98.1 3956 98.5

c3540 2730 23828 2483 3.10 90.9 2460 5.35 90.1 2493 91.3

c5315 10718 1719 10655 6.52 99.4 10652 9.71 99.4 10662 99.5

c6288* 2337 38511 1655 9.62 70.8 2085 8.22 89.2 2085 89.2

c7552 13932 2112 13811 9.14 99.1 13779 11.74 98.9 13815 99.2

Table 2: SAT{based SIT ATPG for model M1.

Exact SAT{based [9] approach
Circuit Num Num tests Time % Flt % Flt % Flt

Flts found (hours) Covrd Red. Covrd

c432 832 807 0.06 100 3.1 36.2

c499 4329 3917 5.80 100 9.5 22.1

c880 1368 1325 0.27 100 3.1 41.6

c1908 3224 3159 2.03 100 2.1 31.4

c2670 4018 3958 2.65 100 1.5 27.8

c3540 2730 2510 4.26 100 8.1 20.1

c5315 10718 10675 8.68 100 0.4 27.3

c6288* 2337 2110 7.41 90.3 < 9.7 22.1

c7552 13932 13820 11.76 100 0.8 25.9

Table 3: ROBDD{based Vs. SAT{based SIT ATPG for
model M2.

ROBDD{based SAT{based
Circuit Avg. � Time Avg. � Time

per fault (hours) per fault (hours)

c432 290 0.06 198 0.63

c499 315 4.47 200 7.70

c880 401 0.25 278 1.40

c1908 353 2.24 191 4.33

c2670 489 3.12 275 5.69

c3540 258 4.81 134 7.89

c5315 427 8.29 259 13.11

c6288* 231 18.33 156 > 24

c7552 375 11.10 221 17.45


	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index


