Codex-dp: Co-design of Communicating Systems Using Dynamic
Programming*

Jui-Ming Chang Massoud Pedram
Cadence Design Systems, Inc. Department of Electrical Engineering-Systems
555 River Oaks Parkway, M/S 2B1 University of Southern California
San Jose, CA 95134 Los Angeles, CA 90089
Abstract communication among the processes. In these task graphs,

In this paper, we present a novel algorithm based on the communication is assumed to take place from the end
dynamic programming with binning to find, subject to Of one process (node) to the beginning of another process.
a given deadline, the minimum-cost coarse-grain hard- Ve refer to this type of communication aad/begircom-
ware/software partitioning and mapping of communicating munication. The coarse-grain processes may however com-
cludes computational processes which communicate withbeginning of their lifetimes. We refer to this type of com-
each other by means of blocking/nonblocking communica-munication asnidwaycommunication and to the task graph
tion mechanisms at times including, but also other than, the With midway communication as generalized task graph
beginning or end of their lifetime. The proposed algorithm The problem we attempt to solve is then stated as follows:
has been implemented. Experimental results are reported

and discussed. Problem 1.1 Given a generalized task graph consisting of
processes which communicate with each other by arbitrary
1 Introduction blocking/nonblocking communication mechanisms and a li-

. _ .. brary containing several possible mappings (or implemen-
Previous work on system level synthesis has focused mainlyations) for each process, simultaneously schedule and map
on fine-grain hardware/software partitioning. Examples in- the computational and communication processes to HW/SW

clude Vulcan Il [1] and Cosyma [2]. These programs auto- yespyrces so as to minimize the total area cost while satis-
matically partition the input specification into basic blocks fying a given deadline.

(or fine-grain operations) and move the basic blocks to hard-
ware or software components while satisfying the given The cost of mapping a process to a library unit (im-
constraints. The resulting fine-grain partitioning may, how- plementation) cannot be determined exactly because of the
ever, move logically coherent blocks across different parts possibility of sharing the same unit between different pro-
or put logically unrelated blocks in the same part. Further- cesses (e.g., using time-division multiplexing or TDM for
more, the resulting partitioning creates an implementationghort). The cost should account for this possibility and in-
which is very different from the initial specification, and ¢|,de the area and delay overhead associated witbdhe
hence, is not convenient for human designers to debug ofext switching We assume in this paper that TDM will be
Improve upon.] L used whenever possible, and that the overhead of the con-
In contrast, coarse-grain partitioning does not decom- text switching is accounted for in the area/delay cost of pro-
pose the initial specification into basic blocks and does notegses which share the same unit.
assign a process in the initial specification to several pro- A task graph with midway communication becomes a
cessors. Itis therefore able to preserve the granularity andyjirected multi-graph, i.e., there may exist multiple arcs from
modularity of the initial specification. In addition, coarse- gne node to another node. The task graph may be periodic.
grain partitioning can exploit the designers’ expertise more \we can handle the case where the period is no less than the
easily and can achieve a desired partitioning which satisfiesgeadiine by performing the same schedule on every period.
some macroscopic choices more readily [3]. Finally, the The hardware components which are available in the
resulting solution has more logical coherence which facili- library can be classified into computational or commu-
tates the top-down design process and allows for debugginthjcation units. Both classes can be further divided into
of the hardware/software. o _ programmable or non-programmable. Examples of pro-
Many of the coarse-grain partitioning algorithms start grammable computational units are CPUs, DSPs and exam-
from a task graph which consists of a set of communicat- pjes of non-programmable computational units are ASICs
ing processes. In the published literature, task graphs thagnd custom ICs. Examples of programmable communica-
describe the set of communicating processes (or tasks) ar@on units are FIFOs with controllers, bidirectional hand-
directed acyclic graphs (DAGs) which use nodes to repre-spake controllers, DMA controllers, bus arbiters, or shared
sent processes and arcs to represent precedence relations glemory access and examples of non-programmable com-
munication units are special purpose, customized commu-
nication units. All computational and communication units

*This research was supported in part by SRC under contract no. 98-DJ-606.

in our library are assumed to be compatible with industry in- ply the summation of the time used to do the computation
terface standards such as the evolWfiqual Socket Inter- and time used to do the communication. These works use
face As a result, we can mix and match variaiB blocks. greedy heuristics [6], branch and bound search [7], or MILP

We allow the resource sharing of programmable compo- solvers [10] [8] as their optimization techniques. In [11]
nents by different processes according to TDM, even if the and [1], the authors allow midway communication in a fine-
process lifetimes overlap. For nonprogrammable resourcesgrain HW/SW environment. The form of communication
the sharing can only happen if the process lifetimes do notallowed is however not as general as the ones proposed in
overlap or the processes are mutually exclusive. the present paper and not at the coarse-level.

Our algorithm consists of three major phases. First, The work reported in [12] for coarse-grain system syn-
processes are decomposed into subprocesses which pethesis, separates the synthesis of computational and com-
form parts of the required computation. The correct prece- munication processes into two distinct stages. In this case,
dence relationships implied by the specified communicationit is very difficult to apply a timing constraint (deadline) on
mechanism are then added in by a systematic transformathe system because part of the time in the critical path is
tion process. Second, the decomposed subprocesses atsed to do the computation whereas another part is used to
scheduled so as to ensure that the subprocesses which belo the communication. In [6], the gradient search method
long to the same original process are mapped to the samen the solution space is used. In each iteration, the authors
hardware type (for example, the same CPU with the sameperform agenerate and testperation commonly used in
utilization factor). We refer to the condition that all of AI. Thatis, in each iteration, they try to relocate one pro-
the subprocesses which are obtained from the same origicess from a CPU to another, relocate a message (communi-
nal process are mapped to the same hardware type with theation process) from one bus to another, do the reschedul-
same utilization factor atype consistency constrainthis ing on the CPUs and buses, and calculate the change on
constraint is necessary because we assume that the origithe cost. If the timing constraints on CPUs or buses are
nal coarse-grain process has strong internal communicatiorviolated, they add one more CPU or bus to fix the prob-
(variable reference, etc.). As a result, we do not want thelem. The synthesis of computational and communication
subprocesses which are decomposed from the same origprocesses can thus be considered to be perfosinadta-
inal coarse grain process to be mapped to different hard-neouslyduring each iteration of the search on the solution
ware units in the final solution. The scheduling is done us- space. The algorithm is, however, greedy and non-optimal.
ing adynamic programmindpased algorithm which finds In our work, the timing constraint is applied to all of the
the cost-optimal process mapping, while satisfying a given computation and communication subprocesses in all critical
task deadline. The third phase is a hardware allocation andoaths and thus the synthesis of the two kinds of processes is
binding (sharing) phase which ensures that the decomposegerformed simultaneously. Since our algorithm is based on
subprocesses will be mapped not only to the same hardwarelynamic programming it produces the optimal solution.
type, but also to the same hardware instance. The allocation In summary, previous works do not address the problem
and binding determines the sharing of hardware among allof coarse-grain mapping of communicating processes. This
coarse-grain processes in the system. problem is the subject of the present paper.

The paper is organized as follows. In Section 2, we sum- .
marize related work for coarse-grain HW/SW partitioning. 3 Process Decomposition in a Task Graph
Section 3 introduces our transformation rules for processThis phase decomposes the communicating processes into
decomposition. In Section 4, we present our dynamic pro- some smaller computational subprocesses and communica-
gramming algorithm for solving Problem 1.1. In Section 5, tion processes. The decomposition step ensures that all of
we describe the a_lllocation and bi_nding algorithm to be usedthe precedence relationshipsimposed by the required block-
after the scheduling step. Experimental results and concluing/nonblocking communication mechanisms are added.
sions are provided in Sections 6 and 7, respectively. Transformation of the communicating processes into com-

putational subprocesses and communication processes for
2 Related work blocking send/blocking receive, nonblocking send/blocking
There are two published works [4] [5] on fine-grain hard- receive, blocking send/nonblocking receive and nonblock-
ware/software partitioning which use dynamic program- ing send/nonblocking receive are shown in Fig. 1(a), (b),
ming. In both of these works, the target architecture (c) and (d), respectively. In Fig. 1, proceéssepresents the
contains a single microprocessor and a single hardwareactual process which sends the data from the sending pro-
chip. The authors try to find the best combination of cess andk represents the process which sendsdipdy or
non-overlapping sequences of fine-grain “basic schedulingacknowledgmeritom the receiving process. The arcs with
blocks” which fit the available hardware (ASIC or FPGA) single tail denote the precedence relationships between the
and result in maximum speedup by moving the schedulingnodes connected by that arc. The arcs with double tails de-
blocks from software to hardware). The problem is simi- notes the precedence relationship between the two subpro-
lar to theknapsack problepand the dynamic programming cesses that are decomposed from the same original coarse-
formulation is used only to avoid repeated computations in grain process. Note that there is strong internal communica-
their iterative procedure. tion (variable accesses) and logical coherence between two

There have been a number of research publications onsuch subprocesses and thus they should be finally mapped
coarse-grain HW/SW partitioning which handle task graphs to the same hardware/software instance.
with only end/begin type communication [6] [7] [8] [9]. In For a task graph with complex communications among
these task graphs, the total time used by a process is simprocesses, we follow the transformation rules shown in Fig.

BS/BR BS/BR A
: ° a> =
|
NBS/BR NBS/BR @
’ d> w > |l|
BS/NBR S/NBR
° :> w = J/@ Fhigurg 2d Example for decomposition of single and multi-
threaded processes.

z

s

than 100%, then the area cost is multiplied by the utiliza-
tion factor. Similarly, the delay cost of a process mapped

NBSINBR /A to this processor is the total computation time for the pro-
) ° :> ° ° N ll ° cess running on that type of hardware. In case the processor
is shared among multiple processes, the delay cost of each
process accounts for the overhead of context switching.

In this paper, we only consider a task graph which is

=

with deterministic characteristics. The data size for each

@ Q”BS’BR @‘@3 Nss/are@ NesiER ‘/ % communication process is knowa griori) as part of the in-

= put specification, and the corresponding delay for mapping
to different communication units is estimated by behavioral
Figure 1: Decomposition of communicating processes.

Q composed of computational and communication processes

simulation and profiling. For communication processes, the
area estimate does include the area used by communica-
tion controller, buses, and local buffers for both the sender
1 to create to the decomposed task graph. When there isand the receiver. The area of a communication process that
more than one midway communication for a given processuses programmable communication controller with some
(cf. processA in Fig. 2(a)), the decomposition of this utilization factor< 100% is estimated as the total cost times
process depends on whether it is single threaded or multi-the utilization factor. For communication units, which are
threaded. For a single threaded process, the midway comshared by several communication processes, the cost and
munication is referenced to the same time line as that of thedelay includes the overhead of context switching.

thread. In this case, the appropriate transformation rules are :

applied to all midway communications at different points 4.2 Simple task graphs)
of the time line (cf. Fig. 2(b)). For a process with multi- FOr atask graph without re-convergent fanout and with only
threads, the midway communications may be referenced to®nd/begin type communications, the algorithm used in [13]
differenttime lines for different threads. In this case, we add ¢an be directly used without going through the process de-
two dummy node¥; andY; (with zero cost and zero delay) COMposition phase. This algorithm would then produce the
at the beginning and the end of that process to synchronizeé?Ptimal hardware/software mapping for a tree-structured
the multiple threads. The appropriate transformation rule is {2k graph (and a good solution for a DAG-structured task
then applied on each thread that serves the time line for thed@ph) under a given timing constraint (deadling)seudo-

corresponding midway communication (cf. Fig. 2(c)). gg%g%gﬁ"&r;ee-cggﬁq 82%;{;83'%?;‘%”5':;&r:gpé?ggstshse

4 Scheduling Using Dynamic Programming and to add the required arcs to the task graph as shown in
; i ; ; _Fig. 1(e).
LTEQS;:Q ?Sd(ljjgggrizlgé) rr:tehxrp 's based on dynamic program The algorithm assumes that we are given the area vs. de-
) lay curves for different module alternatives (implementa-
4.1 Areavs. delay curves tions) which match each node of the task graph. Then the
Before the scheduling, all processes are assigned an aredlgorithm performs a post-order traversal which adds the
vs. delay curve which represents the area cost and delay foprea vs. delay curves of the children of a node and the mod-
mapping the process to different types of processors. Theule alternatives for the node to build the area vs. delay curve
corner points on those curves are non-inferior points. A of this node. This step will also use the lower bound merge
point is inferior to another point if both its cost and delay to delete all inferior points. The post-order traversal will
are equal or higher. The area cost of a process mapped teéontinue until the graph roots are reached. Then a pre-order
a processor typ& is the chip area of the hardware real- traversal willcommence at the roots using user specified ar-

ization of processoK . In case the utilization factor is less ~ rival time constraint. The minimum area point on the area
vs. delay curve of the root which satisfies the arrival time

along different paths to any reconvergent fanout node (see
© Fig. 3). The computation of the binning strings relies on
A the notion of primary and secondary reconvergent nodes of
GY:3 sZ) (. B, sg> ®) ® (A) a given node in the graph and uses the Floyd-Warshall al-

) @ /./\ .%:‘ gorithm [15] to compute the transitive closure of a graph.
\ Details are omitted due to lack of space. Second, in the

' (a ss> solution of [13], the post-order and pre-order traversals are
Cn:3 ss) performed on the individuaPO’s sequentially. This ap-
ABCoN @ ® @ proach may however lead to a type inconsistent solution.

We thus add some dummy nodes and a root with zero cost
‘f# ‘:‘ and zero delay to merge differeR0’s into a single root.

As a result of the binning string computation, each node
(subprocess) will have several bins, and each bin will have
Figure 3: Example for computing the binning strings an associatethgwhich describes the implementations used
(shown in parantheses). for each process in the binning string of the node. For exam-
. . . . ple if the binning string of nod« is (4, B) and if there are
constraint will determine the module alternative to be used 3 types of mapping for process and 4 types of mapping

at the root. The pre-order then traverses the children of theg,, processB, then there will be a total 12 bins for node
root with the new arrival time constraint calculated as the ar- The first bin will be tagged asi(= T1, B = T1), the second

rival time at the root minus the delay of the module used at p;, \vill be tagged as4 = T1, B = T2), and so on
root. The recursive procedure will continue until all leaves ' ' '

have been visited. 4.3.2 Post-order traversal

4.3 Complex task graphs Suppose we are processing nalfewith two childrenyY
Handling task graphs with processes that have re-andZ (which have already been processed during the post-
convergent fanout and use midway communication during order traversal). We check the binning stringstoind Z
their lifetime is more difficult. This is because processes against that ofX. If the binning strings of any child and

in the task graph have to be decomposed into subprocesse#ts parent are different, we have to normalize the dimen-
and the communication processes which reflect the block-sion of the bins of the child to that of the parent. For a
ing/nonblocking communication mechanism have to be in- child node with binning string shorter than that of its par-
serted. Furthermore, after the decomposition phase, the dyent node, we expand the dimension of the bins of the child
namic programming paradigm must be modified to ensurenode by duplicating the corresponding curve for the bins
that the subprocesses which belong to the same original prowhich are added. For example, if child nodehas binning
cess are mapped to the same hardware or software compgstring (B) and its parenfX has binning strind 4, B), and
nent instance to maintain the logical coherence and perfor-assuming that there are two types of mappings for bbth
mance. This is achieved in two steps; during scheduling,andB, say typest andF. We duplicate the original curve
we ensure that the decomposed subprocesses which corref nodeY for (B = E) tag and create two identical curves
spond to the same original process are mapped to the saméortags 4 = E,B = E)and A = F, B = E). Similar

HW or SW type with the same utilization factor. During the duplication step is applied to the curve of nodefor the
allocation and binding, we ensure that these subprocesseéB = F) tag. For a child node with longer binning string
are further mapped to the same HW or SW component in-than that of its parent node, we reduce the dimension of the

stance. bins of that child node by merging the curves which belong
, to bins that differ only in the ID missing from the binning
Theorem 4.3.1 Problem 1.1 isNP-complete string of the parent. For example, if child nodehas bin-

ning string(A, B, C) and its parentX has binning string

(4, B), then we will do a superimpose followed by lower

bound operation on the curves of bins corresponding to tags

(A=E,B=E,C=E)and(A=E,B=E,C =F)to

§btain the unified curve for the newtdg = E, B = E).
imilar operations are needed for all other combinations of

A and B implementations.

After we normalize the dimension of each child node,
the curve representing the accumulated cost vs. delay on
the parent can be constructed by adding the curves of each
4.3.1 Creating the binning strings child and including the contribution of the module alterna-

. . . . tive matched at the parent. This must be done for every
To satisfy the type consistency constraint, we modify the iy gne at a time. Addition must occur in the common re-

g_yna_lmic programming ﬁlgor(;thm aﬁ follows. Firstf, v¥]e at?d gion among all curves to ensure that the resulting merged
Inning strings to each node. The purpose of the bin-f,nction reflects feasible matches at the children.ofrhe
ning strings is to ensure that the dynamic programming al- ¢, ye for successive matchings at the same moaee then
gorithm uses type consistent mapping solutions for ”Odesmerged by applying ower-bound mergeperation on the

LAl proofs can be found in [14]; they are omitted here to save space. coffesponding curves. Because our decomposed task graph

In practice, the midway communication among coarse-
grain processes occurs frequently. The dynamic program-
ming approach of [13], may generate a point on the area
vs. delay curve of a reconvergent fanout nadehich re-
quires inconsistent type assignments for some of the node
in the transitive fanin cone af. This is obviously wrong.

In addition, using the original algorithm in [13], during the
post-order graph traversal, we may drop some points which
are actually required to generate the optimal solution.

is a DAG instead of a tree, we face the problem of how to wheren is the total number of noded¢composedomputa-

pass up the cost of a multiple fanout node to its parents dur-tion and communication (sub)processes) in the decomposed

ing the post-order traversal. We use a heuristic whereby thetask graph .

cost value of a multiple fanout node is divided by its fanout ~ Suppose that the maximum number of possible pro-

count when propagated upward in the DAG. This heuristic cess mappings for each subprocess (nodéy iand the

produces thexacttotal cost at the root as long as multiple maximum length among all binning strings i8. Us-

primary outputs are merged into a single root (cf. 4.3.1). ing our process decomposition method, all communication

The proof is straight forward (similar to flow conservation (sub)processes have fanout coghtl. In a decomposed

in network flow problem). task graph withn nodesp < m < n. There can be at most
The curve addition and merging are performed recur- K™ bins in each node in the decomposed task graph. Then

sively until the root of the root is reached. The resulting the maximum possible number of points in each node of the

curve is saved in the corresponding bin of the graph at itsdecomposed task graphds- K™.

corresponding node. The set @f¢) pairs corresponding The number of area-delay points on each node in the de-

to the composite curve for the tag at the root node gives thecomposed task graph is bounded from abovedoy K™.

set of all possible arrival time-cost trade-offs for the user to The algorithm thus has a time complexity of @ - K™.

choose from. Delay function merging and addition are done in linear time
in the number of points on the curves involved in the oper-
4.3.3 Pre-order traversal ations. Therefore, our algorithm runsnn Q - K™ time.

Pre-order traversal begins at the root of the decomposed task Note that the value aof. is, in general, dependent on the
graph and proceeds toward the leaves. Consider aXimde structure of the decomposed task graph. In the worst case,
the graph. The (output) arrival time and the type constraint™ can be as large as In practice,m is, however, much
for the node are known. Our task is to determine the arrival Smaller tham. For example, for the frequently encountered
times and the type constraints for each of its child nodes. Simple task graphs defined in Section 4is zero. In this
Consider a childZ of node X. We are assured that case, the algorithm has pseudo-polynomial time complexity
at least one of the tagged curves ¥fis consistent with ~ On the decomposed task graph.
the type constraint passed down2Xa If there is exactly ; T
one such curve stored &, we pick the minimum-cost 5 Allocation and Binding
point of the curve which satisfies the arrival time constraint As a result of the scheduling phase, the computational sub-
of X. Otherwise, there are more than one tagged curvesprocesses decomposed from the same original coarse-grain
that are consistent with the type constraints passed dowrprocess are mapped to the same type of processor imple-
to nodeX. In this case, we find the corresponding best mentation or custom ICs. They have not however been
cost point on each curve (which satisfies the timing con- mapped to the same instance of the processor or custom IC.
straint) and among them pick the solution which has the Our first step is taegroupthese subprocesses back into
overall minimum-cost. Next, we update the type constraint their coarse-grain process and assign them to the same pro-
for nodeZ as the Union of type constraint passed down to cessor instance. From then on, the allocation and binding
nodeX and the constraint implied by the tag of the chosen procedure will treat the regrouped subprocesses as a single
point on the tagged curve (or bin) and set the timing con- process.
straint of Z as the timing constraint & minus the delay of Processes are generally separated into different classes if
the match aiX . they are mapped to differenttypes of hardware units. Within
A multiple-fanout node is visited multiple times during each class, the allocation and binding (sharing) is then per-
the pre-order traversal. During each visit, the arrival time formed.
and possibly type constraint of the node may change to Processes which are mapped to programmable units can
guarantee that arrival time and type consistency constraintshare the same instance of the unit through TDM even if
for all paths emanating from that node toward the root of their lifetimes overlap. In addition to the programmable
the graph are satisfied. Due to the introduction of a sin- communication units, part of the buses or the shared mem-
gle root during the binning string computation, we do not ory and/or local buffers needed for communication may be
encounter conflicting type consistency constraints from dif- shared in a TDM fashion by the the corresponding commu-
ferent fanout branches of such a node. nication processes. The requirements for sharing one pro-
grammable unit instance are that the processes are mapped
Theorem 4.3.2 Dynamic programming with binning solves to the same type of unit, and the sum of the utilization fac-
Problem 1.1 optimally while satisfying the type consistency tors of those processes is less than 100%. We perform the

constraints. allocation and binding by usingraodified bin packing al-
_) gorithm which ensures that every regrouped coarse-grain
4.4 Complexity Analysis process is bound to the same hardware instance through-

Let us scale delay values for all nodes (subprocesses) unoutits lifetime. Note that the TDM sharing does not change

der different process mapping to become integers. Furtherthe global timing obtained in the scheduling phase. Details
more, we denote the maximum computation time for a tree- are omitted to save space.

structured decomposed task graph (using the worst-case in- For non-programmable units such as custom ICs or other
teger delay values on any path) By,., and assume that communication units, sharing is possible only if the process

Tynaz is bounded from above by an integ@r Let| Z | =n lifetimes do not overlap or the processes are mutually ex-
clusive.

6 Experimental Results

Ckt m,n | pu,cu Codex-dp MILP Exh.
Our dynamic programming with binning, named Codex-dp H ‘ ‘ cnt [ctime | cost form. ‘ srch H
(for Co-design of Communicating Systems Using Dynamic [[Prakl | 2,11 | 1,1 | 0.036 | 63.7 55,13,11 | 41
Programming), is implemented in C and tested on a num- || Prak2 | 6,22 | 2,1 | 0507 | 122.5 | 110,26,22 | 4*2
ber of circuits. Experimental results are presented in Table || Yen 112 | 1,1 [0043]| 637 || 60,1312 | 4™
1. Prakash1 and Prakash2 are taken from [10]; Yen is taken| Bend. | 713 [2,2 [1.143 [1372 [60,17,12 | 4™
from [6], and Bender is an example from [8]. Ineveryex- | &1 | 013 | 11 | 0086 79.7 || 651213 412
ample, we do the process decomposition and insert appro{-&2 | .14 | 21 | 0114 | 1485} 70150 | 4
priate communication processes in the original task graphs. exi T gég g; gé% %é'g 153’5211*1723 fm
Our module library consists of a number of processors and :§4:2 939 T 23 1 6412 [1519 19551 123 222
communication units (Intel Pentium Il and Motorola 68030 23T 939 [22 | 6.356 | 127.4 | 19551123 42

processors, TI 302C25 DSP, Intel DMA controller, 10Mb/s

Ethernet controller, etc.) We allow the sharing of these re-
source through TDM. A pre-processing step determines the
areal/delay cost of each process when it is mapped to various
hardware units in the library.

Table 1: Experimental results.

nism at times other than the beginning or end of their life-

We also report results on 4 more examples from vari- time. The proposed algorithm produces optimal results, and
ous sources. The task graph for examp|e 1 with dead"ne|s much faster to solve than the MILP formulation. A final
= 80.0(ns) is taken from the CPM system [16]. The task resource allocation and sharing step will follow the dynamic

graph for example 2 with deadline = 100»X) contains

programming step and produce the actual instantiation of

end.begin type communication only, but has reconvergentthe processor types to hardware instances. This last step is
fanout structure. The task graph for example 3 is shown in done using a modified bin packing heuristics.
Fig. 2(a); its decomposed task graph is shown in Fig. 2(c) References

and has deadline = 50/06). The task graph for example
4 is a large task graph taken from [16] which performs the
voice activity detection in a GSM phone. For this example,
we used three different deadlines and report the results in
row ex4-1, ex4-2, ex4-3. The corresponding deadlines were 5,
setto 170, 300, 510+1s), respectively.

In Table 1, column 2 shows the valuesmfandn seen [4
by Codex-dp (cf. 4.4). Column 3 gives the total number
of processor and communication units needed after the al-
location and binding. Columns 4 and 5 give the CPU time [5]
used by Codex-dp (igeconds on a 200 MHz Pentium Pro)
and the estimated area cost €in?) required to implement
each circuit. Column 6 gives the numbers of variables, in- ©
equalities and equations if the scheduling is formulated as
a mixed integer linear program, MILP assuming that each 7
process has four possible implementations (not presented
here due to lack of space). In column 7, we show the com-
plexity of using exhaustive search after regrouping all of the [8]
computational subprocesses back into their original coarse-
grain processes and still assuming that each process has foufel
possible implementations.

It can be seen that Codex-dp produces the optimall10]
scheduling results in a very short time compared to the ex-
pected time for MILP or exhaustive search. For example, in
ex4, the MILP solution cannot be obtained due to the large %
number of variables in the MILP (195 variables, 123 equa-
tions, 51 inequalities). The row entries for ex4-1, ex4-2, 1,
ex4-3 show the trade-off between area cost and total com-
putation time. Decreasing the deadline constraint increases
the area cost of the optimal solution. [13]

7 Conclusion

We have presented an algorithm based on dynamic
programming with binning to solve a min-cost, time-
constrained simultaneous scheduling and mapping problen;s;
for a set of computational processes which communicated
by means of blocking/nonblocking communication mecha- [1¢]

[14]

] A. Jantsch, P. Ellervee, J. Oberg, A. Hemani, and H. Tenhunen.

R. Gupta and G. D. Micheli. System-level Synthesis using Re-programmable
Components. IfProceedings European Design Automation Confereh882.

R. Ernst, J. Henkel, and Th. Benner. Hardware/Software Co-Synthesis for Mi-
crocontrollers.|EEE Design and Test Magazint0(4), December 1993.

G. De Micheli and editor M. SamiHardware/Software Co-Design, pages 22,
84, 85, 96, 217Kluwer Academic Publishers, 1995.

Hard-
ware/Software Partitioning and Minimizing Memory Interface Traffic Pho-
ceedings European Design Automation Conferet684.

P. Knudsen and J. Madsen. PACE: A Dynamic Programming Algorithm for
Hardware/Software Partitioning. Proceedings IEEE International Workshop
on Hardware/Software Codesigh996.

T.-Y. Yen W. Wolf. Communication Synthesis for Distributed Embedded Sys-
tems. InProceedings IEEE International Conference on Computer-Aided De-
sign, 1995.

J. D’Ambrosio and X. Hu. Configuration-Level Hardware/Software Partition-
ing for Real-Time Embedded Systems. Pmoceedings IEEE International
Workshop on Hardware/Software Codesi$894.

A. Bender. MILP Based Task Mapping for Heterogenous Multiprocessor Sys-
tems. InProceedings European Design Automation Confereh886.

S. Narayan and D.D Gajski. Synthesis of System-Level Bus Interfaceroin
ceedings European Design Automation Conferet684.

S. Prakash and A. Parker. SOS: Synthesis of Application-Specific Heteroge-
neous Multiprocessor Systendgurnal of Parallel and Distributed Computing
16, December 1992.

T. Benner, R. Ernst, and ﬁésterling. Scalable Performance Scheduling for
Hardware-software Co-synthesis Rroceedings European Design Automation
Conferencgl995.

J.-M. Davaeu, T. Ismail, and A.A. Jerraya. Synthesis of System-Level Commu-
nication by Allocation-Based Approach. Proceedings IEEE International
Symposium on System Synthek®95.

J.-M. Chang and M. Pedram. Energy Minimization Using Multiple Supply
Voltages. InProceedings International Symposium for Low Power Electronic
and DesignAugust 1996.

J.-M. Chang and M. Pedram. Codex-dp: Co-design of Communicating Systems
Using Dynamic Programming. Technical Report CENG 98-04, University of
Southern California, 1998.

T. Cormen, C. Leiserson, and R. Rivebttroduction to Algorithms The MIT
Press, McGraw-Hill, 1990.

R. Steele Mobile Radio Communication®entech Press, London, 1995.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

