
Wavefront Technology Mapping

Leon Stok Mahesh A. Iyer Andrew J. Sullivan
IBM TJ Watson Research Center Synopsys Inc. IBM Server Development

Yorktown Heights, NY Mountain View, CA Fishkill, NY
stokl@watson.ibm.com miyer@synopsys.com sullia@us.ibm.com

Abstract
The wavefront technology mapping algorithm leads to a

very simple and efficient implementation that elegantly de-
couples pattern matching and covering but circumvents that
patterns have to be stored for the entire network simultane-
ously. This coupled with dynamic decomposition enables
trade-off of many more alternatives than in conventional
mapping algorithms.

The wavefront algorithmmaps optimally for minimal de-
lay on DAGs when a gain based delay model is used. It is
optimal with respect to the arrival times on each path in
the network. A special timing mode for multi-source nets
allows minimization of other (non-delay) metrics as a sec-
ondary objective while maintaining delay optimality.

1 Introduction
In high-performance circuit design, meeting the delay

targets in the control logic imposes a major challenge. Con-
trol logic usually undergoes changes till very late in the de-
sign cycle. Control logic is quite often not regular enough
to lead to an intuitivedata-flow type implementation. Logic
synthesis is therefore necessary to meet the project sched-
ules for these high-performance designs, and ensure a fast
and correct implementation of the irregular subcircuits.

Most state-of-the-art logic synthesis systems [2, 11, 13]
consist of three phases. The technology mapping phase
usually follows the technology independent optimization
and precedes the timing correction phase. This decoupling
of phases has a major impact on the structure of technol-
ogy mapped logic, and its delay and area characteristics.
Minimizing delay in the technology mapping phase is an
important goal in the aforementioned designs.

Conventional technology mapping can be described as a
3-step procedure. First, the technology-independent circuit
is decomposed in terms of some primitives to have some
well-defined logic structure to aid the technology mapping
process. This phase is typically referred to as the circuit
decomposition phase. Second, a pattern matcher performs
analysis on the circuit and the library, either structurally or
functionally, and determines a set of matches for all nodes
in the circuit. The third and final phase consists of identify-
ing the best set of matches (based on some cost functions)

for the circuit such that every node in the circuit is covered
at least once and functionality is maintained. The final set
of matches that cover all the nodes in the circuit are used to
describe the circuit in terms of the target technology library
cells.

Optimal technology mapping for area on tree based sub-
ject graphs was described in [6]. Drawback of this algo-
rithm is that it is optimal only for trees. Most practical
circuits consist of directed acyclic graphs (DAGs) and re-
quire a non-trivial decomposition of the DAGs into trees.
In [11] this was extended to include a delay objective using
a binning approach for the delays. In this paper, we will
present a very simple and practical algorithm that produces
delay-optimal results for DAGs.

Technology mapping works mostly on a fixed subject
graph. Therefore, the result is (very) dependent on the pre-
ceding decomposition of the network. In [9, 10] logic de-
composition is combined with the mapping phase itself, to
get around the problem of the disconnected phases. This al-
gorithm runs on tree leaf DAGs. Despite its efficient imple-
mentation, exhaustive embedding of decompositions leads
to a large increase in the subject graph, not practical for the
sizes of circuits we are interested in. The wavefront map-
per enables the embedding of multiple decompositions on-
the-fly. This so-calleddynamic decompositionsignificantly
reduces the number of decompositions needed. Since the
arrival times of all signals up till the inputs of the dynamic
decomposed logic are known, we can limit the number of
decompositions significantly (when compared to the ex-
haustive decomposition of [9]), and still obtain near delay-
optimal results.

A similar observation on delay optimality as in theorem
1 is made in [8] for simplistic load-independent delay mod-
els. In that paper only a graph matching algorithm is de-
scribed to generate the matches. If only a graph matcher
would be used in the wavefront algorithm, one can set the
wavefront width equal to the depth of the deepest pattern
graph and guarantee delay optimality.

Section 2 describes the timing model we are using in this
paper. In section 3 the core wavefront algorithm is outlined,
along with some proofs of optimality. Section 4 describes
how other objectives can be taken into account and explains



a few other extensions to the basic algorithm. Finally, in
section 5 results are shown on various designs examples
along with the impact of various parameters on the perfor-
mance of the technology mapping algorithm.

2 Static timing analysis and Delay Model
Since the wavefront algorithm does a timing driven tech-

nology mapping the timing information it uses is an impor-
tant part of the algorithm. Therefore, this section summa-
rizes our timing analysis and points out the differences with
conventional static timing analysis tools.

Static timing analysis [5, 4] is performed on the directed
graph of the network. The vertices of the graph are the
points at which events can occur (e.g., signals can arrive)
and are referred to as timing points. The timing points in-
clude boundary pins and pins on logic gates in the network.

Each timing point in the network has an associatedar-
rival time ta(p) and an associatedrequired timetr(p). Ar-
rival times at the primary inputs are given. Timing analy-
sis propagates these arrival times forward through the net-
work and calculates arrival times at all other timing points.
In late modetiming analysis, at each timing point the lat-
est arriving value is being propagated. Similarly, required
times are derived from the required times at the primary
outputs. They are propagated backwards through the net-
work. Theslacks(p) of each timing point is now defined
by s(p) = tr(p) � ta(p). The worst slacksw(p) is defined
as the most negative slack on any timing point in the net-
work. Note that a critical path can be defined as a path from
primary input to primary output on which all timing points
will have the same worst slacksw(p).

Our wavefront algorithm deviates in its uses of standard
timing analysis in two ways. Traditionally, delay rules for
standard cells have been provided based on the actual size
of the gate and are dependent on its output load.

However, if we assume rules that are continuously pa-
rameterizable, a quantity directly related to delay such as
normalizedgain = Cl=Cin (whereCl is the capacitive
load andCin is the input capacitance of the gate) can be
used [7] [1], [14][3]. The gain is not directly dependent on
the size of the gate, which increases linearly withCin or the
load, but merely depends on the ratio of both. This leads to
a simple delay equationd = k1� gain+k2, wherek2 rep-
resents the intrinsic delay of the gate. In thesegain-based
delay equations the delay is independent of the load of the
cells, and solely dependent on the gain.

More realistic delay equations also include the slew and
beta (rise-to-fall ratio) and lead to a set of delay (d) equa-
tions of
the following form [12]: d = f(input slew; gain; beta)
andoutput slew = g(input slew; gain; beta). Input slew
will be propagated by the timer. Beta is given for a partic-
ular cell. Thus again, if the value for the gain is known,
the delay of each cell is determined. Experiments [7] [1]

b)

a)

1

1
1

1

tp1 tp3

tp2

b

z

a
1

1

a

b
z

g2

g1

Figure 1: a) Circuit DAG b) Timing Graph

have shown that these gain based delay models can be as
accurate as load-based delay models. During the technol-
ogy mapping we can either create matches for ’ideal’ gain
values, or we can explore alternatives by creating matches
with different values.

Second, a new late mode timing propagation mode is de-
fined for a special kind of logically equivalent multi-source
nets. Note, these are different from wired-or or wired-and
logic. In our case the nets embed multiple implementations
of equivalent logic in the network. In the final implemen-
tation only one of the drivers is needed. From now on we
will call thesemulti-sourcenets for short.

In regular timing analysis, at timing points with multiple
incoming arcs the latest arrival time is propagated. In the
timing points related to the multi-source nets the earliest
arrival time will be propagated.

In figure 1.a) an example is shown to illustrate the timing
analysis. The NOR-gate is an alternate implementation for
the AND and INVERTERs. Figure 1.b) shows the timing
graph where the nodes correspond to the pins of the circuit
in 1.a). The dashed edges correspond to the net delay arcs,
the solid edges to the gate delay arcs. All net delays are
assumed zero and gate delays one. The timing pointtp1 at
the output of gateg1 is a regular point and the latest arrival
2 is propagated. However, at the multi-source timing point
tp3, the value coming fromtp2 (delay through gateg2 is
one) is propagated as the earliest, late-mode arrival time.

During the wavefront algorithm matches are imple-
mented directly in the net-list. This will result in a large
increase of fanouts at the inputs of the patterns and will
result in multi-source nets at the outputs of the patterns.

2



Algorithm I. Wavefront map

Procedurewavefrontmap(design, wavewidth, maxlevels)f
/* wave width = width of the wavefront; */
Levelize the design;
max levels = maximum number of levels in the design;
headlevel = 1;
while (headlevel� max levels)f

headnets = list of all nets on headlevel;
tail level = headlevel - wavewidth;
if (tail level� 0) f

tail level = 0;
g
/* Generate matches on the head of the wavefront */
foreachnet, n in headnetsf

generateand implement(design, n, taillevel);
g
/* Perform covering on the tail of the wavefront */
if (tail level� 0) f

covernets(design, taillevel);
g
increment headlevel;

g
/* Move the tail, if it has not yet moved */
if (tail level� 0) f

tail level = 1;
g
/* Perform covering on the remaining uncovered levels */
while (tail level� max levels)f

covernets(design, taillevel);
increment taillevel;

g
g

However, since our delay model is gain-based the increase
in fanout will not invalidate our timing results. Our spe-
cial multi-source timing propagation algorithm enables the
wavefront algorithmto trade-off the various matches as will
be discussed in the following section.

3 Wavefront Algorithm
Thewavefrontis a subgraph of the DAG, such that every

path from input to output goes through the subgraph. The
subcircuit isolated by the wavefront is bounded by thehead
and thetail of the wavefront. The head of the wavefront is
the boundary closer to the primary outputs (POs) and the
tail of the wavefront is the boundary closer to the primary
inputs (PIs) of the circuit. If, in figure 2.a), the vertical line
with label 1 is the head and the line with label 0 is the tail,
the subgraph containing the inverters form the wavefront.
In addition to decoupling the match generation and cover-
ing problems, the wavefront allows the match generation to
work only on a subcircuit, thereby minimizing the number
of matches stored at any time. Also, matches are allowed
to be generated and maintained dynamically, as opposed to
generating all the matches for the entire circuit a-priori.

3.1 Basic Algorithm
Algorithm I outlines the conceptual ideas of the wave-

front algorithm. The wavefront algorithm assumes that the
circuit is levelized from input to output. The head and tail

Algorithm II.Net Covering

Procedurecovernets(design, taillevel)f
foreachnet, m, in tail levelf

- Perform static timing analysis and compute the driver
pin that has the fastest arrival time;
- fastestpin = driver pin that has the fastest arrival time;
- fastestcell = driver cell for fastestpin;
- Disconnect all driver cells on m, except fastestcell, and
perform a cleanup operation on their exclusive input cones
of logic. The technology-independent cell and its exclusive
input cone of logic are also implicitly cleaned up;

g
g

Algorithm III. Match Implementation

Proceduregenerateand implement(design,net,taillevel)f
/* Match generation */
matchlist = getall patternmatches(design, net, taillevel);
/* Match implementation as multiple-source net drivers */
implementmatches(design, matchlist, net);

g

Procedureget all patternmatches(design, net, taillevel)f
- Using the structural, boolean and PLA matchers, generate
all the pattern matches in the design for net, such that
the search for pattern matches starts at net and ends
whenever a net whose level� tail level is encountered;
- For each match, store the technology library cell and the
corresponding nets in design that need to be connected to
the inputs of the technology cell. Let this data structure
be matchstruct;
- matchlist = list of matchstructs for all matches found;
- return matchlist;

g

Procedure implementmatches(design, matchlist, net)f
foreachmatchstruct in matchlist f

- technologycell = match cell from matchstruct;
- input list = list of input nets from matchstruct;
- Make technologycell, a driver of net in design;
- Connect all inputs of technologycell to the
corresponding nets of design in inputlist;

g
g

of the wavefront define a window, such that for a particular
step, match generation happens at the head and covering
happens at the tail.

Initially, both the head and the tail of the wavefront start
at level 0. (The PIs of the circuit are considered as level
0 nets.) The head of the wavefront advances one step and
match generation and implementation is done for all nets on
this level. Matches are generated using PLA, Boolean and
Structural matchers. All pattern matchers have one thing
in common; given (a) net(s) in the circuit, they generate
a set of technology cell matches for the subcircuit in the
wavefront driving the(se) net(s).

Unlike conventional technology mapping, matches are
not limited to fanout-free regions; i.e. the match generation
search process performs its search across fanout. How-

3



ever, the subcircuit for the match generation search pro-
cess is isolated by the wavefront; i.e. the match gener-
ation search process starts at a net(s) on the head of the
wavefront and stops as soon as it encounters nets on the
tail of the wavefront or a net on a level below the tail of
the wavefront. As matches are generated for a node, they
are implemented in the underlying net-list as drivers of a
multi-source net. The multiple drivers on a net include
the technology-independent cell and all the technology cell
matches found for that node. The match implementation
process also connects the input pins of the technology cells
to the appropriate nets in the circuit.

Implementing certain pattern matches also requires some
amount of logic duplication. A key advantage of imple-
menting matches in the net list as multi-source nets is that
this logic duplication is achieved implicitly. (See the exam-
ple in figure 2). The head of the wavefront keeps advancing
one step at a time until matches have been generated for all
nets on the highest level of the circuit.

The tail does not start moving until the head has moved
for a number of steps equal to the width of the wavefront.
Covering for selecting the best match occurs for all nets on
the tail of the wavefront. The covering implicitly performs
static timing analysis to determine the match with the best
arrival time. Implementing the matches in the net list (as
multi-source net drivers) allows the algorithm to evaluate
all the matches in the context of the design in which they
are instantiated. Under the gain-based delay model, the ar-
rival time computed for a match cell output is also guar-
anteed to be accurate because the inputs nodes of the cell
have already been mapped and the cell’s delay does not de-
pend on the load driven by the cell. Only this match is
retained as a driver to the net and all other matches on the
net are deemed sub-optimal. The sub-optimal match cells
and their exclusive input cones are removed from the net
list. The original technology-independent driver cell on the
net is also destroyed. The tail of the wavefront keeps ad-
vancing one step at a time until all nets on the highest level
of the circuit have been covered.

In figure 2.a) the wavefront algorithm is illustrated by
an example. Assume the width of the wavefront equals 4.
Assume the technology library contains only INV, NOR,
AOIs and XNOR gates. All technology cells and their em-
bedding in the network are shown in dashed lines. Head
and tail are shown by dashed vertical lines. When the head
(dashed vertical line) reaches level 1, the technology invert-
ers are added, at level 2 the NOR. At level 3 no matches are
found in our inverting-only example library. At level 4, the
inverter, NOR, AOI and XNOR are inserted. Now the tail
starts moving. At level 1 the inverters are selected, at level
2 the NOR. The NOR now implements the function for out-
puty. Finally at level 4 we find the XNOR and disconnect
the rest of the network. The final mapped circuit is shown

in 2.b). Note the implicit cloning that happened in selecting
the XNOR for outputz and NOR for outputy.

If w = 3 the XNOR match would not be found and the
result would be as shown in 2.c).

a

b

z

y

0 1 2 3 4

a)

a

b
y

z

y

z

a

b

b) c)

Figure 2: a) Subject circuit b) Mapped circuitw = 4 c)
Mapped Circuitw = 3

3.2 Load-independent delay optimality for
DAGs.

In this section, we show that under some conditions the
wavefront algorithm will produce optimal-delay mapping
under the gain-based delay model. Assume thatw is the
width of the wavefront andD is the depth of the circuit.
Also assume that for every node, all pattern matches can be
found in the subcircuit that the pattern matchers work on.

Theorem 1 If w = D, then the mapped net list obtained
using the wavefront algorithm is optimal in delay, under
the gain-based delay model.

Proof: Sincew = D, the pattern matchers can search for
matches for a node in the entire fanin cone of the node.
Thus, all pattern matches can be found for all nodes in the
circuit. Under the gain-based delay model, the arrival time
on the output of a cell depends only on the arrival times
of its inputs and the delay of the cell. The covering step
of the wavefront algorithm proceeds in a levelized fashion
from inputs to outputs. Hence, when covering a node, the
entire fanin cone of the node is guaranteed to be mapped.
When covering a node on level 1, the match that produces

4



the fastest arrival time will be selected as the best match
for that node. For nodes on higher levels, by induction, it
follows that the arrival times on the inputs of all matches
on a node are guaranteed to be the fastest arrival times for
those inputs. The technology cell producing the best arrival
time at a node will be selected as the best match for that
node. Again, by induction, all technology cells on all paths
to a PO will be such that the fastest arrival time is produced
on that PO. Under the gain-based delay model, this ensures
that the mapped circuit is optimal in delay.�

In the general case, a width smaller than the depth of the
circuit can be used. Practically, it needs to be set to the
depth of the largest decomposition of the library cells that
the matchers can find. This is a function of the cells avail-
able in the library and the power of the matchers. However,
as will be shown in section 5 the width can usually be kept
to a relatively small number resulting in significant mem-
ory savings to store the patterns, and significant saving in
the size of the network to be timed.

4 Extensions to the Algorithm
4.1 Mapping for different fall/rise times

In most timing models for real libraries, different values
are maintained for the rising and falling delays. This can be
easily accommodated in the wavefront algorithm. Instead
of a single match, the fastest match for both the falling and
rising delay are maintained. A simple modification to the
cover netsprocedure ensures that the two patterns remain
connected to the net. The timing propagation is modified
to allow for a separate earliest late-mode falling and ris-
ing time to be propagated through different paths in the
graph. In a second pass over the circuit from output to in-
puts, we can select the driving cell that minimizes the rising
and falling delay, the worst of the two or a combination of
both.

4.2 Optimizing for other cost functions
In most designs, one is not interested in minimizing

the delay through the circuit but in maximizing theslack.
Since the wavefront algorithm optimizes arrival times at all
points in the network it therefore maximizes the slack at
all points. However, often designers are satisfied with zero
slack and maximizing slack in regions where it is positive
(non-critical regions) is not necessary. In this case the ar-
rival of a non-critical signal can be slowed down (by the
amount of slack). Critical regions can only be reliably de-
termined if the entire circuit has technology cells. The re-
quired time prediction in the unmapped circuit to the right
of the head of the wavefront is too unreliable and a two pass
approach is chosen here as well.

Instead of keeping only the fastest match, one or more
other matches are kept in the first pass. For example,
the smallest match. In a second pass, from outputs to in-
puts, the slower (smaller) patterns can be chosen in the off-

critical regions to minimize area. This freedom can be used
to optimize other cost functions in a second pass without
influencing the worst case slack.

4.3 Dynamic Decomposition
The model as described in section 2 allows for multiple

sources on each net. The additional multi-sources can ei-
ther be technology matches or alternate decompositions of
the subject graph. Many different decompositions similarly
to [9] can be embedded in the subject network.

However, it is possible to delay some amount of de-
composition by preserving large input primitives until such
gates are encountered by the head of the wavefront. At this
point the arrival times at the inputs to these gates are now
defined by the combination of covered logic and the propa-
gation model defined in section 2. These arrival times will
reflect the optimal delay values up to this level of logic.
Given these arrival times any large primitives at the head
of the wavefront are first decomposed into a network of 2-
input NAND gates such that the number of logic levels be-
tween late arriving signals and the output net of the original
primitive is minimized. A simple yet powerful decompo-
sition scheme is the repeated extraction of 2-Input NAND
gates corresponding to the pairs of input signals with fastest
arrival times. This continues until the original primitive has
been completely decomposed into a tree of 2-Input NAND
gates. A series of sub-levelization lists can be maintained in
order to add newly created nets to the wavefront leveliza-
tion tables. After the levelization tables are updated, the
match generation and tail-based covering proceed in their
typical fashion.

5 Experiments and Results
To do a set of experiments a prototype of the wavefront

algorithm was implemented. In the first set of experiments
the effect of the wavefront size is studied. In table 1 the
effect of varying wavefront sizes from 1 to 15 are shown
for an industrial library. More patterns (column 3 and 7)
are found at larger wavefront sizes. However, for widths of
more than 4 the effect on delay is neglectable. Runtimes
grow approximately linearly with the number of patterns.

In the second set we compare the wavefront mapping
algorithm against a state-of-the-art industrial technology
mapping tool. Unfortunately, we have no industrial tech-
nology libraries with timing models as described in sec-
tion 2 available for university tools and could not compare
against these.

Only the technology mapping parts are compared, i.e.
the same net list is give to both programs right before tech-
nology mapping and results are measured directly after a
fully mapped network is obtained. Table 2 shows that our
wavefront algorithm consistently produces superior delay
results. Sometimes there is a large gain in delay for lit-
tle area (C6288), sometimes there is little gain in delay for

5



Table 1: Impact of wavefront width
Des w pat delay CPU Des w pat delay CPU
C432 1 172 7.57 4.88 C2670 1 735 7.10 16.62
C432 2 217 6.20 5.74 C2670 2 952 6.66 21.98
C432 4 247 6.09 6.11 C2670 4 1085 6.47 22.37
C432 10 289 6.09 6.26 C2670 10 1155 6.47 26.63
C432 15 299 6.09 7.14 C2670 15 1164 6.42 26.13
C499 1 566 6.91 6.22 C3540 1 1192 10.69 29.63
C499 2 629 6.61 15.36 C3540 2 1586 10.29 37.98
C499 4 750 6.30 15.76 C3540 4 2032 9.95 47.88
C499 10 794 6.28 17.19 C3540 10 2149 9.91 52.75
C499 15 853 6.22 20.33 C3540 15 2164 9.91 54.14
C880 1 429 7.37 10.59 C5315 1 1807 9.45 54.23
C880 2 522 7.01 10.43 C5315 2 2109 9.13 48.31
C880 4 603 6.80 11.49 C5315 4 2562 8.48 53.73
C880 10 640 6.73 12.35 C5315 10 2744 8.48 61.74
C880 15 666 6.73 13.88 C5315 15 2792 8.48 58.46
C1355 1 548 6.08 13.44 C6288 1 3227 31.23 122.61
C1355 2 598 5.78 14.26 C6288 2 3985 30.00 132.84
C1355 4 725 5.59 14.97 C6288 4 4256 29.14 133.1
C1355 10 821 5.52 17.00 C6288 10 4355 29.09 139.27
C1355 15 853 5.52 19.53 C6288 15 4398 29.09 139.33
C1908 1 541 9.04 13.41 C7552 1 2310 14.72 83.6
C1908 2 636 8.55 15.72 C7552 2 2676 14.48 79.72
C1908 4 760 8.17 16.91 C7552 4 3260 14.19 84.56
C1908 10 793 8.17 18.17 C7552 10 3457 14.19 85.59
C1908 15 800 8.17 17.20 C7552 15 3502 14.14 93.73

Table 2: WaveFront mapper and Industrial mapper.
Circuit delay WFdelay area WFarea
C432 8.62 6.09 184 247
C499 7.81 6.30 665 750
C880 8.30 6.80 460 603
C1355 6.61 5.59 648 725
C1908 9.22 8.17 614 760
C2670 6.83 6.47 669 1085
C3540 10.45 9.95 1268 2032
C5315 8.51 8.48 1754 2562
C6288 44.2 29.14 4104 4256
C7552 19.67 14.19 2751 3260

larger area (C5315). On the average the wavefront algo-
rithm produces 22% faster circuits with about 24% area
overhead.

6 Conclusions
This paper described the wavefront technology mapping.

This mapping method combines delay optimality for DAGs
under a gain-based delay model, with implicit cloning and
efficient pattern storage and timing calculation. For prac-
tical wavefront sizes (i.e. 4) near-delay optimal results are
obtained. Delays are 22% better than conventional technol-
ogy mappers. The multi-source propagation of the timing
allows for secondary cost functions to be handled easily.

Acknowledgments
We thank Nate Hieter and Alex Suess for implementing

the incremental timing analysis package used by the wave-
front algorithm. Many thanks to Daniel Brand, Benjamin

Chen, Robert Damiano, Ramsey Haddad, Kevin Harer,
Prabhakar Kudva, David Kung, Tony Ma, Lakshmi Reddy,
Richard Rudell, Narendra Shenoy, and Lukas van Ginneken
for helping us create the environment and system in which
we could easily implement the ideas presented in this paper
and conduct the experiments.

References
[1] F. Beeftink, P.N.Kudva, D.S.Kung, and L. Stok. Gate size

selection for standard cell libraries. InProc of the Int. Conf.
on Computer Aided Design, page ??, Nov 1998.

[2] E. Detjens, R. Rudell, G. Gannot, A. Wang, and
A. Sangiovanni-Vincentelli. Technology mapping in mis.
In Proc of the Int. Conf on Computer Aided Design, pages
116–119, Nov 1987.

[3] J. Grodstein, E. Lehman, H. Harkness, B. Grundmann, and
Y. Watanabe. A delay model for logic synthesis of continu-
ously sized networks. InProc of the Int. Conf. on Computer
Aided Design, pages 458–462, Nov 1995.

[4] R. HitchcockSr. Timing verification and the timing analy-
sis program. InACM IEEE Nineteenth Design Automation
Conference, pages 594–604, Las Vegas, June 1982.

[5] R. HitchcockSr., G. Smith, and D. Cheng. Timing analysis
of computer hardware.IBM J. Res. Develop., 26(1), January
1982.

[6] K. Keutzer. Dagon: Technology binding and local optimiza-
tion by dag matching. InProc of the 24th Design Automa-
tion Conference, pages 341–347, June 1987.

[7] P. Kudva. Continuous optimizations in synthesis: The dis-
cretization problem. InProc of Int. Workshop on Logic Syn-
thesis, pages 408–419, June 1998.

[8] Y. Kukimoto, R. K. Brayton, and P. Sawkar. Delay-optimal
technology mapping by dag covering. InProceedings of the
DAC 1998, pages 348–351, 1998.

[9] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness.
Logic decomposition during technology mapping. IEEE
Trans on CAD, 16(8):813–834, August 1997.

[10] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness.
Logic decomposition during technology mapping. InProc
of the Int. Conf. on Computer Aided Design, pages 264–271,
Nov 1995.

[11] R. Rudell. Logic synthesis for vlsi design. Technical report,
University of California, Berkeley, 1989.

[12] K. Shepard and et al. Design methodology for the s/390
parallel enterprise server g4 microprocessors.IBM J. Res.
Develop., 41(4/5):515–547, July/September 1997.

[13] L. Stok and et al. Booledozer logic synthesis for asics.IBM
J. Res. and Develop., Vol. 40(4):407–430, July 1996.

[14] I. Sutherland and R. Sproull. The theory of logical effort:
Desiging for speed on the back of an envelope. InAdvanced
Research in VLSI, University of California at Santa Cruz,
1991.

6


	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index


