
Combining Software Synthesis and Hardware/Software Interface Generation to
Meet Hard Real-Time Constraints

Steven Vercauteren
IMEC

Kapeldreef 75,
B-3001 Leuven, Belgium

vercaut@imec.be

Jan Van Der Steen
Philips ITCL

Interleuvenlaan 74-76,
B-3001 Leuven, Belgium

jan.vandersteen@leu.ce.philips.com

Diederik Verkest
IMEC

Kapeldreef 75,
B-3001 Leuven, Belgium

verkest@imec.be

Abstract
This paper presents an orchestrated combination of software
synthesis and automatic hardware/software interface gener-
ation to meet hard real-time constraints. The target appli-
cations are digital communication systems, which are spec-
ified as concurrent communicating processes. The overall
approach is theoretically founded and is demonstrated on
an industrial strength design, with promising results.

1 Introduction
To enable flexible low-cost designs in a short design cy-
cle, most modern embedded systems integrate one or more
programmable processor cores onto a single VLSI chip.
Thanks to technology, more functionality can be moved to
software because microprocessors can deliver the desired
performance, obviating the need for much custom logic.

Since embedded systems are concurrent by nature, they
are naturally expressed as concurrent programs, specified in
terms of communicating processes. Thus, the design burden
is shifting to schedulingconcurrent processes assigned to
a single-thread programmable processor, and realizing the
communication with the other processes. The latter prob-
lem is known as thehardware/software interfacingprob-
lem. Moreover, embedded systems are subject to stringent
timing constraints.

Traditionally, hand-crafted solutions or real-time kernels
have been used to solve the scheduling problem. Real-time
kernels are specialized operating-systems [7], designed to
reactfast to external events. Kernels trade optimality for
generality, which may cause a significant run-time and
memory overhead – prohibitive in many cases for embed-
ded systems where performance is paramount and memory
is scarce.

Software synthesis[4, 5, 8, 13] is an alternative approach
to real-time kernels. The aim is to fully exploit the informa-
tion captured in the system specification to avoid the need
for a run-time executive, while still meeting timing con-
straints.

Hardware/software interfacingis considered an error

prone and time consuming task leaving little room for op-
timization or exploration [3]. Recent efforts have led to
promising CAD support in this area [1, 2, 5, 6].

In this paper, we present acompletesolution for em-
bedding real-time software in a customized system archi-
tecture, that avoids the use of a run-time executive, where
possible. The target applications are digital communication
systems. We start from a concurrent process system specifi-
cation. The processes assigned to a programmable proces-
sor core are scheduled using a software synthesis approach,
if possible. For this, we build on the key observation that
any processor (core) has an inherent fixed-priority preemp-
tive scheduler (cf. interrupts). At the same time, the hard-
ware/software interfaces are automatically generated, partly
based on a parameterized library solution. Further, the final
implementation is guaranteed to meet real-time constraints.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews our system specification model. Section 3
describes the goal of this work, as well as the underlying
assumptions. Section 4 presents our software synthesis ap-
proach. Section 5 details the hardware/software interfacing
procedure. Section 6 extensively discusses a case study. Fi-
nally, conclusions are drawn in Section 7.

2 System Specification Model
In this work, we adhere to the CoWare data model [1]. In
this model, a system is hierarchically composed ofpro-
cesseswhoseports are connected by point-to-point com-
munication channels. In turn, a leaf process is composed
of concurrentthreads, all described in the same specifica-
tion language. Threads of the same process communicate
via shared variables; threads of different processes commu-
nicate byRemote Procedure Call (RPC)over an intercon-
necting channel. Ports through which an RPC is activated
(serviced) are calledmaster(slave) ports and depicted as
filled (open) boxes. Threads that are called upon by RPC
are calledslave threads. The other threads are calledau-
tonomous threads; their code is executed in an infinite loop.
The reader is referred to [1] for details.



3 Preliminaries
Our target applications are digital communication systems.
These systems are periodic by nature and typically consist
of multiple hardware accelerators, control loops (for track-
ing, acquisition, etc.) and a reactive system, implemented
in software. Typically, the reactive system is specified as a
process with a single low-rate autonomous thread (for mon-
itoring display information and commands from the user in-
terface) and multiple higher-rate slave threads (for steering
the control loops). Therefore, we believe that the following
assumptions are realistic for our application domain.

We assume that threads assigned to a processor core are
specified in C and merged into a single process. This pro-
cess consists of one or more slave threads�1 : : : �n�1 and
one autonomous thread�n. Every thread is periodic and
leads to an infinite sequence of thread instances, calledjobs.
A thread�i is characterized by a tuple�i � (Ci; Ti; Di; Ri)
whereCi is the (worst case) execution time of thread�i,
Ti is the invocation period,Di is the deadline, andRi

is the first invocation time. Thek-th job of thread�i is
ready for execution at timeRi + (k � 1)Ti and, in or-
der to meet its deadline, must be completed no later than
(Ri + (k � 1)Ti + Di). The deadlines are less than or
equal to the periods, and the deadlines of the slave threads
are less than the deadline of the autonomous thread (cf.
above). Communication between the different threads is
’unblocked’. TheCi figures accommodate time slots for
external communication, which take the form ofdelay con-
straintsthat must be met in the implementation.

Notation 3.1 delay constraint(p) denotes the maximal
allowed delay that may be incurred on portp due to the
presence of the hardware/software interface.

Our goal is to find a�i, for each�i, that is ’meaningful’
from a system-level perspective [8, 13], and to map the
threads – in an automated way – on to a programmable pro-
cessor core using a software synthesis approach (thus with-
out a kernel), such that the deadlines of all jobs and the
delay constraints of all ports are met. If run-time support
is unavoidable, our method must notify this. In this case,
we provide a (customized) real-time kernel [13], but this is
beyond the scope of this paper.

4 Software Synthesis Approach
Our software synthesis approach is based on prior results
from scheduling theory and on the observation that each
processor core has an inherent ’hardware scheduler’.

The algorithms used in practice for scheduling time crit-
ical systems arepriority-driven preemptivealgorithms: at
each instant of time, the processor is assigned to the highest
priority job which is ready to run, preempting – if necessary
– a lower priority job. A priority assignment isfeasibleif
the deadlines of all jobs are met using such an assignment.
For the feasibility check, a worst-case approach is followed.

The longest response time for any job occurs when it is in-
voked simultaneously with all higher priority jobs; this sit-
uation is called thecritical instant. Liu and Layland [11]
have proved the following important result, assuming peri-
odic threads (as in our case) and fixed priorities (i.e. the
priority of a thread cannot change in time):

Theorem 4.1 A fixed priority assignment is feasible pro-
vided the deadline of the first job of each thread starting
from the critical instant is met.

When a scheduling algorithm produces a feasible prior-
ity assignment for a set of threads, this set is said to be
schedulableby that algorithm. A scheduling algorithm is
optimalwhen each possible set of threads for which a fea-
sible priority assignment exists, is schedulable by that al-
gorithm. When the deadlines are less than or equal to the
periods (as in our case), Leung and Whitehead [10] have
proved the following:

Theorem 4.2 The deadline monotonic algorithm is optimal
among all fixed priority algorithms.

With the deadline monotonic algorithm, the thread hav-
ing the smallest deadline is assigned the highest priority.
In other words,�i has a higher priority than�j , whenever
Di < Dj . This priority assignment is referred to as the
Inverse-Deadline Priority Assignment (IDPA).

If we then look at today’s processor cores, the above re-
sult suggests that the cores themselves can act as optimal
schedulers! For example, assume a process composed of
16 slave threads�1 : : : �16 and one autonomous thread�17
(withD1 < : : : <D16 <D17) that are constrained such that
IDPA is a feasible priority assignment. Assume SPARC to
be the selected processor. This processor has16 interrupts
I1 : : : I16, whereIi can preemptIj , wheneveri < j. If
thread�17 is placed into themain function, thread�i is as-
signed to interrupt (routine)Ii, for 1 � i � 16, and all port
delay constraints are met, the resulting system will meet all
deadlines.

The general design flow is as follows. Starting point
is timing analysis [13], which results in a ’viable’�i, for
each thread�i. Assume the selected processor has inter-
ruptsI1 : : : Im, whereIi can preemptIj wheneveri < j.
In order to check that the threads are schedulable on the se-
lected processor, two conditions are examined.

The first condition verifies whether the slave threads
have not more deadline levels than there are interrupt lev-
els:

m � j
[

1�i�n�1

fDigj (1)

If Equation 1 is satisfied, we can pursue an interrupt as-
signment that satisfies the following (I(�i) denotes the in-
terrupt assigned to thread�i):

8i; j 2 f1; : : : n� 1g : (I(�i) = Im ^ I(�j) = Ik) )
(Di = Dj ) m = k) ^ (Di < Dj ) m < k) (2)



Equation 2 can be understood as follows. The deadline
monotonic algorithm assigns priorities to threads inversely
proportional to their deadline times (cf. IDPA). The abso-
lute value of the assigned priorities is irrelevant; what is
important is thepartial orderput on the different priorities.
Equation 2 then defines an assignment of threads to the in-
terrupt (routines) of a processor, that respects this partial
order. In other words, letI(�i) = Im andI(�j) = Ik. Then
m = k if Di =Dj , andm < k (Im can thus preemptIk) if
Di <Dj . An interrupt assignment that satisfies Equation 2
will be referred to as anIDPA consistent interrupt assign-
ment. In this case, the selected processor provides a hard-
ware implementation of the deadline monotonic scheduling
algorithm! The question remains, however, whether IPDA
is indeed a feasible priority assignment for the set of threads
f�1; : : : ; �ng. This is checked by the second condition.

Thesecond conditionverifies whether the deadlines of
the threads can be met using a deadline monotonic schedul-
ing scheme. For this, the worst-case response time of each
thread needs to be known. Based on the concept of critical
instant (Theorem 4.1), Joseph and Pandya [9] have derived
an exact analysis to find the worst-case response timeWi

for a thread�i, assuming fixed priority, independent threads
and deadlines less than periods (i.e.Di � Ti, for all i):

Wi = Ci +
X

�j2hp(i)

Cjd
Wi

Tj
e (3)

with hp(i) = f�j 6= �i j Dj � Dig

Equation 3 can be understood as follows. If the response
time of�i isWi, meanwhile there are at mostdWi

Tj
e requests

from �j (with �j having a priority greater than or equal to
�i), which altogether requireCjd

Wi

Tj
e time to execute.

A necessary and sufficient schedulability test can be
readily derived from Equation 3:

Theorem 4.3 A fixed priority assignment for a set of
threadsf�1; : : : ; �ng, withDi � Ti 8i, is feasible iff

Wi � Di 8i (4)

If Equation 1 and Equation 4 are satisfied, the selected
processor provides a hardware implementation of the dead-
line monotonic scheduling algorithm, which, moreover,
meets all deadline times. However, the response time anal-
ysis of Equation 3 is as good as the thread execution times
used. These (worst-case) execution times assume delay
constraints for every port, that need to be satisfied when
generating the hardware/software interface. In a next step,
we then attempt to generate a hardware/software interface
that implements an IDPA consistent interrupt assignment
(cf. Equation 2) and that meets the delay constraints of the
different ports. This is explained in Section 5.

If Equation 1 or Equation 4 is not true, we reconstrain
and/or select another processor (if possible), until both con-
ditions are satisfied. If this does not succeed, by Theo-
rem 4.2, the set of threads cannot be scheduled using a fixed

Application
Hardware
Process

Processor
SWModel

Software
Driver

Process
Software 

Application Fiq

Irq

Mem

Mux
Hardware
Interface

Memory

Fiq

Irq

Mem

Processor
HWModel

Mux

Mux

SYMPHONY

Application
Hardware
ProcessProcess

Software 
Application

MERGE

.C

ARMCC .EXE

ScenariosI/O
Scenarios

Scenarios

Models

Processor 
SW/HW

Data Memory

Progr. Memory

Processor
Core

(e.g. ARM7)

Interfacing Logic

MERGE

SYNTHESIS

.VHDAppl. Hardware

Figure 1:SYMPHONY as a solution to co-implementation

priority preemptive scheme, or at least cannot be scheduled
without the use of a run-time executive1.

5 Hardware/Software Interface Generation
This section presents our approach to hardware/software in-
terface generation. The approach is embodied in theSYM-
PHONY tool, that is part of the CoWare environment [1].
We first give an intuitive introduction and explain some key
concepts. Afterwards, the actual procedure is detailed.

5.1 Once Over Lightly
Figure 1 depicts the basic build-up ofSYMPHONY. As-
sume we have an application software process, specified in
C, communicating via a number of ports with another ap-
plication hardware process, specified in VHDL. To realize
this communication at the hardware level, we replace the
application software process by a new process, that is be-
haviorally equivalent, but that is specified in VHDL. This
new process is obtained as follows.SYMPHONY reads in
the application software process, asoftware modeland a
hardware modelof the processor core, and a library ofI/O
scenarios. An I/O scenario (e.g. memory mapped I/O, in-
terrupt driven I/O) consists of a software driver and a hard-
ware counterpart for implementing a specific channel type
on a particular processor. TheSYMPHONY toolbox assigns
I/O scenarios on a per-channel basis. Some of the selected
I/O scenarios, however, make use of the same processor
port. In this case, (de)multiplexing software and logic need
to be inserted in the form of additional processes. Eventu-
ally, SYMPHONY produces two processes. The first process
represents the software view, has no ports and consists of
the processor software model, software drivers from the se-
lected I/O scenarios and multiplexer processes. This hierar-

1The underlying assumption is that a dynamic priority preemptive
scheduling algorithm cannot be implemented without the use of run-time
executive.



chy can be flattened away using themerge transformation2.
The result is a C description that is compiled by the vendor-
supplied cross-compiler to an executable that will run on
the involved processor core. The second process is the de-
sired VHDL process and consists of the processor hardware
model (eventually replaced by the ’real’ processor core),
memory, interfacing hardware from the selected I/O sce-
narios and multiplexer processes. For the path to imple-
mentation, the second process is merged with the applica-
tion hardware process into a single VHDL description, that
is compiled by existing hardware synthesis tools to a gate-
level hardware implementation.

5.2 Key Concepts
A software modelof a programmable processor core is a
process, specified in C, that represents the processor’s in-
terface from a programmer’s point of view. The software
model identifies the software-controlled ports that can be
used to get data in and/or out of the processor core (mem-
ory mapped, co-processor port,: : :), the (priority of the )
interrupt ports, etc. An interrupt port, for example, is typ-
ically modeled as a master port; after merging, the code of
the callee slave thread ends up in the corresponding inter-
rupt routine.

A hardware modelof a programmable processor core is a
process, specified in VHDL3, that represents the processor’s
interface from an external point of view.

An I/O scenariomodel is a process that has two ports,
referred to as itssoftware portand itshardware port. Ba-
sically, an I/O scenario describes how an RPC to its soft-
ware port eventually activates an RPC from its hardware
port (or vice versa), thereby crossing a processor’s bound-
ary. It consists of two processes: the first process is com-
posed of asoftware driver (process)and a processor soft-
ware model; the second process is composed of ahardware
interface (process)and a processor hardware model. The
reader can refer to [1] for more details.

An I/O scenarioI is said to becompatiblewith a portp
and a processorP , when (1) the hardware port ofI is of the
same type asp, and (2) the software model and hardware
model apply toP .

Notation 5.1 Let p be a port, andP be a processor. Then,
io scenarios(p; P ) denotes the set of I/O scenarios that are
compatible withp andP .

Thedelayof an I/O scenario is theextra timeit takes for
an RPC to cross the hardware/software boundary using this
I/O scenario. For an interrupt based I/O scenario, this figure
accommodates the reaction latency and the context switch
delay. In the sequel, we are only interested in theeffective
delayof an I/O scenario, that is the delay of the I/O scenario
incremented with the delay due to multiplexing.

2In the process of merging, each callee thread is in-lined in the code of
the caller thread at the place of the RPC call.

3In practice, we also allow instruction-accurate C models to speed up
the simulations, but this is beyond the scope of this paper.

Notation 5.2 Let I be an I/O scenario. Then,eff de-
lay(I) denotes the effective delay ofI .

Thepriority level of an I/O scenario is the priority level
of the processor’s interrupt that is used by the I/O scenario.
For I/O scenarios, that are not interrupt based, the priority
level is assumed to be zero.

Notation 5.3 Let I be an I/O scenario. Then,priority(I)
denotes the priority level ofI .

5.3 Procedure
In our earlier work [1], timing constraints were not con-
sidered, and I/O scenarios were selected manually. In this
work, we aim at automating the I/O scenario selection pro-
cess, such that Equation 2 is satisfied (i.e. an IDPA con-
sistent interrupt assignment) and all port delay constraints
are met. Then, our approach has an important advantage:
to calculate the delay incurred on a portp, oneonly has to
consider the effective delay of the I/O scenario assigned to
p. The delay of being preempted or halted by another thread
does not have to be reckoned with, as this is already done
through Equation 3.

Before proceeding, we need to introduce several defini-
tions.

Definition 5.1 Let �p denote the slave thread associated
with slave portp, andImax (Imin) denote the IDPA consis-
tent interrupt assignment that uses as high (low) as possible
interrupt priority levels. Thepriority slack ofp is defined
by priority slack(p) � [Imin(�p); I

max(�p)]

The priority slack of a slave port defines the range of in-
terrupt priorities that are possible for implementing the cor-
responding slave thread using an IDPA consistent interrupt
assignment.

Definition 5.2 Let p be a port, andP be a processor. The
delay slack ofp is defined by
delay slack(p; P )� delay constraint(p)

�MINfeff delay(s)js 2 io scenarios(p; P )g

Thedelay slackof a port is defined to be the difference be-
tween its delay constraint and its fastest compatible I/O sce-
nario that can be found in the library.

The procedure for selecting an optimal combination of
I/O scenarios is detailed below.
Algorithm 5.1 (Selection of I/O Scenarios)
globalSUCCESS // true initially
globalP // Selected processor

AssignIOScenarios(portListslackList;allocList) f
while (portList 6= ; andSUCCESS) f
SUCCESS = false
Update(slackList) // (Re)Compute delay slacks and priority slacks
p 2 portList with smallest delay slack
portList = portList n fpg
list = io scenarios(p; P ) // List of Compatible I/O Scenarios
while (list 6= ; andnot(SUCCESS)) f
s = FindCandidate(list; slackList; allocList)
if (SUCCESS) f
list = list n fsg
Assign(allocList; (p; s))



if (s accesses a ’free’ processor port) f
res = AssignIOScenarios(portList; slackList; allocList)
// This is a backtracking point
if (SUCCESS) return

gggg
return allocList
g

The procedureAssignIOScenarios is called with three
input arguments:portList is the list of ports that (still) need
an I/O scenario assignment;slackList contains the priority
slack and the delay slack of each port;allocList keeps track
of all I/O scenario assignments.

AssignIOScenarios is a recursive procedure, which
attempts to assign an I/O scenario to every port ofportlist

in order of increasing delay slack. A port with a small delay
slack can afford less delay due to multiplexing than a port
with a large delay slack. Therefore, as a heuristic, the for-
mer port must be able to decide earlier on its I/O scenario,
and thus on the processor ports it needs to access.

To find an I/O scenario for portp, the procedure
FindCandidate is called. This procedure selects the
(compatible) I/O scenario with the smallest effective de-
lay, whose priority level is within the priority slack ofp,
and which does not violate the delay constraints ofp and
any of the ports that have been treated before (this may
be possible due to increased multiplexing). Both the de-
lay slack and the priority slack of a port depend on previous
I/O scenario assignments, and need to be (re)evaluated after
each iteration. IfFindCandidate does not find a suitable
I/O scenario, theAssignIOScenarios procedure returns
(SUCCESS = false) to an earlier stored backtracking
point, if it exists.

As a heuristic, this algorithm marks a backtracking point
(by making a recursive call) when it assigns an I/O scenario
that uses an as yet unconnected processor port. The intuitive
motivation is that it is considered a privilege for a port to
be the first to impose upon a particular processor port. If
the recursive call is successful, this means that a feasible
solution has been found, and all recursive calls return.

Despite its heuristic nature, it can be proven [14] that –
under realistic assumptions – the algorithm finds a solution,
if it exists.

6 Experimental Results
To assess the viability of our approach, we have exper-
imented with a direct-sequence spread-spectrum satellite
receiver [12], used in the design of aSatellite ISDN-rate
Mobile Base-station ASIC (SIMBA). We first give a short
overview of SIMBA. We then describe the experiments and
the obtained results.

6.1 System Description
The SIMBA design mainly consists of two parts, as shown
in Figure 2.

The first part is the forward path, which has to operate at
a very high speed. Therefore, it is implemented in hardware.
It consists of an Automatic Gain Control (AGC) block, a
down-convertor (to convert the bandpass spread-spectrum

Chip
Matched

Filter
InterpolatorDown-

ConverterAGC Correlator
I

Q

Carrier
NCO

Timing
NCO

Delay
Discr.

Freq.
Discr.

Signal
Strength

to Viterbi
decoder

ADC inputs

Delay-Lock Loop

Phase-Lock Loop

AGC Loop

Figure 2: The SIMBA satellite receiver

signal to the baseband), a chip matched filter, an interpolator
and a correlator.

The second part consists of a number of feedback loops:
an AGC-loop to achieve a constant signal strength at the
output; a Phase Locked Loop (PLL) to insure a correct
frequency shift in the demodulator; a Delay Locked Loop
(DLL) to keep the sender and the receiver synchronized.
These loops are not computationally intensive. In addition,
their design is particularly error-prone. Therefore, these
loops are implemented in software.

The SIMBA also contains an important (but not time-
critical) control block: it includes a user interface (to change
parameters such as the local code sequence and the fre-
quency shift of the down-convertor) and performs a num-
ber of checks on the correct operation of the receiver. This
control block is also implemented in software.

For the implementation, the ARM processor has been
chosen, which is a small (4:8mm2 for a 0:6�m process)
processor core with a very low power consumption (about
2 mW/MHz or 80 mW for the maximum clock speed of40
MHz). This processor has two interrupts: the IRQ (Interrupt
ReQuest) and the FIQ (Fast Interrupt reQuest), where the
latter can preempt the former.

6.2 Implementation with Symphony
The SIMBA has been described in CoWare. The complete
software functionality is specified as a single process con-
sisting of three slave threads�1 (PLL), �2 (DLL) and �3
(AGC-loop), and one autonomous thread�4 (control block).
All these threads are periodic.

The control block is most naturally specified as an au-
tonomous thread that periodically checks whether there are
inputs from the user. A rate of10 Hz (i.e. a period of100
ms) has been found to be sufficient.

The PLL and AGC-loop run at thechip 4 rate; the DLL
runs at the (lower) bit rate. The ratio between the two rates
is equal to the length of the code sequence of the spread
spectrum system (typically32).

4In spread spectrum systems, each bit is multiplied with a code se-
quence. To distinguish with the originalbits, the zeroes and ones of the
product sequence are calledchips.



For the SIMBA, we have considered a bit rate of2 kbit/s,
and a code sequence of length32. Thus, the chip rate is64
kchips/s (i.e. the speed of the telephone network). This
results in the following thread periods:500�s (T2) and
15:6�s (T1 = T3). The deadlines are taken equal to the
periods. Further, the threads run independently; the com-
munication only occurs through shared variables. Table 1
gives an overview.

thread function period execution time
�i Ti (�s) Cm

i (�s5)(cycles) Ci (�s)
�1 PLL 15:6 5:85 (234) 7
�2 DLL 500 6:20 (248) 7
�3 AGC 15:6 2:67 (107) 3
�4 control 105 – 104

Table 1: Time figures for the different threads

The assumptions of Section 3 are thus valid. Hence, we
can apply the techniques presented in this paper.

Equation 1 is readily verified; the slave threads do not
have more deadline levels (viz.2) than there are interrupt
priority levels (viz.2).

Before proceeding with Equation 4, let us return to Ta-
ble 1. Here, good estimates are given for the thread execu-
tion times: the figuresCm

i are measured on an instruction
set simulator of the ARM; the (worst-case) figuresCi in-
clude some extra delay for the hardware/software interface.
For the control thread, a rough estimation is used, as its ex-
ecution time depends on the interaction with the user.

The worst-case response times of the different threads
are computed by means of Equation 3. The worst-case re-
sponse time of thread�i is the smallestWi that satisfies
this equation, and is computed by iteration. The results are
given below:

W1 = 7�s+ d 10
15:6

e3�s = 10�s

W2 = 7�s+ d 27
15:6

e7�s+ d 27
15:6

e3�s = 27�s

W3 = 3�s+ d 10
15:6

e7�s = 10�s

W4 = 10ms+ d 29ms
15:6�s

e7�s+ d 29ms
500�s

e7�s

+d 29ms
15:6�s

e3�s = 29ms

As can be seen, the worst-case response timesWi do not
exceed the respective deadlines. By Theorem 4.3, the dead-
lines of all thread instances can then be met, provided that
the hardware/software interface does not require more than
the allocated delay (cf. above).

To generate the hardware/software interface, theSYM-
PHONY tool has been called upon. The thread�2 is assigned
to the IRQ interrupt. The threads�1 and�3 are both assigned
to the FIQ interrupt; this requires (de)multiplexing hard-
ware (software) in the form of additional processes. These

5The maximal clock speed of40 MHz is assumed.

multiplexer processes add about10 cycles to the the exe-
cution times of both threads. As a result, the ’effective’
execution times of thread�1 and thread�4 amount to6:1�s
and2:93�s, respectively. These ’effective’ execution times
are still less than their worst-case estimates, used in above
equations. As a result, the final implementation is guaran-
teed to meet all timing constraints.

Finally, the complete hardware/software system has been
simulated extensively, to gain confidence in the obtained re-
sult.

7 Conclusions
In this paper, we have presented an orchestrated combina-
tion of software synthesis and automatic hardware/software
interface generation. We have derived necessary and suf-
ficient conditions for mapping an application software pro-
cess – according to our assumptions – on to a programmable
processor core, without using a run-time executive. We
build on the key observation that any processor (core) has
an inherent fixed-priority preemptive scheduler (cf. inter-
rupts), and partly rely on a parameterized library solution
to solve the well-known interfacing problem. The overall
approach been tested on a spread-spectrum ASIC design,
where it has provided significant gain.

Acknowledgments
The authors would like to thank Filip Thoen for the numerous insightful discussions
on the software synthesis problem, and Paul Coene for providing the VHDL descrip-
tions of the SIMBA. This research is funded by the MEDEA AT-403 SMT project.

References

[1] I. Bolsens et al. Hardware/software Co-design of Digital Telecommunication
Systems.Proceedings of the IEEE, 85(3):391–418, March 1997.

[2] CoWare Inc.http://www.coware.com/

[3] F.George. Cadence Design Systems Inc. Block-based Design: Creating a Sys-
tem on a Chip.Electronic Design, pages 86–92, July 8 1996.

[4] M. Chiodo et al. A Formal Methodology for Hardware/Software Co-Design of
Embedded Systems.0000IEEE Micro, 14(4):26–36, August 1994.

[5] P. Chou et al. The Chinook Hardware/Software Co-Design System. InPro-
ceedings of ISSS, pages 22–27, Cannes, September 1995.

[6] J.M. Daveau.Spécifications Syst`emes et Synth`ese de la Communication pour le
Co-design Logiciel/Mat´eriel. PhD thesis, TIMA-INPG, Grenoble, December
1997.

[7] K. Ghosh et al. A Survey of Real-Time Operating Systems. Technical report,
Georgia Institute of Technology, February 1994. nr. GIT-CC-93/18.

[8] R. Gupta et al. A Co-synthesis Approach to Embedded System Design Au-
tomation. Design Automation for Embedded Systems, 1(1-2):69–120, January
1996.

[9] M. Joseph and P. Pandya. Finding Response Times in a Real-Time System.The
Computer Journal, 29:390–395, October 1986.

[10] J.Y.T. Leung and J. Whitehead. On the Complexity of Fixed-Priority Schedul-
ing of Periodic Real-Time Tasks.Performance Evaluation, 2:237–250, Decem-
ber 1982.

[11] C.L. Liu and J.W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment.Journal of the ACM, 20:46–61, January 1973.

[12] B. Sklar. Digital Communications: Fundamentals and Applications. Prentice
Hall, Englewood Cliffs, NJ, 1988.

[13] F. Thoen, G. Goossens, J. Van Der Steen, and H. De Man. Multi-thread Graph
A System Model for Real-Time Embedded Software Synthesis. InSASIMI,
1996.

[14] S. Vercauteren.Hardware/Software Co-Design of Application-Specific Hetero-
geneous Architectures. PhD thesis, Katholieke Universiteit Leuven, December
1998.


	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index


