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Abstract
We present a method for generation of the software part

of a HW/SW interface (i.e. the device drivers), which sepa-
rates the behaviour of the interface from the architecture
dependent parts. We do this by modelling the behaviour in
ProGram (a grammar based protocol specification lan-
guage) and capture the processor and OS kernel parts in
separate libraries. By separating the behaviour from the
architectural specific parts, compared to other approaches
up to 50% development time can be saved the first time the
component is used, and up to 98% for each time the inter-
faced component is reused.

1. Introduction

As elaborated by Tuggle in [10], for a given device, a
device driver must be rewritten for every operating system
it will be used with. For hierarchical device drivers like
SCSI systems, the number of device drivers needed for a
device is the product of the number of supported operating
systems and the number of supported host adapters. If we
also consider different implementation styles of a device
driver, the number of possible implementations grows even
more sharply. One quickly realizes, that development, veri-
fication, and maintenance of all these device drivers is a
huge task.

Existing approaches address this problem only partially.
CoWare [11] and Polis [1] concentrate on the case where
the whole design functionality is captured within their
environment and then during the system synthesis the com-
munication is refined, i.e. the device drivers are generated
together with the custom HW and operating system. But if
the user wants to use IP blocks and an off-the-shelf RTOS,
he/she will face the same troubles as for manual design
[10]. In Chinook [2], the definition of a device driver also
includes the bus interface, which makes it very architecture
dependent. MakeApp [6] is a tool for generating device
drivers for different devices and processors matching user
defined configurations. Both Chinook and MakeApp solve
only part of the problems described in [10], since they gen-
erate code only for a specific real-time kernel (Chinook) or
no kernel (MakeApp).

To solve this problem we have proposed techniques for
modelling of device drivers independent of both the real-

time kernel and the processor [9]. In this paper we extend
that with a synthesis technique to generate device drivers
from three inputs: (1) an architecture independent protocol
described in ProGram [12]; (2) a characterization of the
operating system; (3) a characterization of the processor
and its bus interface. With architecture we mean both the
processor and the operating system.

The next section presents the proposed design flow for
device drivers. Then we discuss the architecture dependent
parts of a device driver. The fourth section presents a tech-
nique for modelling software architectures for device driver
generation. In the fifth section we present the synthesis
method. Finally, we conclude the paper with two case stud-
ies.

2. Design flow

As described in [9], we model device drivers independ-
ently of the architecture using ProGram [12]. ProGram, is a
grammar based notation for protocol applications. Specifi-
cations in ProGram deal with sequences of allowed events
as opposed to states and state transitions in FSM model.

The ProGram description is synthesised into an un-
timed extended state machine (described in [9,12]), which
in turn is the input to the architecture mapping procedure
described in section 5. The mapping procedure uses data
from two libraries to generate the architecture specific
code. The first of these libraries is the library that captures
the information on the OS architecture, the second captures
the processor specific characteristics, see figure 1.

Device driver description in ProGram
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Figure 1.Device driver design flow.
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3. Architecture dependent parts

In the following sections we discuss architecture spe-
cific parts of device drivers, i.e. synchronization, execution
delays, interrupt handling, mutual exclusion, and the
device driver interface.

3.1. Synchronization with external events

The waiting for an external event, i.e. the synchroniza-
tion of the device driver with an external event, can be
implemented in three ways, as illustrated in figure 2: (a)
polling of device signals, (b) wait for a fixed time (when
the device is known to generate an event), or (c) wait for an
operating system event generated by an interrupt that is
triggered by the device. An example of where synchroniza-
tion is needed is an analog to digital converter. There we
first initiate a conversion by writing some control data, and
then wait for the conversion to take place, i.e. synchronize
with the conversion ready event. This is done by polling a
status register, wait for the specified conversion time, or let
the device generate an interrupt signal. After that, read the
sampled value from the device. Polling is the only one of
these three synchronization schemes that can be imple-
mented independent of the software and OS architecture.

3.2. Delay execution

As described in the previous section, in some situations
a device driver has to halt itself for a certain amount of
time. This could be necessary when waiting for an analog-
digital conversion, but also to wait for coprocessors during
the initialization process. The wait function is provided by
some kernels, hence this function is architecture depend-
ent.

3.3. Interrupt handling

Interrupt service routines can be used to synchronize a
device driver with a hardware event as described above.
Sometimes they are also independent routines with their
own behaviour, e.g. when an interrupt handler receives data
from a communication device and writes it to a buffer.
There are two possible ways to implement this: (a) the
interrupt service routine informs the task about the event
when the interrupt is activated and the task handles the
action. (b) The interrupt routine also performs the action
itself, see figure 3.

The implementation in figure 3b is more suited for
actions with short execution time since alternative 3a intro-
duces a communication overhead. Alternative 3b has also a

shorter and deterministic response time but introduce inde-
terminism in the kernel behaviour. 3a’s response time is
dependent on the priority of the task responsible for the
action.

3.4. Mutual exclusion

There are two possible ways to prevent several applica-
tion threads accessing the same device simultaneously: (1)
with help of semaphores and (2) to disable the interrupt
mechanism. Both have there advantages and disadvantages.
Disabling interrupts is fast and do not add overhead to the
execution but it disables the normal behaviour of the ker-
nel, i.e. introduce indeterminism. Semaphores do not affect
the kernel behaviour but introduce communication over-
head. So the conclusion is that one should use semaphores
for complex device drivers and disable interrupt for simple
ones.

The control for mutual exclusion can be placed within
or outside the device driver, see figure 4 for an example
with a semaphore for handling mutual exclusion. The bene-
fit of having it outside (i.e. within the application code) the
device driver is that the device driver will not be dependent
on the architecture for handling of mutual exclusion, the
draw back is that the code will be less structured.

3.5. Device driver interface

For device drivers developed for single threaded soft-
ware with no operating system, the interface to the applica-
tion software (i.e. how in and out parameters to the device
driver are handled, driver component naming style) is
determined by designer, project or company coding style.
There are systems with real-time kernels like theµC/OS or
RT-kernel where the interface to the application is also
defined by the designer. For other systems with kernels/
operating systems like UNIX, OS9, VxWorks and OS/2 the
interface to the application/operating system is defined by
the operating system [10].

4. Modelling of the architecture

To be able to map architecture dependent parts of a
device driver to a specific architecture, the characteristics
and behaviour of the architecture have to be captured. As
seen in figure 1, the architecture is captured in two parts:
the kernel specific parts (further described in section 4.1)
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and the processor specific parts (further described in sec-
tion 4.2). Throughout this section, we will use theµC/OS
[7] and MC68000 [8] as examples.

4.1. Software environment

The model of the software environment (i.e. the OS
characteristics and functionality) is divided into three parts:
(1) the environment characteristics, (2) the interface to the
application/OS, and (3) the macro for accessing system
services.

4.1.1 SW environment characteristics

This part contains the environment name, type, timing,
and include files needed for this architecture. The type is
captured since it affects the behaviour of the interrupt rou-
tines. The characteristics for the model is defined in the
table below.

Example 1A system withµC/OS kernel and a timing inter-
rupt period of 10 ms, would have this characteristics
model:

name = uCOS;
kernel_type = preemptive;
tick_time_period = 10 ms;
interrupt_supported = true;
header_files = “uCOS.h”;

4.1.2 SW environment interface

With SW environment interface we mean the naming
style of the different device driver functions and how data
is transferred to and from these functions. The interface
model is composed of three interface definitions for gener-
ation of function declarations: (1) interrupt service routine,
(2) device driver function, and (3) task function. The defi-
nitions describe how the function names and parameter
declarations should be generated. There is an additional
translation table for type conversion, i.e. that translates the
bit vector type to a C data type with respect to the bit width.

4.1.3 SW environment services

SW environment services are equal to system call func-
tions offered by the kernel. Services that have to be mod-
elled are discussed in section 3 and the system functions to
provide these services are enumerated in the table below.

Example 2 A model of some of the uC/OS service func-
tions:

pending_time(n) = OSTimeDly(n);
disable_interrupts = OS_ENTER_CRITICAL();
enable_interrupts = OS_EXIT_CRITICAL();

4.2. Processor features

The processor features are captured by two parts: the
processor characteristics and processor specific routines.

4.2.1 Processor characteristics

A processor can be characterized in many ways, but
what is interesting for this approach is the internal and
external data bus width since these will affect the address
calculation of the device address. Also, the device access
type has to be captured, i.e. if it uses a port mapped or
memory mapped device access method. The table below
defines the characteristics that need to be captured.

Example 3Model of characteristics for the MC68000:
name = MC68000;
device_access_type = memory_mapped;
internal_data_bus_width = 32;
external_data_bus_width = 16;

4.2.2 Processor specific routines

For device driver generation some processor specific
code must be provided. Specifically, the saving and restor-
ing of registers must be captured. If enabling and disabling
of interrupts is not supported by the kernel, then the proces-
sor specific code has to be used. The table below defines
the processor specific code needed to be captured.

Characteristics Value(s)
name Name of the architecture (string)

kernel_type {preemptive, not-preemptive, single thread}

tick_time_period Time between two clock ticks

interrupt_supported {true, false}

header_files {empty, list of header files}

Definition/Table Outcome
interrupt_routine_dec interrupt routine declaration

driver_routine_dec driver routine declaration

task_dec task declaration

type_conversion_table data typed signals

System call Input
enable_interrupts non

disable_interrupts non

create_binary_semaphore name (string)

delete_binary_semaphore name (string)

pending_semaphore non

set_semaphore non

pending_time no of ticks (integer)

enter_interrupt non (For preemptive kernels)

exit_interrupt non (For preemptive kernels)

Characteristic Value
name Name of the architecture (string)

device_access_type {memory mapped, port mapped}

internal_data_bus_width {8,16,32}

external_data_bus_width {8,16,32}

Assembler macro Parameter
push_proc_register non

pop_proc_register non

enable_interrupts non

disable_interrupts non

return_from_interrupt non

function_call function label

read_port_mapped data (output)

write_port_mapped data (input)



Example 4Push the register onto the stack(MC68000):
push_proc_register=“move.l D0-D7/A0-A7,-(ssp)”

5. Mapping of device driver models

Several untimed FSMs are synthesized from the device
driver description in ProGram. These FSMs are synthe-
sized using the same technique as for synthesis of HW
interfaces [12]. From there the implementation is created in
two steps: (1) the transformation rules (section 5.1) per-
form optimizations and transformations that are independ-
ent of SW architecture and processor; (2) the code
generation (section 5.2) uses the librariesOSLib andPro-
cLib to generate the device driver in C.

5.1. Transformation rules

Each transformation rule described in this section is
applied to all states in the synthesised state machines.
These rules map the FSM behaviour onto a general soft-
ware architecture.

5.1.1 External synchronization

External synchronization points in ProGram are trans-
lated to wait statements in the generated FSM, with a tran-
sition upon the receipt of the synchronization signal, i.e.
the tj transition in the figure 5 (a) is taken. The condition
for ti is complementary to the one for tj, i.e. ti fires when tj
does not and vice versa. Synchronization with external sig-
nals are implemented by means of an interrupt routine sig-
nalling an event to the waiting device driver.
Rule 1: State Si has two transitions (ti and tj), ti is a transition to Si and tj
to Sj (figure 5, a). If the conditions for ti and tj are complementary and
composed of an external signal, then remove ti, set the condition for tj to
true and insert a wait-for-event from the library into the code of Si.
Generate an interrupt routine, that sends this event upon activation (figure
5, b). The condition for tj will be the interrupt signal that triggers the
interrupt routine.

5.1.2 Identify internal synchronization

Internal synchronization points (i.e. synchronization
between different parts of the device driver) are translated
as the polling of an internal signal. As stated in [9] this
construct can not be allowed between the different access
functions of the device driver, since it could result in a
deadlock. The only situation, where it will work and is nec-
essarily, is when the signal is driven by an explicitly
declared interrupt routine.
Rule 2:State Si has two transitions (ti and tj), ti is the transition to Si and tj
to Sj (figure 5a). If the conditions for ti and tj are complementary and
composed of an internal signal (5a), then remove ti and set the condition
for tj to true and replace the assignments of the signal by a set and clear
event from the library.

5.1.3 Partitioning of interrupt routines

As mentioned in section 3.3, an interrupt routine can
either be implemented as an ISR with behaviour (figure 3b)
or as an ISR sending an event to a task (figure 3a). Here we
let the designer to interactively select this, in the future this
could be determined by some heuristic.
Rule 3: If state Si is an entry state to an interrupt routine and the user
marked the routine for partitioning then replace the state “entry” by a state
“task entry” and insert a wait-for-event from the library into the code of Si
and generate an interrupt routine that sends this event upon activation.

5.2. Code generation

The first action in the code generation is to translate bit
vector types to C data types, by using the translation table
from OSLib. The code generation for the different parts of
a device driver follows certain assumptions about the struc-
ture of each component.

5.2.1 Device driver function

First the head of the function declaration is generated,
i.e. function name and parameters, by invoking the driver
function definition. The body of the function consists of
routines for mutual exclusion from the OSLib and the C
code for the FSM. The FSM code contains OS and proces-
sor specific code, based on entries in OSLib and ProcLib,
respectively.

5.2.2 Interrupt routine

Entry and exit of an interrupt routine must be in assem-
bler language, since there is no support for interrupt in the
C language. In the code generation of interrupt routines,
the routine starts with storing and ends with restoring the
processor registers. For a preemptive kernel the interrupt
should also notify the kernel when it enters and leaves the
interrupt routine, see figure 7.

The code part of the interrupt routine is either code gen-
erated from an FSM that corresponds to the interrupt rou-
tine or just a library function sending an event. Either way,
it will be a call to a C function.

Si Sj

ti tj
a. b.

Sj
tj

Si{pending_semaphore}

int_routine {set_sem}

Figure 5.State transformation.

return_type function_name (parameters) {
Wait for device to be released
Lock device access
Code generated from FSM
Free device access }

Generated with the driver_
routine_shell def (OSLib)

Library elements, for
mutual exclusion (OSLib)

Figure 6.Code structure for an access
function

int_handler_name:
Save registers
Enter interrupt
Active code
Exit interrupt
Restore registers
Return from interrupt

Generated by interrupt_routine_shell def

Push and pop registers
from stack, from ProcLib

Figure 7.Code structure for an interrupt
routine.

Enter and exit interrupt from OSLib
are only used for preemptive kernels.

Return from interrupt (ProcLib)



5.2.3 Task

A task is generated only when an ISR is partitioned. In
this context a task is only another implementation of an
interrupt routine. Thus, its structure is very simple and
basically an infinite loop containing a wait-for-event state-
ment and the code for the corresponding FSM.

5.2.4 Miscellaneous

The enabling and disabling of interrupts can be captured
in both libraries, OSLib and ProcLib, as described in sec-
tion 4. If it exists in OSLib, the code generation uses it, oth-
erwise the ProcLib is consulted.

Wait statements in the FSMs are replaced with the
library macro from OSLib. But the real-time has to be
translated into clock ticks, i.e. clock_ticks = time /
clock_tick_period.

At the end of the code generation, a setup function is
generated. This function creates and initializes the sema-
phores used by the other components. It also calculates the
absolute addresses for the different device registers by
using the base address and the declared relative addresses.

Example 5A device driver for the MAX197. We consider
only the read value function, which is modelled in Pro-
Gram in figure 8a. This is synthesized into the state
machine in figure 8b. After the transformation rules are
applied we get the FSM in figure 8c and according to the
optimization methods described in [9] we remove the
redundant delay states and get the FSM in 8d. The coarse
structure of the generated C code for the read function
mapped ontoµC/OS and MC68000 is illustrated in figure
8e.

6. Case study

We use two designs for the case study, a channel
decoder of a transceiver in a D-AMPS base station and an

operation and maintenance block (OAM) of an ATM net-
work.

6.1. D-AMPS

D-AMPS [4] is a time division multiple access (TDMA)
cellular standard. The standard has 832 channels per carrier
in the 800 MHz range and a total of 1164 channels. The
channel decoder block receives 272 bit frames that should
be processed in 6.67ms. The process consists of: de-inter-
leaving, Viterbi decoding, CRC-sum calculation, bit error
rate estimation, sorting of speech data, and masking of bad
speech frames.

We decided to implement the Viterbi decoder in hard-
ware and the rest of the functionality in software. Figure 9b
illustrates the hardware/software communication in the
channel decoder design.

6.2. ATM Operation and Maintenance Block

The Operation And Maintenance (OAM) functionality

[3] in an ATM network is situated near a switch. Specific
ATM cells, OAM cells, are used to identify network prob-
lems, measure network performance, and communicate the
state of the network between network nodes. OAM func-
tions analyse, transform, and generate OAM cells. Figure
10b shows the selected HW/SW distribution, where ATM
user cells are received and re-transmitted in custom hard-
ware, while OAM cells are analysed and transformed in
software. OAM cells typically constitute about 1% of the
total traffic.

S2S1

c
c

S0Entry ExitS3

S2S1S0Entry ExitS3 Entry S0123

int_routine {send_event}

Exit

int_routine {send_event}(c) (d)

void read_MAX190_uCOS(UBYTE channel, UWORD* data) {
state0123:

tmpCNTRL |= (0x07) & channel;
CONTROL* = tmpCNTRL;
OSSemPend(convEvent);
data* = (HIGH << 8) | LOW; }   // Read all 12 bits

int_handler:MOVEM.L d0-d7/a0-a7,-(SSP)
JSR _OSIntEnter
JSR _IntRoutine
JSR_OSINtExit
MOVEM.L (SSP)+,d0-d7/a0-a7

void IntRoutine() {
OSSemPost(convEvent):}

Figure 8.The read function of MAX197 from
ProGram specification to C implementation.

(a)

(e)

(b)

read: bit { tmpCNTR(2..0) = channelNo; } bit
{ CONTROL = tmpCNTR } waitReady;

waitReady(int): 1 waitReady
                     |  0 { readData = HIGH LOW; };

Figure 9.Receiver in IS-54B base station (a),
and selected HW/SW partitioning (b).
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6.3. Results

We compare our approach to code development in C,
since this is what a designer has to do if she/he wants to us
an IP component and an RTOS in Coware [11], Polis [1]
and MakeApp [6]. The comparison shows similar figures

for performance and code size, but a significant advantage
of our approach in terms of designer productivity.

Table 1 shows the number of lines of C and ProGram
code to describe the different protocols for the two designs.
This shows that the amount of code in ProGram is typically
50% of the C code, because ProGram code does not con-
tain any architecture dependent parts. The table also shows
that the performance figures are comparable.

However, the true benefit comes from the reusability of
a protocol specification in ProGram. If the same protocol
should be implemented and maintained in several product
versions with different RTOS and processors, the ProGram
model can be fully reused, while the C code in any of the
other approaches cannot. Figure 11 a and b give the amount
of code to be written to implement a single protocol on a
number of processor-RTOS combinations. On the X axes
the processors and kernels are changed for even and odd
generations, respectively. Figures 11 c and d translate these
numbers into design time assuming a productivity of 16
LoC (Lines of Code) per day for ordinary systems and 4
LoC per day for embedded application code, left and right
y-axis respectively, using the COCOMO model [13] for
ordinary software systems and for embedded systems.

7. Conclusion

By separating architecture dependent from architecture
independent parts of a device driver, we can significantly
increase the reuse potential of models describing protocols,
OS interfaces and processor interfaces. This addresses a
critical step in IP based design, the specification and imple-
mentation of interfaces in the context third party HW
blocks and SW components, e.g. RTOS.

We have presented a device driver synthesis technique
which generates device driver implementations from a pro-
tocol, an OS and a processor description. The method is
based on several interactive design decisions, e.g. the
designer can select the implementation of interrupt routines
and mutual exclusion handling. As shown in [9] and table 1
the efficiency of the generated code is close to hand written
C code even though the code is not optimized.

Our approach will result in 50% less design time a pro-
tocol is used and 98% less for every product variant with a
new processor or operating system, compared to CoWare,
Polis and MakeApp.

a. texec(C generated from ProGram) / texec(C)
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Approach C1 C2 + C3 C4 OAM HW/SW channel
C [LoC] 56 105 62 81

ProGram [LoC] 27 58 25 43

Difference [%] 48% 55% 40% 53%

Performancea 1.01 1.05 1.02 1.05

Table 1. D-AMPS channel decoder and ATM-
OAM modelled in C and ProGram.
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