
Iterative Improvement Based Multi-Way Netlist Partitioning for FPGAs

Helena Krupnova, Gabriele Saucier
Institut National Polytechnique de Grenoble, CSI

46, Avenue Felix Viallet, 38031 Grenoble cedex, FRANCE
fbogushev,saucierg@imag.fr

Abstract

This paper presents a multi-way FPGA partitioning
method. The basic idea is similar to one proposed in [12],
but instead of using the replication and re-optimization,
it takes force of the classical iterative improvement parti-
tioning techniques ([4],[14]). The basic effort consists in
guiding the classical algorithms in their solution space ex-
ploration. This was done by introducing the cost function
based on the infeasibility distance of the partitioning solu-
tion and carefully tuning the basic parameters of classical
algorithms such as definition of size constraints for feasi-
ble moves, handling solutions stack, selecting best cluster
to move, etc. The proposed method obtains results com-
parable to the best published results ([12],[16]), and even
outperforms them for biggest benchmarks.

1. Introduction

Partitioning problem was extensively addressed in the
previous research. Te best known and most cited is the it-
erative improvement partitioning algorithm of Fiduccia and
Mattheyses (FM) [4]. Two basic extensions of this algo-
rithm are the algorithm of Krishnamurthy [8] which im-
proves the tie-breaking in the FM algorithm by introducing
the higher-level gains and look-ahead technique for the cell
moves, and the Sanchis’ algorithm [14], which is the exten-
sion of two previously mentioned bipartitioning algorithms
to the multi-way partitioning.

The behavior of the FM based partitioning technique was
largely studied in the past. Recently published works [5],
[7], [2], [17] discuss the impact of different optimization
parameters on the behaviour of the FM algorithm. These pa-
rameters are generally the method of finding the initial parti-
tion, selecting the cell to be moved (look-ahead heuristics),
clustering approaches, organization of the data structures
(LIFO, FIFO gain buckets), cell locking strategies, number
of runs, number of passes, etc.

The mostly referenced works for multi-FPGA partition-

ing are [9], [10], [11], and [12]. Proposed in [9] method (k-
way.x) is based on recursive bipartitioning alternating with
improvements by calling the FM algorithm ([4]). In [11],
the previous method was extended with functional replica-
tion possibilities (implementation program called r + p.0).
Finally, in [12] is introduced a recursive paradigm (PROP)
combining partitioning, replication and optimization. An-
other known approaches are the network-flow based method
FBB-MW of [16], the ”local ratio-cut” and set covering ap-
proach (SC, LRSC) of [3], the WINDOW ordering, clus-
tering and dynamic programming-based method WCDP of
[6].

In this paper, we present a multi-way FPGA partition-
ing method which is similar to one proposed in [12]. But
instead of using the replication and re-optimization, it takes
force of the classical partitioning techniques of [4],[14]. We
show that the FM based techniques being adopted to the
FPGA partitioning allow to obtain results comparable to the
best published results ([12],[16]). The basic effort consists
in guiding the FM and Sanchis’ algorithm in their solution
space exploration. This was done by playing with classical
parameters of the FM algorithm, such as number of passes,
mechanism of selecting cells to move, data structures, etc.
In addition, an important role is given to the general orga-
nization of the algorithm, adopted infeasibility-based cost
functions for selecting the best solution, and the strategy
of applying the appropriate size constraints to allow/disable
the cell moves aiming at concentrating the search process in
the region of the solution space with greatest probability to
find the feasible solution.

This paper is organized as follows. The next section
presents the FPGA partitioning problem formulation. Then,
section 3 describes the proposed method starting from the
overall organization of the partitioning algorithm. After
that, implementation details, such as creation of initial par-
tition, cost function for selecting the best solution, size con-
straints on cell moves, etc. are explained. Finally, ex-
perimental results are presented and some conclusions are
given.



2. Problem definition

The FPGA partitioning problem is defined as imple-
menting a given digital circuit as a set of subcircuits each
of which can be implemented as a single FPGA device.
A digital circuit is represented as a hypergraphH0 =

(fX0; Y0g; E0), whereX0 andY0 denote respectively the
interior and terminal node sets,X0 \ Y0 = ;, andE0 is
the set of nets. Each interior nodexi may be weighted by
a size parameterS(xi) representing the number of target
technology cells needed to implement the given node. The
size of the circuit is the sum of sizes of all interior nodes:
S0 =

P
S(xi). A k-way partition ofH0 implies an assign-

ment of the nodes inX0 andY0 to a set ofk non-overlapping
hypergraphsPj = (fXj ; Yjg; Ej). During the partitioning
process, the terminal nodes of the original hypergraphY0
are assigned to terminal node setsYj of one or more of the
resulting partition’s components:Y0 �

Sk

j=1 Yj . Each of
the interior nodes of the original hypergraph is assigned to
the interior node set of exactly one component hypergraph,
Sk

j=1Xj = X0;8i6=jXi

T
Xj = ;, thus partitioningX0

into fX1;X2; :::;Xkg.
Each FPGA deviceDi is characterized with parame-

tersDi = (SMAX ; TMAX), whereSMAX represents the
size in number of basic cells of the corresponding FPGA
technology, andTMAX represents the number of terminals.
Additional constraints to consider may be another FPGA
resources such as the number of flip-flops, number of tri-
state lines (Xilinx target), etc. In our experience, these con-
straints are rarely critical. They can be handled in a similar
way as the size constraint but omitted from the discussion
for the reasons of simplicity. The value ofSMAX is de-
fined asSMAX = Sds � �, whereSds is value found in
the FPGA vendor data sheet, and� is a user specified value
corresponding to the desired filling ratio.� is often chosen
to be smaller than1:0 (0:9 for example) to guarantee the
successful routing by the vendor place and route tool. We
consider that all the subcircuits in the partitioning are im-
plemented with the same device type. There always exists
a lower boundM on the number of devices required to im-
plement the given circuitM =MAX(d S0

SMAX
e; d jY0j

TMAX
e).

It is said that a hypergraphPj = (fXj ; Yjg; Ej) meets
constraints of the deviceDi = (SMAX ; TMAX) : Pj j= Di

if and only if
Pnj

i=1(S(xi)) � SMAX andjYj j � TMAX ,
wherenj is the number of interior nodes of the hypergraph
Pj .

A k-way partition is calledfeasibleif eachPj satisfies
the relationPj j= Di for somej = 1; 2; :::; k. A k-way
partition is calledsemi-feasibleif 81�j�k�1Pj j= Di, and
the k-th subsetPk does not meet constraints. The subset
which does not meet constraints in a semi-feasible partition
is called theremainderand denoted asRk. Finally, a k-
way partition where more than one subsets don’t respect the

device constraints is calledinfeasible.
We define the problem of k-way FPGA circuit partition-

ing as follows: find a feasible partition with minimum k
number.

3. Method description

We start by mentioning the recursive paradigm used in
[9]. The algorithm is composed of(k � 1) iterations. The
first iteration applies a bipartitioning procedure to the given
circuit, and the subsequent iterations apply the same pro-
cedure to the remainder. Each iteration produces a biparti-
tion with at least one subcircuit that meets constraints and
the remainder which probably does not meet the constraints.
Then, an optimization is applied to force the remainder meet
the constraints. The iterations stop when the remainder sub-
circuit meets constraints.

The weakness of the above algorithm is its greedy char-
acter. At the later steps there is no possibility to modify
blocks created at the previous iterations. In addition, more
times the remainder is cut, more new I/O pins appear. At
the early iterations, produced blocks have good (100%) fill-
ing and small number of I/Os. At the following iterations,
100% filling becomes impossible because I/Os are saturated
more quickly than the logic resources.

To overcome the greedy tendency, the replication and
re-optimization techniques were proposed in [12]. Each
time the remainder was cut, logic was replicated to reduce
the number of cut nets, and then optimization was applied
to eliminate the size increase due the replication. The re-
optimization technique depends on the concrete software
flow and the tight integration with the vendor tools. The
functional replication possibility depends on whether such
functional information is available in the used input for-
mat. In this paper we describe a method which does not use
the replication and reoptimization and improves the parti-
tioning results by intensively applying classical partitioning
strategies.

The optimization objective of the classical bipartition-
ing problem is to reduce the cutset size of the partition. In
multi-FPGA partitioning the basic objective is reducing the
numberk of FPGA blocks. The basic obstacle for produc-
ing the optimal number of blocks is the I/O pin constraint:
when nets are cut, the number of I/Os increases. So, reduc-
ing the number of cut nets is the way to improve the qual-
ity of partitions and to minimize the number of blocks. But
these two objectives are not directly related. This was stated
also in [9]. In some cases, it may happen that net with zero-
gain changes the number of I/Os of block to/from which
it is moved. This requires to bring closer together the op-
timization objective, which is minimization of the number
of blocks in a partition, and the optimization mechanism,
which is the reducing of the number of cut nets in a cut set.



The way to reduce the number of blocks in final partition us-
ing the described above recursive paradigm is to reduce the
size and I/O number of the remainder at each step. To do
this, we introduced specified cost functions and adopted an
appropriate solution space exploration strategy, which will
be described in the following sections.

3.1. Overall algorithm organization

In [9], the iterative improvement was called between the
remainder and the block produced at the last step. The pos-
sibility to optimize the remainder by exchanging cells with
blocks produced at the first(k� 1) steps was not exploited.
As was noted in [9], the ratiojY R

k j=jXR
k j tends to increase

during the recursive bipartitioning process. Initially, few
signals are cut, and devices produced at first iterations have
non saturated I/O pins. Being involved into the optimiza-
tion process at later stages, these blocks may provide an
additional opportunity to reduce the terminals number of
the remainder. From the other side, some devices produced
at the previous iterations may have free space. Involving
them in partitioning at the later stages may allow to move
cells from the remainder to these blocks, thus reducing the
remainder size.

By these reasons, at each iteration we introduced the
improvement pass involving all the blocks of the partition.
We used the Sanchis multi-way partitioning algorithm [14]
which allows cells to move between all the blocks of the
partition.

The following improvement strategy was adopted. The
iterative improvement is initially called only for two lately
partitioned blocksRk+1 and Pk+1. This because these
blocks are most likely to improve the cutset in the begin-
ning. When the optimization possibilities between these
blocks are exhausted, improvement pass for all the blocks
may sometimes greatly improve the solution.

From the other side, when the number of blocksk in-
creases, the probability to meet a solution where(k � 1) of
k blocks respect constraints decreases. For problems where
the big number of blocksk is expected, we have chosen an-
other strategy. After the bipartitioning of the remainder, the
iterative improvement pass is called first for two lately par-
titioned blocks, as in the previous case. Then, it is called
between the remainder block and block with the smallest
sizePMIN size. At the next step, the iterative improvement
is called between the remainder and minimum I/O block
PMIN IO, and finally, between the remainder and maxi-
mum free space blockPMIN F . Free space of the block is
estimated on the base of the occupation of both logic cells
and I/Os :F = �1 �

SMAX�Si
SMAX

+ �2 �
TMAX�jYij

TMAX
, where

�1 and�2 are two coefficients. During the experimental
evaluation�1 = �2 = 0:5 was set. This strategy allows
to increase filling of badly filled on the previous iterations

blocks and as a consequence to decrease the size and I/O
number of the remainder.

Thus, we separated the partitioning cases in two groups
- the first one with small expected number of blocks, which
does not exceed the constantM � Nsmall, and the sec-
ond one with big expected number of blocksM > Nsmall.
Nsmall was empirically defined and set to 15. For each
group we adopted the best suited improvement strategy. The
iterative improvement involving all the blocks is applied
only for the first group. The improvement passes between
the remainder and selected blocksPMIN size, PMIN IO ,
PMIN F are applied for both groups. Whenk = M is
reached, an additional FM call is performed for all pairs of
blocksRk-Pi for i = 1 to (k � 1).
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Figure 1. Call of the iterative improvement
passes

The described process is illustrated in Figure 1 for par-
titions withM � Nsmall. Suppose, that two lately created
blocks arefPj ; Rjg. Blocks involved in the iterative im-
provement algorithm are shadowed in Figure 1. At step 1,
the iterative improvement involves blocksRj ; Pj , at step 2,
the iterative improvement is called for all the blocks, then
it is called for the remainder block and the smallest size
block, and finally at step 4 it is called for the remainder and
minimal I/O pin block.

Algorithm 1 represents the general k-way partitioning
algorithm we use. It calls two functions :Bipartition()
and Improve(). The first one is used to create the initial
partition, and is described in section 3.2. The second one,
Improve() corresponds to the call of the Sanchis’ iterative
improvement algorithm and its implementation details are
described in sections 3.3-3.7.



Algorithm 1

Input: H0(fX0; Y0g; E0),Di(SMAX ; TMAX)
Output: k, P1; P2; :::; Pk
k = 0;
R
k
= H0;

M =MAX(d S0
SMAX

e; d Y0
TMAX

e);
proceed=TRUE ;
while (proceed)do

k = k + 1;
fR

k
; P

k
g = Bipartition (R

k�1 );
Improve(R

k
; P

k
);

if (M � N
small

)
Improve(P0; P1; :::; Pk; Rk);

end if
Improve(PMIN size,R

k
);

Improve(PMIN IO,R
k

);
Improve(PMIN F ,R

k
);

if (k =M ) and (M � N
small

)
for (i = 1; i � (k � 1); i++)

Improve(Pi ,Rk);

end for
end if
if (R

k
j= Di)

proceed=FALSE;
end if

end while

3.2. Initial partition creation

It was observed that randomly created initial partition
may lead to poor results ([9]). As we need a semi-feasible
partition as an initial solution, and this is not guaranteed by
the random method, a constructive method has been chosen
to create the initial partition. Two passes corresponding to
two different methods are applied, and the best solution of
two passes is selected as an initial solution. The first one is
a greedy nodes merge similar to one proposed in [1]. Ini-
tially, two seed nodes are selected in a hypergraph. The first
node is one with the biggest size, and the second node is one
which has the maximal distance from the first node found by
breadth-first search. After the seed nodes for two blocks are
selected, at each step, one node is add to each block. The
merge candidate is chosen on the base of the cost function
([1]): Cost(i+j) =

S(i+j)
T(i+j)

, whereS(i+j) andT(i+j) are cor-
respondingly size and I/O pin number if two nodesi andj
are merged. Creating two blocks in the same time slightly
alleviates the greedy tendency of the algorithm [1]. This
tendency manifests by absorbing at the first steps nodes with
good cost. Merge for each block stops when constraints are
saturated for both blocks and block with biggest size is se-
lected asPk. The unassigned cells are merged with another
block which forms the remainderRk.

During the second pass, ratio cut objective function [15]
is used to obtain an initial solution. The first initial seed
point is selected as first block of the partition, and the rest
of nodes as second block. Nodes are moved one by one
to the first block, and each time the ratio of the partition
is estimated :Ri;j =

Ci;j
S(Pi)�S(Pj)

, whereCi;j is the size

of the cut set. The same operation is performed starting
from the second seed point. Partition with smallest ratio and
having at lest one block satisfying constraints is selected at
the end. Best solution of these two algorithms ([1],[15]) is
retained as an initial partition for the iterative improvement
algorithm.

3.3. Infeasibility distance cost function

The classification of partitioning solutions in feasible,
semi-feasible and infeasible (section 2) is illustrated graph-
ically in Figure 2. The X-axis corresponds to the number of
I/O pins, the Y-axis to the size in number of logic cells. The
shadowed feasible region is delimited by the device con-
straintsSMAX , TMAX . Each partition block is represented
as a point in a 2-dimensional space, and a set of points rep-
resents a partitioning solution. A point inside the rectangle
corresponds to the feasible block, and a point outside the
rectangle - to the infeasible block. Figure 2a represents a
4-block feasible solution. Figures 2b and 2c represent cor-
respondingly 3-block semi-feasible and 4-block infeasible
solutions.
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Figure 2. Feasible, semi-feasible, infeasible
solutions examples

In the cost function of [9], only the net number was taken
into account. Here we introduce theinfeasibility distance-
based cost function. We define the infeasibility distance
for partition blockPi as : di = �S � dSi + �T � dTi , where
dSi = Si�SMAX

SMAX
is the size infeasibility distance of blockPi

if Si > SMAX , anddSi = 0 otherwise. Similarly for the I/O
number:dTi = Ti�TMAX

TMAX
is the I/O infeasibility distance of

block Pi if Ti > TMAX , anddTi = 0 otherwise.�S and
�T are the coefficients which express the importance of the
corresponding component in the final cost function and are
determined on the experimental basis. The infeasibility dis-
tance of a solution is a sum of the distances of all the blocks.
Obviously, the infeasibility distance of the feasible solution
equals 0.

An example of the infeasibility distance is presented in



Figure 2b for the remainder block. The infeasibility dis-
tance expresses how far is the given solution from the de-
sired feasible solution. Comparing two semi-feasible so-
lutions by the infeasibility distance, one which has the re-
mainder block closer to the feasible region is preferred. The
smaller is the infeasibility distance, the easier will be to
make the remainder feasible. Because the I/O constraint
is usually the most critical during the partitioning, coeffi-
cient�T should be more significant than the coefficient�S

(�S = 0:4 and�T = 0:6 were used in the experimental
evaluation).

When the expected number of blocks is high (lower
boundM of the partition is big),dSRk will remain relatively
big during significant number of iterations. Small varia-
tion of dSRk will not be sensitive in different solutions. In
addition, if the expected number of blocks is high and cor-
respondingly the number of iterations is also high, the dif-
ference of the number of I/Os on the remainderTRk at dif-
ferent iterations may vary very few. Thus, the cost func-
tion is not sensitive to the fact that the first produced blocks
have good or bad filling. Producing unfilled blocks at nu-
merous iterations will finally impact the resulting number
of blocks. To eliminate this drawback, we introduced an
additional component�R � dRk in the final cost function :
dk =

Pk

i=1(di) + �R � dRk , wheredRk is thesize deviation
penaltywhich is defined asdRk = SAVG

SMAX
if SAVG > SMAX

anddRk = 0 if SAVG � SMAX . TheSAVG component is
determined in a following way. At stepk, k + 1 blocks are
already created, and the remainder block should be parti-
tioned at leastM � k times. ThenSAV G =

S(Rk)

M�k+1
repre-

sents the average size of blocks produced if the remainder
will be partitioned in minimal theoretical number of blocks.
This component of the cost function will give preference
to solutions where the size of the remainder is sufficiently
small to fit in minimal theoretical number of devices. It
penalizes solutions with unfilled blocks and big size of re-
mainder. The coefficient�R is set to0:1 during the experi-
mental evaluation.

3.4. Selecting best solution

Each time the FM algorithm pass is performed, best so-
lution of pass is retained as a starting point for the next pass.
When two solutions are compared during a pass, the follow-
ing parameters in their lexicographical order determine the
better solution:(f; dk; TSUM ; dEk ), where

� f is the number of feasible blocks (iff = k a feasible
partitioning solution is found);

� dk is the solution cost represented by the infeasibility
distance defined in section 3.3;

� TSUM =
Pk

i=1 jYij is the total number of I/Os of all
the blocks;

� dEk is the external I/O balancing factor which will be
defined later.

The number of feasible blocks has the highest priority
because it is determinant for finding the feasible partition.
Next, the importance is given to the infeasibility distance
cost. Between two solutions with the same number of infea-
sible blocks and the same infeasibility distance, one which
has smaller I/O number is preferred.

The last component is introduced to take into account
the assignment of external I/O pins (terminal nodes of the
initial circuit) to the devices. This component is needed for
I/O-critical designs where the number of external I/Os influ-
ences the final result (d S0

SMAX
e � d

Y0
TMAX

e). If external I/O
distribution among the created blocks is not taken into ac-
count during partitioning, the following scenario may hap-
pen. First blocks have few I/Os, and few external I/Os are
assigned to them, the following blocks have more and more
external I/Os, and at the final iterations the number of ex-
ternal I/Os of the remainder becomes the obstacle for its
feasibility. The external I/O balancing factor is calculated
as the deviation of the number of external I/Os from the
average number of external I/Os computed on the base of
minimal theoretical number of blocks :TEAVG =

jY0j

M
. The

balancing factor is:dEk =
P

dEi , wheredEi =
TEAVG�T

E
i

TE
AVG

if

TEi < TEAVG, anddEi = 0 if TEi � TEAVG. By TEi is de-
noted the number of external primary I/Os assigned to block
i.

3.5. Solution space exploration

Because only semi-feasible solutions are accepted as in-
termediate solutions between the Algorithm 1 steps, there is
no interest to explore solutions which are far from the semi-
feasible solutions (having several blocks largely exceeding
sizes and / or several blocks with very poor filling). To make
the solution space exploration efficient, the explored space
should be delimited within the reasonable margins. From
one side, strict limits may lead to trapping in a local mini-
mum, from the other side, relaxed limits may lead to wast-
ing time.

In classical FM algorithm, strict size constraint is im-
posed, and the equal-size partitions are only allowed. In the
case of the multi-FPGA partitioning, equal size constraint
is necessarily restrictive. It is sufficient that size constraint
is respected.

We introduced several heuristics concerning the size of
blocks for efficient solution space exploration.

� Allow size-violating moves for non remainder blocks
only if the theoretical minimal number of blocksM
is not yet reached. Whenk > M , there should be
enough free space in the devices to provide a freedom
of moves without violating sizes.



� Delimit exceeding of size of the non-remainder blocks.
This delimiting should be more restrictive when swap-
ping is performed between two blocks (to give prefer-
ence to moves ”from” the remainder).

� No upper limit is imposed on the moves ”to” the
remainder. To prevent the remainder from growing
too much, lower bound size limitation is imposed on
small-size blocks.

� No constraint is imposed on I/O pin violation during
the iterative improvement algorithm.

In Figure 3a feasible move region is shown as unbounded
horizontally rectangle. It is defined asSMAX �(1�"min) �
Si � SMAX � (1 + "max), where"min and"max are em-
pirically identified coefficients ("min > "max). From the
experimental observations,"min in the case of iterative im-
provement between 2 blocks should be more strict, oth-
erwise clusters have a tendency to move ”to” the remain-
der. This leads us to introduce specific coefficients for 2-
block ("2min and"2max) and multi-block passes ("�min and
"�max). This corresponds to Figures 3a and 3b. The follow-
ing values of the coefficients were determined after an ex-
perimental evaluation:"�max = "2max = 1:05, "�min = 0:3,
"2min = 0:95. For the remainder block there is no upper
limit for cluster move :"Rmax =1.
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Figure 3. Feasible space for cell move

3.6. Solutions stack

To make the solution space exploration more efficient,
we store a fixed number of best solutions during the first FM
execution in a solution stack. Current solution is compared
with the ”head” and ”tail” of the stack and probably inserted
in the stack. A serie of FM passes is then performed starting
from each of these solutions.

As the FM pass is started from the semi-feasible solu-
tion, solution stack will contain always only semi-feasible
solutions. Sometimes it may happen that infeasible solu-
tion with more than one block exceeding the constraints

has better infeasibility cost than the best semi-feasible solu-
tion. Exploring space around such infeasible solution may
allow to escape from the local minimum. To take a ben-
efit of infeasible solutions, we use two solution stacks in
parallel - one for semi-feasible solutions, and another one
for infeasible solutions. After finishing passes starting from
semi-feasible solutions, a serie of passes is performed start-
ing from each infeasible solution in the infeasible solutions
stack. At the end, the best result of all the passes is se-
lected. Used solution stacks depth is set toDstack = 4.
Thus, at most2 � Dstack + 1 initial solutions is explored
during the iterative improvement algorithm call : the first
solution,Dstack semi-feasible solutions andDstack infea-
sible solutions.

3.7. Selecting best cluster to move

According to the FM method, best cluster to move is one
which has the highest gain defined as number of nets which
disappear from the cutset if the cell is moved. If multiple
cells have the same gain, [8] proposed the tie-breaking strat-
egy based on the upper-level gains. The effect of higher-
level gains was explored in [7] and the conclusion was that
higher level gains requires more execution time and does
not have significant impact on the solution quality. In the
case of multi-way FPGA partitioning, where the net gain is
already not directly related with the optimization objective,
the impact of higher-level gains becomes even less impor-
tant.

In the approach described here, the direction of cell move
becomes significant. Moves ”FROM” the remainder block
are preferable than moves ”TO” the remainder block. In
other words, moves balancing sizes are preferable. This
idea comes from the ratio-cut approach ([15]).

We use one bucket structure per move direction. Thus,
for k-block partitioningk�(k�1) buckets are maintained. A
heap structure is used to keep track of best cell to move, like
in [14]. We use 2-level gains and among the clusters with
the same gain is selected one which equilibrates block sizes
(MAX(SFROM�STO)). As the block size reaches bound-
aries of the feasible move region (section 3.5), bucket cor-
responding to the move direction ”TO”(”FROM”) the given
block is removed from the heap.

4. Experimental results

The experimental evaluation of the described method
was done on a set of MCNC Partitioning93 benchmarks
proposed in [13] mapped on Xilinx families XC2000 and
XC3000. The benchmark data is presented in Table 1. For
each benchmark is given the number of primary I/O pins
and size in number of CLBs for XC2000 and XC3000 tech-
nologies.



Circuit #IOBs #CLBs Map to #CLBs Map to
XC2000 families XC3000 families

c3540 72 373 283
c5315 301 535 377
c6288 64 833 833
c7552 313 611 489
s5378 86 500 381
s9234 43 565 454
s13207 154 1038 915
s15850 102 1013 842
s38417 136 2763 2221
s38584 292 3956 2904

Table 1. Benchmark circuits characteristics

Partitioning experiments were performed using the de-
vices XC3020 (Sds = 64; TMAX = 64), XC3042 (Sds =

144; TMAX = 96), XC3090 (Sds = 320; TMAX = 144)
and XC2064 (Sds = 64; TMAX = 58). The filling ratio
was set to� = 0:9 for experiments with XC3020, XC3042,
and XC3090 devices, and to� = 1:0 for experiments with
XC2064 device. Lower boundM on the number of blocks
in Tables 2 - 5 was calculated on the base of these� values.

Partitioning results were compared with previously pub-
lished results of [11], [12], [16], [3] and [6] in terms of num-
ber of produced devices. Presented in this paper method is
named FPART in Tables 2-5. All the results of the FPART
algorithm were obtained with the following fixed values of
the parameters�1 = 0:5; �2 = 0:5; Nsmall = 15; �S =

0:4; �T = 0:6; �R = 0:1; "�max = "2max = 1:05; "�min =

0:3; "2min = 0:95.

Circuit Partitioning into XC3020 devices
k-way.x r+p.0 PROP [12] FBB-MW FPART M

(p,p) (p,r,p) (p,o,p) (p,r,o,p) [16]
[11] [11]

c3540 6 6 6 6 6 6 5
c5315 9 8 9 8 8 9 7
c6288 16 16 12 12 15 15 15
c7552 10 10 9 9 9 9 9
s5378 11 10 11 9 9 9 7
s9234 10 10 9 9 8 8 8
s13207 23 23 21 19 18 18 16
s15850 19 19 17 16 15 15 15
s38417 46 48 44 44 41 39 39
s38584 60 60 60 56 54 52 51
Total 210 210 198 188 183 180 172

Table 2. Results comparison on XC3020 de-
vice

As shown in Tables 2 and 3, PROP method succeeds to
find the results below the lower bound in a number of cases
(c6288 for XC3020 device, c3540 and c6288 for XC3042
device). This may not be possible for methods which do
not employ the reoptimization. Thus, the overall result of
the (p,r,o,p) method remains the best in the Table 3, and
is very close to the lower bound theoretical result (82 vs.
81 devices). The proposed method, FPART, and FBB-MW

Circuit Partitioning into XC3042 devices
k-way.x r+p.0 PROP [12] FBB-MW FPART M

(p,p) (p,r,p) (p,o,p) (p,r,o,p) [16]
[11] [11]

c3540 3 3 2 2 3 3 3
c5315 5 5 4 4 4 5 4
c6288 7 7 6 5 7 7 7
c7552 4 4 5 4 4 4 4
s5378 5 4 4 4 4 4 3
s9234 4 4 4 4 4 4 4
s13207 11 10 9 8 9 9 8
s15850 8 9 8 7 8 7 7
s38417 20 20 20 19 18 18 18
s38584 27 27 25 25 23 23 23
Total 94 93 87 82 84 84 81

Table 3. Results comparison on XC3042 de-
vice

method produce 7 results (of 10) equal to the lower bound
in Table 3. But as the device size decreases, and the ex-
pected lower bound number of devicesM increases, FBB-
MW and FPART methods outperform the PROP method,
especially for the bigger benchmarks (Table 2). FBB-MW
method produces better result than FPART method in one
case (c5315), and FPART method produces better result
than FBB-MW for two largest benchmarks (s38417 and
s38584).

Table 4 presents partitioning results for XC3090 de-
vice. The comparison is performed for k-way.x method [11]
(called also (p,p)), r+p.0 method [11] (called also (p,r,p)),
set covering method SC [3], WINDOW ordering, cluster-
ing and dynamic programming-based method WCDP [6],
FBB-MW method [16] and presented in this paper FPART
method.

For small benchmarks, results of FPART method are the
same as results of the k-way.x and r+p.0 methods. For four
bigger benchmarks, FBB-MW and FPART methods outper-
form SC and WCDP and produce the same results, but the
r+p.0 method, which reaches the lower bound outperforms
them by 1 device.

Table 5 presents the experimental results for XC2064
devices. FPART produces similar results as FBB-MW
method, and outperforms WCDP, SC and k-way.x methods.

Table 6 presents CPU time results of the FPART algo-
rithm for all the testcases presented in Tables 2-5. All
the experiments were run on SUN Sparc Ultra 5 station.
The number of algorithm iterations corresponds to the final
number of blocks. Thus, for results with smallk required
CPU time is smaller.

5. Conclusions

In this paper we presented a new multi-FPGA partition-
ing approach. The general algorithm is organized in a recur-
sive iterations and is similar to one proposed in [11]. But in-



Circuit Partitioning into XC3090 devices
k-way.x r+p.0 SC WCDP FBB-MW FPART M

[11] [11] [3] [6] [16]

c3540 1 1 - - - 1 1
c5315 3 3 - - - 3 3
c6288 3 3 - - - 3 3
c7552 3 3 - - - 3 3
s5378 2 2 - - - 2 2
s9234 2 2 - - - 2 2
Total 14 14 - - - 14 14

s13207 7 4 6 6 5 5 4
s15850 4 3 3 3 3 3 3
s38417 9 8 10 8 8 8 8
s38584 14 11 14 12 11 11 11
Total 34 26 33 29 27 27 26

Table 4. Results comparison on XC3090 de-
vice

Circuit Partitioning into XC2064 devices
k-way.x SC WCDP FBB-MW FPART M

[11] [3] [6] [16]

c3540 6 6 7 6 6 6
c5315 11 12 12 10 10 9
c7552 11 11 11 10 10 10
c6288 14 14 14 14 14 14
Total 42 43 44 40 40 39

Table 5. Results comparison on XC2064 de-
vice

stead of replication/reoptimization enhancement techniques
it uses the classical partitioning techniques ([4], [14]). By
introducing the infeasibility distance cost function and care-
fully tuning the basic parameters of classical partitioning
algorithms (definition of feasible move regions, handling
solutions stack, selecting best cluster to move) we ob-
tained the results comparable to the best published results
([16],[12]), and even outperforming them for the largest
benchmarks.

One of the possible directions of future work may be to
try to incorporate the real gain in I/O pin number of a block
instead of the gain in number of cut nets into the cell gain of
the FM-algorithm. This may more quickly direct the search
towards finding solutions respecting the I/O pin constraint.
Another enhancement possibility is to reduce time wasted
in the infeasible region by stopping the FM pass if current
solution moves farther away from the feasible region.
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