
Post-placement residual-overlap removal with minimal
movement

Sudip Nag
Kamal Chaudhary

Xilinx Inc, 2100 Logic Drive, San Jose CA 95124.

Abstract

In this paper we present a novel approach for removing
residual overlaps among blocks. We start out by represent-
ing the placement in the sequence pair form and describe
transformations to the sequence pair to make the place-
ment feasible. This is followed by a distance-based slack
allocation to generate a new placement with no overlaps,
while being as close to the original placement as possible.
Our results demonstrate the efficacy of our approach in
transforming layouts with overlaps to overlap-free layouts
with minimal object movement.

1 Introduction

Aggressive placement techniques[7][8] often resort to
infeasible-intermediate states in the course of iterative
placement improvement. Allowing such infeasibility
(overlap being a widely-used example for placement) gives
lot more flexibility to the optimization process, thereby
hastening the progress towards an optimal solution. In or-
der to ensure that the overlaps are completely removed by
the end of the placement phase, placement algorithms dy-
namically increase the overlap-related weights as the opti-
mization proceeds. While this method successfully re-
moves all overlaps in almost all cases, it cannot guarantee
that overlaps will be removed inall cases. This is especial-
ly true for layouts with fixed-area, like gate-arrays and FP-
GAs. Also, since very few overlaps will remain at the end,
one would like to get a feasible placement (satisfies fixed
area constraint and with no overlaps) which is as close to
the original infeasible solution as possible. There is a need,
therefore, of a mechanism which identifieswhat minimal
placement changes (movement) will result in a feasible
placement. Our work addresses this problem.

Several block placement/floorplanning techniques
[1][2][3] exist for directly generating overlap free place-
ments with different block sizes. However, run time con-
siderations limit these approaches to the instances with at
most couple of hundred blocks. The placement problem for

large FPGAs[10] consists of few thousand blocks with
large number of small singular size Configurable Logic
Blocks (CLBs), several hundred medium size objects e.g.
counters, muxes, adders etc., and few large macros/IP
cores. In such an instance use of annealing with overlaps is
an effective algorithm, provided it is followed by a overlap
removal process for residual overlaps.

Overlap removal is in general a non-trivial problem. To
see an illustration of this, let us analyze the example shown
in Figure 1. In this example module J is overlapping with
modules G and K. These overlaps cannot be removed by
just moving the overlapping modules G, J or K since such
moves will result in other overlaps. One possible solution is
moving J to the right followed by K upwards and finally
moving M to the left. This solution is not trivial even for a
human designer. The main difficulty arises because of in-
teraction between the horizontal and vertical directions;
specifically the decision in one direction can have deleteri-
ous effects in the other.

[4] describes a previous work for removing overlaps.
Their graph based overlap removal method iteratively uses
the following two steps:a) remove redundant critical arcs
b) change the aspect ratio of the modules. Stepb is clearly
not applicable for placement of modules with fixed shapes.
Their graph based approach starts with a highly redundant
graph (in terms of object relationships) and stepa attempts
to obtain a feasible solution by removing redundant arcs.
Repeated application of stepa can at best result in graphs
with zero redundancy.

Dealing with both horizontal and vertical dimensions si-
multaneously is a complex task. Instead, it is often better to
break it to two independent one dimension problems. For
that purpose Sequence pair representation of placements in-
troduced by Murata et. al[1] provides an elegant represen-
tation. In contrast to [4] our approachstarts with a zero-re-
dundancy graph model (i.e. between objects we either have
horizontal or vertical relationship). Thus, application of
stepa will not result in any change to the graphs. In order
to remove remaining overlaps, our graph-based manipula-
tion needs to be much more comprehensive.

Rest of the paper is organized as follows. In section 2
we describe the constraint-graph creation process, which

forms the backbone of our approach. In section 3 we de-
scribe the details of our approach for graph manipulations
in order to remove overlaps with minimal movement. In
section 4 we present the results of our approach. Finally we
conclude in section 5.

Figure 1. Why overlap removal is hard

2 Background

Our starting point is representing the placement (with
overlaps) in the form of vertical and horizontal constraint
graphs, which capture the relationship between objects in
the two axes. The rationale for using these graphs is that
they allow us to deal with the2-D placement problem in
terms of two1-D problems (of course this requires certain
rules/restrictions during the graph formation). For this part
we use the method proposed in [1] and extend it to handle
cases with overlaps. Graph-formation is used in [1] for
post-layout compaction and during annealing moves. The
power of this method is the simplicity of the relationship it
establishes between placement, object-order, and H/V-con-
straint-graphs. Either of the three can be used to determine
the other two. Based on the placement, two sorted sets are
created, a pos-set(P) formed by scanning from top-left to
bottom-right and a neg-set(N) formed by scanning from
bot-left to top-right. The process is shown in more detail in
Fig. 2. For creatingP, the following is done. Put a pebbleb
at the center of an object. Move it right to hit the cutting-seg
which is an arc of the object. Then, move b upward until it
hits an orthogonal cutting-seg. Then, move it right until it
hits an orthogonal cutting-seg, and continue turning direc-
tions as right, up, right,..., untilb reaches the right corner of
the chip. This forms the right-up locus ofb. P is formed us-
ing the loci right-up and left-down ordering.N is formed
using the left-up and right-down loci ordering. Once sets P
and N are formed, we can use them to form the H/V graphs.
If two elements appear in order a..b in P and in order a..b in
N, then there is a horizontal-arc (in H graph) from a to b. If
two elements appear in order a..b inP and in order b..a in
N, then there is a vertical-arc (in V graph) from b to a. Tran-
sitive arcs can be omitted. Using these rules, we show the

P/N sets formation and H/V graph formation for an exam-
ple in Fig. 1.

Both graphs do not contain any directed cycles. For ev-
ery pair of modules, there is always an edge (direct or tran-
sitive) in H-graph or V-graph, and not in both. This allows
independent determination of X and Y coordinates. We will
refer to these properties of the graph pair asL1.

Figure 2. Creation of constraint-graphs

3 Our Overlap Removal Approach

In our approach, we give more priority to the large (size
> 1) objects compared to small (size = 1) objects. This is be-
cause it is harder to perturb the locations of large objects.
The small objects can be easily fitted at the end. An over-
view of our approach is given below:

0. Isolate the large objects(size > 1).
1. Create constraint-graphs for them: handle overlaps.
2. Make the graphs feasible by changing object order-

ing.
3. Determine the final locations based on slack-alloca-

tion.
4. Place the small objects(size=1) in remaining slots us-

ing bipartite-matching.

We will now describe these in detail.

F L

M

K

G

J

H

P = FMLGJKH N = FGHJLKM

H-graph

V-graph

F L

M

K

G
J

H

F L

M

K

G
J

H

F

G

K

H

L

J

M

F G H

J

L K

M

3.1 Create constraint-graphs

In order to handle overlaps, we derive object relation-
ships (H/V graph) by assuming that the sizes of the over-
lapped objects are reduced in the optimal direction. Optimal
direction is the direction (top/left/bottom/right) which
achieves no overlap with minimum reduction. For example
in Figure 2, the size of J was reduced in horizontal direction
for graph creation. We must clarify that the actual object
sizes are not reduced: the reduction concept is used only to
determine realistic object relationships.

For each module in a design, a node is created in both
the H and V graphs. A value equal to the module’s width is
assigned to the H node. A value equal to the module’s
height is assigned to the V node. Each arc in H/V graph is
assigned a value representing the horizontal/vertical dis-
tance between the modules respectively. A -ve distance im-
plies overlap. For overlap free placement all the arcs need
to have non-negative values.

In some cases the overlap removal can be simply
achieved by moving modules away from the overlap area.
This corresponds to setting -ve arc values to 0 and reducing
some +ve arc values. We will refer this case asFeasible
case. In many cases such simple transformation is not suf-
ficient to remove all the overlaps, Figure 1. being an exam-
ple. We will refer this case asInfeasible case. To remove
overlaps in Infeasible cases more elaborate graph transfor-
mations are needed. We describe them next.

3.2 Graph Transformations for Feasibility

Initially we set all the arc values to 0, and find the long-
est path (in terms of arc/node values) in H and V constraint
graphs. We set the target for H constraint graph to be the
chip width and that for the V graph to be the chip height. If
the path length exceeds the target, then the constraint
graphs are infeasible. We cannot proceed to the next step
unless we make the graphs feasible.

Let Pi be the length of the longest path passing through
arci. A slack si for each arc is defined as the difference be-
tween the target and Pi. All arcs with negative si are consid-
ered critical. Slack computation for all the arcs can be per-
formed in two linear passes[5][6].

The aim of our transformation is to remove all the criti-
cal arcs while maintaining the propertyL1 of the graphs.
Note that in order to remove a critical arc A->B in H graph,
it is not sufficient to add an arc between A and B in V graph.
L1 property may require more changes to the graph. An
easy way to performL1 consistent transformation is to per-
mute elements in the sequence pair for arc removal and then
recreate the graphs. Several permutations are possible for
removing an arc; each with different effects on the resulting
floorplan. Ideally, we would like to keep the changes to se-
quence pair small so as to keep the final overlap- free floor-

plan closer to the original floorplan. Keeping these require-
ments in view we discuss two types of permutations, name-
ly Swap and Move.

3.2.1 Swap Permutation:
There can be two cases for critical arc removal; remov-

ing a horizontal-arc or removing a vertical-arc. First let us
assume we want to remove a horizontal-arc from A->B.
This implies the starting configuration shown in Fig. 3. In
this figure,Pl refers to the set of objects to the left of A in
set P,Pr (to right of B) andPw is the set of objects within
A and B in set P. A similar definition exists forNl, Nr and
Nw. SetPwNr represents the intersection of setsPw and
Nr. Arc A->B can be removed by swapping elements A and
B in either P or N set. Swapping in the P set will result in a
new vertical arc from A to B. Swapping in the N set will re-
sult in a new vertical arc from B to A.

Without going into the details, swapping A and B inP
set results in the following arc additions/removals:

H-graph additions: B->NrPw NlPw->A

H-graph deletions: A->B NwPw->B A->NwPw A-
>NrPw NlPw->B

V-graph additions: A->B NwPw->B A->NwPw A-
>NrPw NlPw->B

V-graph deletions: B->NrPw NlPw->A

Swapping A and B in the N set as shown in Fig. 4 results
in the following arc additions/removals:

H-graph additions: B->A B->PwNw PwNw->A
PlNw->A B->PrNw

H-graph deletions: A->PrNw PlNw->B

V-graph additions: B->PlNw PrNw->A

A BPwPl Pr
P-set

A BNwNl Nr N-set

Figure 3. Swapping A/B in P-Set

P-set

N-set

Figure 4. Swapping A/B in N-set

B APwPl Pr

A BNwNl Nr

V-graph deletions: A->B PwNw->B A->PwNw A-
>PlNw PrNw->B

3.2.2 Move Permutation:
Move based layout permutation starts with selecting an

objectO for moving. The selection is based on two criteria:
the number of critical paths (paths with -ve slack) passing
throughO and the size ofO. The intent is to removeO from
its current location so as to lessen (or remove) the criticality
of paths passing throughO. The next step is to identify an
arc whereO can be introduced with no deleterious effects.
We create a list of plausible arcs i.e. arcs with slack greater
than size ofO. We sort this list based on distance fromO.
Finally we test the arcs till a feasible solution is found. As-
sume we are trying to insertO in arc (A->B) in H graph.
From the P/N set viewpoint, this is equivalent to inserting
O between the locations of A and B in Pset and Nset. Each
choice gives rise to new arcs from/toO. We test the effect
of these new arcs on the slack of paths passing throughO.
If we find a location ofO where any new path slacks is less
than the current worst slack, we stop and accept that solu-
tion. Although these steps might look too complicated and
compute-intensive, in practice, owing to our judicious sort-
ing heuristics, we find a plausible move very quickly.

The above information is used to calculate the effect of
a Swap and Move efficiently and exactly. For each affected
node, the cost of the added/deleted arcs is computed to de-
termine the best arc to remove. Additional criteria such as
number of critical paths passing through the arcs are used to
break ties. This process of identifying the critical arc and
performing the swap in P or N set is repeated till the graphs
become feasible. Once the graphs are feasible, we can pro-
ceed to the next step: slack allocation, which is done inde-
pendently in the two graphs.

3.3 Slack-allocation

Unlike for ASICS, where the goal is to minimize area,
for FPGAs the area is fixed for a chosen device. Also, for
ASICs it is assumed that the most compact placement is the
best, from area as well as wiring viewpoint. In FPGAs, be-
cause the IO locations are on the edges of afixed boundary,
these assumptions do not hold true. In case of FPGAs a
compacted layout often results indegradation of perfor-
mance and routability. Further, we do not consider singular
objects (CLBs) during this phase. For all these reasons, in
our case it is important for the relative spacing between ob-
jects to be maintained as much as possible, compared to
what they were in the initial infeasible placement. Our slack
allocation process achieves this goal.

There is a strong parallel between our slack allocation
and what is normally done for timing-related optimization
[5][6]. The difference is that in our case distance replaces
delay and chip width/height replace required clock frequen-

cy/path delay.
We start with all arc-values zeroed out. Slack analysis

in this situation determines how much each path can be ex-
tended, i.e. by how much, objects on this path can be spread
apart while still ensuring that all objects lie within the chip,
without overlapping. Once we obtain path slacks, it is dis-
tributed amongst the arcs that the path comprises based on
the arc-weights. In reality we perform a fast arc-based slack
analysis, which determines the arc-slacks directly, in linear
time, without explicitly doing any path-analysis.

The weights we choose for an arc is its original value
(before it is zeroed out). This ensures that the final arc-val-
ues and therefore the final object locations are as close to
the original placement as possible. In fact if the original
placement had no overlaps, this slack analysis will result in
the exact-same placement.

During slack-allocation, a common problem is deter-
mining where to allocate residual slacks. Let us assume that
3 arcs a, b and c comprise path p. Also, let us assume Wa=1,
Wb=1, Wc=2 and slack Sp of path p is 14. In the first itera-
tion, slacks 3, 3, 6 get assigned to a, b and c respectively.
This leaves a slack of 2 to be distributed among a, b, and c.
However we can assign only integer values. So, what
should be the distribution?

To solve this problem, let us look closely at what hap-
pens if we bump-up the distance of an arcA by 1 in say the
V-graph. Because of this arc increasing, all the critical
nodes thatA feeds to will be pushed up by 1. Critical nodes
are those whose most critical fanin path originates from arc
A. The goodness of the decision of bumping up arcA by 1,
is dependent on the goodness of theeffectof that on the
fanout nodes/objects. For a particular upstream affected
nodeN, let the current distance (from origin in y dir) bed.
Let its original distance (based on starting placement) be
od. Therefore the distance ofN from its original/preferred
location changes from (d-od) to (d+1-od). The change is
good if bumping upd by 1 brings itcloser tood. The good-
ness of the change therefore depends on how -ve

 is. Therefore, the good-
ness of bumping-up of arc A by 1 depends on negativity of :

. .

We use this equation to break ties during slack alloca-
tion. This can be computed in linear time by examining
nodes in topologically sorted order from output to inputs.
After slack allocation, the final overlap free locations of all
objects is known.

3.4 Bipartite-matching

As mentioned earlier, we use the constraint-graph based
overlap removal only for large (size > 1) objects. All singu-

d 1 od–+()2 d od–()2–

2 dN odN–()× 1+()
upCriticalNodes

∑

lar objects are then placed in the remaining slots with min-
imal movement. This is done using bipartite-matching tech-
nique[9]. This method is ideally suited for our problem of
mapping N objects to S (>= N) slots with a fixed cost-ma-
trix which represents the cost of assigning an object n in slot
s. For us the cost is the distance of s from the original posi-
tion of n (os). Initially we try to find a solution by assuming
that object n can only go to slots s which are within a radius
R from its original location (os). We slowly bump-up the
value of R till a feasible solution is reached. The reason for
this approach is to control how far the CLBs can move and
also to limit memory/runtime usage for very large chips.

3.5 Example

Fig. 5 shows steps of our overlap removal process for
the example of Figure 1. Step (a) depicts the initial situa-
tion. The corresponding H/V graphs are shown in Figure 2.
Slack analysis on the H graph generates F->G->J->K as the
most critical path. Each arc on this path is cost analyzed and
arc J->K is chosen as the best swap candidate in P-set. The
result of this swap is shown in (b). This transformation

changes the relationship between J and K from “right-of” to
“top-of”. This change makes the H graph feasible but caus-
es the V graph to become infeasible. Slack analysis on the
modified V graph identifies H->J->K->M as the most criti-
cal path. Cost analysis on this path results in K->M as the
best swap candidate in N-set. After this transformation both
the H and V graphs are feasible. Slack allocation is then
performed to determine the final locations as shown in (c).

4 Results

F L

M

K

G J

H

F L K

G J

H

M

F L K

G J

H

M

P-set F M L GJ K H

N-set F G H J L K M

P-set F M L G K J H

N-set F G H J LK M

P-set F M L G K J H

N-set F G H J L M K

(a)

(b)

(c)

Figure 5. Overlap removal progression

Figure 6. Layout with overlaps

Figure 7. Layout without overlaps and minimal movement

We have tried our approach on examples of various siz-
es and complexity. It was able to remove overlaps in all the
cases. For a very hard example (100% full Xilinx
XC40125XL), we provided our overlap-removal method
with a placement with 9 overlaps (a typical scenario at the
end of a placement process). Our tool successfully removes
all overlaps while increasing the score by only 5% which is
very good considering that we are dealing with a 100% full
design. This overlap removal process took less than 2 min-
utes on an UltraSparc2.

In Fig. 7 we show the result on a FIR filter example oc-
cupying 70% of a XC4085XL. The figure on the top shows
the layout with significant overlaps. For the sake of clarity,
we do not show the singular CLB-size elements, which are
considered only during the bipartite matching phase. The
figure in the bottom shows the result of our tool: it success-
fully removes all overlaps with minimal movement.

5 Conclusion

We have presented an algorithm for efficiently remov-
ing residual overlaps with minimal placement change. Our
method is based on a previously published elegant place-
ment representation. We extend this representation scheme
to handle placement with overlaps. We define a novel tech-
nique for graph manipulation and distance slack allocation
in order to remove overlaps with minimal placement
change. Our results show the efficacy of our approach in re-
moving residual overlaps with minimal movement.

References

[1] Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake and
Yoji Kajitani, “Rectangle-Packing-Based Module Place
ment,” Proc. of ICCAD, 1995.

[2] W.M. Dai and E.S. Kuh, “Simultaneous Floorplanning and
Global Routing for Hierarchical Building Block Layout,”
IEEE Transactions on CAD, vol. CAD-6, no 5, pp. 828-837,
Sept. 1987.

[3] D.F. Wong and C.L. Liu, “A New Algorithm for Floorplan-
ning Design,” Proc. 23rd Design Automation Conference, pp.
101-107, 1986.

[4] G. Vijayan and R.S. Tsay., “Floorplanning by Topological
Constraint Reduction,”Proc. of ICCAD1990

[5] Jon Frankle, “Iterative and Adaptive Slack Allocation for Per-
formance-driven Layout and FPGA Routing,”Proc. DAC,
1992

[6] H. Youssef and E. Shragowitz, “Timing constraints for correct
performance,”Proc. of ICCAD 1990

[7] C. Sechen and K.W. Lee, “An improved simulated-annealing
algorithm for row-based placement,”Proc. of ICCAD
1987

[8] J.M. Cohn, D.J. Garrod, R.A. Rutenbar and L.R. Carley,
“KOAN/ANAGRAMII: New Tools for Device-Level Analog
Placement and Routing”,IEEE Journal of Solid State
Circuits, 1991

[9] A. Srinivasan, K. Chaudhary, and E.S. Kuh, “RITUAL: A
performance driven placement algorithm,” IEEE Trans. CAS,
Nov. 1992.

[10]The Programmable Logic Data Book, Xilinx Inc., San Jose
California, 1996.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

