
Integrating Symbolic Techniques in ATPG-Based
Sequential Logic Optimization

Enrique San Millán, Luis Entrena, José A. Espejo, *Silvia Chiusano, *Fulvio Corno
Universidad Carlos III de Madrid. Dpto. de Ingenería Eléctrica, Electrónica y Automática

{entrena, quique, ppespejo}@ing.uc3m.es
*Politecnico di Torino. Dipartimento di Automatica e Informatica

*{chiusano, corno}@polito.it

Abstract#

This paper presents a new integrated approach to logic
optimization for sequential circuits. The approach is based
on the Redundancy Addition and Removal algorithm,
which is based on Automatic Test Pattern Generation
(ATPG) techniques, and improves it using Symbolic
Techniques based on BDDs. The advantage of the
integrated approach lies in the ability of Symbolic
Techniques to provide exact and extensive information
about the sequential behavior of the portion of the circuit
that is of interest to the logic optimization algorithm.
Experimental results are provided that show the
superiority of the approach to the original ATPG-based
optimization approach.

1. Introduction
Logic optimization for synchronous sequential circuits is

still an open and challenging problem. Given an initial
circuit description at the gate level, sequential logic
optimization aims at computing an equivalent circuit with
a smaller area occupation, usually estimated through the
gate, connection or literal counts. Approaches to sequential
optimization have been proposed mainly at the FSM level
[1]. Some approaches have also been proposed at the logic
level using combinational techniques [2].

One very promising research area aims at exploiting the
progresses made in the area of Automatic Test Pattern
Generation (ATPG). Under some fairly general
assumptions, namely for combinational circuits and for
synchronous sequential circuits with a reset state, there is a
correspondence between untestable faults and redundant
gates and connections in the circuit. Some redundancy
removal tools based on ATPG have been developed
[3],[4]. These techniques have also been extended to
Redundancy Addition and Removal [5]. With this
approach, ATPG techniques are first used to identify a
redundant connection/gate to be added to the circuit. This

This work has been supported in part by the Autonomous Community
of Madrid under Project #06T/024/96

step temporarily increases the area of the circuit, but it is
immediately followed by a redundancy identification step,
again performed with ATPG techniques, to find formerly
irredundant gates or connections that now became
redundant, and can be removed. The goal of the algorithm
is to add the redundancy in such a way to remove more
hardware (gates or connections) than it adds.

The critical part of the Redundancy Addition and
Removal technique is clearly the redundancy identification
step based on ATPG techniques. In [5], such a step was
performed through the propagation of mandatory
assignments, with the help of unique sensitization
techniques and Recursive Learning [6]. The exploitation of
mandatory assignments allows efficient identification of
inconsistencies and therefore circuit redundancies.

The goal of this paper is to enhance the degree of
optimization that can be reached by proposing an
integration of symbolic techniques based on BDDs [7] in
the algorithm presented in [5]. Symbolic techniques are
very powerful in finding exact inconsistencies and
implications in both combinational and sequential circuits,
but they are limited to a moderate size and a number of
state elements not exceeding some tens. The approach
proposed here therefore first identifies a smaller portion of
the circuit (hereinafter called “macro”) on which the
redundancy identification procedure needs accurate results,
and then delivers the required information via symbolic
computations. The information that symbolic computations
can extract from the macro include combinational
implications between distant gates, information about the
reachable states from the reset one, and justification and
propagation of values through the macro.

With this integrated approach we are able to identify
more mandatory assignments, and therefore to improve the
circuit optimization results on sequential circuits. Some
experimental results were gathered to prove the
effectiveness of our solution.

 The rest of this paper is organized as follows. Section 2
reviews the redundancy addition and removal techniques
and their application to sequential logic optimization.
Section 3 on the other hand, analyzes which kinds of

symbolic manipulations are useful for being integrated.
The integrated approach is detailed in Section 4.
Experimental results are finally reported in Section 5,
while Section 6 presents the conclusions and points to
future developments of this work.

2. Logic Optimization by Redundancy
Addition and Removal

Redundancy Addition and Removal has been shown to
be a powerful logic optimization method by several
authors [5], [8], [9], [10], [11], [12]. With this method, a
logic network is optimized by iteratively adding and
removing redundancies that are identified using ATPG
techniques. If the addition of k redundant wires/gates
creates more than k redundant wires/gates elsewhere in the
network, the removal of the created redundancies will
result in a smaller area.

The basic Redundancy Addition and Removal approach
can be summarized as follows. A wire is selected and
tested for stuck-at fault. If no test is possible, then the wire
is redundant and can be removed. Otherwise, we try to add
a wire or a gate to the circuit in order to make the fault
redundant. Candidates for addition are also tested for
stuck-at fault in order to verify that the addition preserves
the functionality of the circuit.

Redundancy Addition and Removal is also applicable to
sequential circuits. In this case, redundancies are identified
by sequential test generation methods using the well-
known time frame model.

Fig. 1. Example of Sequential Redundancy
Addition and Removal

Example (taken from [5]). Fig.1 shows the state graph of
a two-state machine and a one-hot coded implementation
of this machine. The machine has two inputs, a and b, and
one output. To activate the fault x2 stuck-at 1, the circuit
must be in state S1 = 10, i.e., x1 = 1 and x2 = 0 are
mandatory assignments for this fault. Therefore, adding x1
as an input of g1 will block the propagation of the fault. If
we add this connection, as shown in Fig. 1(c), the
sequential behavior of the circuit will not change and x2
will become sequentially redundant after this addition (Fig.
1(d)). After removing x2 and its fanins which become
floating, the circuit has only one flip-flop and is a minimal-
bit encoded machine (Fig. 1(e)).

The key of ATPG-based redundancy identification is the
computation of mandatory assignments. Mandatory
assignments are those which are required for a test to exist
and must be satisfied by any test vector. In order to
identify redundancy, only the mandatory assignments need
to be considered. If during the search for mandatory
assignments of a given fault an inconsistency is found,
then the fault is untestable.

Although it is not necessary to compute the complete set
of mandatory assignments to identify redundancy, the
more mandatory assignments are identified, the more
redundancies may be found. Furthermore, mandatory
assignments are used to identify the candidate wire/gates to
be added. Unfortunately, the identification of all
mandatory assignments is an NP-complete problem.
Efficient techniques exist for the identification of
mandatory assignments based on the concept of absolute
dominators [13]. Recursive learning [6] is a recursive
method that is able to identify all mandatory assignments,
given enough time. By properly pruning the recursion tree,
this method allows to obtain different subsets of mandatory
assignments with various computational efforts.

3. Symbolic Computations for Sequential
Circuits

Symbolic Techniques can represent the behavior of a
synchronous sequential circuit or a portion of it through a
Finite State Machine model, specified by the state
transition function y=δ(s,x) (computing the next state y
from the current state s and the current input x) and by the
output function z=λ(s,x) (computing the output z starting
from the same information).

We adopt the standard technique based on characteristic
functions to represent sets of inputs and of states [14]. The
characteristic function χδ of the state transition function
y=δ(s,x) is a compact representation of function δ: χδ(s,x,y)
takes the value 1 for all the triples (s′,x′,y′) such that
y′=δ(s′,x′).

During the search for mandatory assignments a
procedure based on symbolic computations is activated to
detect whether the current set of assignments is consistent

))�

))�

D
E

]

D� A one-hot coded implementation
 (S0 = 01, S1 = 10)

E � �

D� A two-state machine

D�E � �

6�

D�E � �

E � �

6�

))�

))�

D

E
]

F� Adding a sequentially redundant connection
 do not alter the behaviour of the circuit

))�

D

E

]

H� The resultant equivalent circuit
 has one flip-flop only

))�

))�

D

E
]

G� Another conexion in the circuit becomes
 now redundant, so it can be removed

and possibly to find additional implications. The procedure
takes all the gate values in the current time frame and tries
to update them with symbolic information. The
information that is used to perform these checks is both
combinational, i.e., related to the relationships between
input and output variables, and sequential, i.e., derived
from the knowledge of the reachable states of the machine.

As a result, if the symbolic procedure finds
inconsistencies in the assignments, the redundancy of the
fault is proven, and the mandatory assignment procedure is
immediately stopped. Otherwise, it may be possible to find
some implication of mandatory assignments on some
formerly unspecified gates: these newly found implications
are inserted in the queue of mandatory assignments to be
propagated.

In the implementation, the characteristic functions χδ and
χλ are preliminarily extracted from the circuit netlist and
the set of reachable states χR(s) is determined by using a
classical fix point iteration [14]. A pseudo-code of the
symbolic implication procedure is reported in Fig. 2. It
first extracts from the circuit values the sets of allowed
values at inputs and outputs. These sets, that are always
cubes, are stored in the functions χx(x), χs(s), χz(z) and
χy(y).

All the constraints are then intersected with the
characteristic functions containing the knowledge about
the circuit behavior χδ and χλ, and the characteristic
function χIMPLY contains all the input/output combinations
compatible with:

• the current values assumed at the gate outputs
• the function computed by the combinational network
• the set of reachable states of the machine.
 This set has an arbitrary shape in the Boolean space, but

we approximate it with the smallest enclosing cube, whose
known variables define the implications of mandatory
assignments .

 Three different results can be returned:
• inconsistency (χIMPLY=0): there is no input/output

combination satisfying all the constraints. The
considered fault is untestable and the connection
redundant.

• no implication (χIMPLY≠0, but the implications of
mandatory assignments coincide with the original
constraints). No additional information is found by the
symbolic procedure.

• new implication (χIMPLY≠0, and some implication is
present on at least one previously unspecified
variable). A new implication has been discovered, the
circuit values are updated, and the mandatory
assignment procedure is restarted.

Since BDD’s of reasonable size can be computed only
for small and medium circuits, we apply symbolic
techniques to small macros, only. This also allows us to
neglect the variable ordering problem, since the functions

have a reduced size by construction; in the experiment we
use the natural ordering, i.e., the order of appearance in the
netlist.

symbolic_imply(gate_values[]) {
χx=to_bdd(PI, gate_values); χz=to_bdd(PO, gate_values);
χs=to_bdd(PPI, gate_values); χy=to_bdd(PPO, gate_values);
compute χIMPLY = χx χs χz χy ⋅ χR χδ χλ ;
if (χIMPLY == 0) return INCONSISTENT ;
else {

new_gate_values[]=extract_mandatory (χIMPLY) ;
if (new_gate_values == gate_values)

return NO_IMPLICATION ;
else {

add_implications(new_gate_values) ;
return NEW_IMPLICATIONS ;

} } }

Fig. 2. Symbolic procedure

4. The Integrated Approach
The Redundancy Addition and Removal algorithm of

logic optimization can be improved by enriching the
mandatory assignment identification procedure with the
above mentioned symbolic computations. For a fruitful
integration, it is necessary to take into account the
following issues:

• Symbolic procedures can deal with sequential circuits
within small time and memory limits, provided that the
number of flip-flops does not exceed 10-20. This
means that the symbolic information must work only
on a subset of the circuit, that will be called macro.

• The macro being considered must overlap significantly
with the portion of the circuit on which there are
already some mandatory assignments. Otherwise, too
few input constraints arise, and no new implication can
be expected to arise.

• During logic optimization the network is expected to
change as a result of addition and removal of
redundancies. Even if the overall circuit functionality
is guaranteed not to change, the Boolean function
computed by the macro may change, thus requiring re-
computing all the BDD’s. Therefore, the cost of the
preliminary steps is relevant, and must be kept as low
as possible.

The algorithm of [5] selects a target node in each
iteration and checks for possible circuit optimizations
resulting from adding and removing redundancies in the
input cone of this node. The symbolic procedure builds a
macro able to deliver implications in the portion of the
circuit that is more likely to be explored for a given target
node. Whenever the target node changes, or the circuit is
changed, a new macro is identified and the BDD’s are
accordingly recomputed.

The construction of macros is performed as follows:
• First, some flip-flops are selected according to some

heuristic. The heuristics used for this task will be
described later in this section.

• Then the logic gates surrounding these flip-flops, i.e.,
the gates that are both in the input cone of at least one
selected flip-flop and in the output cone of some other
one, are included in the macro.

• Macro inputs and outputs are identified by looking at
which combinational gates are at a boundary between
included gates and excluded ones.

 In summary, the macro is built around a set of selected
flip-flops. Therefore, the key of this approach is to find
good heuristics to efficiently select which flip-flops must
be included in a macro. Two heuristics have been
determined:

 Heuristic 1
 Starting from the location of the target node, first the

flip-flops that lie in the input cone of the target node are
identified. If the number of such flip-flops is within the
threshold to be handled by BDDs, they are all selected for
the next step. If there are too many, the farthest ones to the
target node are discarded; if they are too few, the input
cones of these flip-flops are also explored.

 Heuristic 2
 According to the previous considerations, the flip-flops

for the macro must overlap significantly with the portion
of the circuit on which mandatory assignments already set
some values. It can be shown that there is a common
subset of mandatory assignments for the set of faults that
are tried at one iteration. We will illustrate this idea with
the following example.

 Fig. 3. Example for heuristic 2

 Example. Consider the fault T stuck-at 0 in the circuit
shown in Fig. 3. The mandatory assignments for this fault
are a=1, b=1 and c=0. Now consider the addition of a new
input x to the target node T (shown as a dashed line). To
check whether this added input is redundant, we test fault x
stuck-at 1 and obtain the mandatory assignments x=0, a=1,
b=1 and c=0. Note that this is a superset of the mandatory
assignments for the fault T stuck-at 0.

 In general, the faults related to the addition of
wires/gates to the target node, and also the faults related to
the removal of wires/gates in the input cone of the target
node, have many mandatory assignments in common with
the ones generated by the faults T stuck-at 0 and T stuck-at
1, being T the target node. This observation leads to the
following heuristic:

• First, try the faults T stuck-at 0 and T stuck-at 1 at the
output of the target node.

• After implying, choose those flip-flops that hold a
mandatory assignment for any of these stuck-at faults.

• If there are too many, we choose the closest to the
target node; and if there are too few, we complete
according to heuristic 1.

5. Experimental Results
In this section we present the experimental results

obtained for ISCAS89 and MCNC benchmark circuits.
Starting from the source code of the tool implementing the
algorithm of [5], we implemented the symbolic procedures
and integrated them in the optimization algorithm. The
symbolic module has been implemented by using the BDD
package developed by the authors. Experimental results
have been run on a Sun Sparc Station Ultra-1 with 64 MB
RAM, with a limit of one million of BDD nodes set.

The results obtained by running the algorithm with
heuristic 2 are summarized in Table 1. This table is divided
in three main column groups corresponding to the initial
benchmarks, the results after running sequential
optimization by Redundancy Addition and Removal only
(RAR), and the results with Redundancy Addition and
Removal and symbolic techniques (RAR+BDDs),
respectively. For each case, the number of flip-flops (FF),
gates (G) and connections (C) are shown. The last column
reports the percent improvement of the number of
connections.

The experimental results demonstrate that the use of
symbolic techniques produces significant improvement in
most examples within moderate CPU time increase. The
maximum improvement is obtained for s298, which has
25% less gates and 21% less connections when using
symbolic techniques. Heuristic 1 gives generally worse
results, being better only for two examples, namely s499
(7.67%) and s444 (7.83%).

6. Conclusions and Future Work
Efficient logic optimization for sequential circuits is still

an open issue. This paper proposed the integration of a
logic optimization algorithm, based on redundancy
addition and removal through the adoption of ATPG-based
techniques, with symbolic computations performed via
BDDs. While the overall algorithm still works at the
structural level, the portions of the circuit of higher interest
to the ATPG core are also analyzed through symbolic
techniques, that deliver very quickly exact information
about their sequential behavior.

Experimental results show that, in most cases, the circuit
optimized with the proposed integrated approach are
smaller than the ones obtained with the original algorithm.

We are still improving the tool, by aiming at broadening
its applicability to larger circuits. To do this, two
extensions are currently under development, namely the
support of several macros inside the circuit instead of just

a
b

7

c

[

s-a-1
s-a-0

�

�

�

one, and the implementation of a second symbolic
implication procedure working over multiple time frames
and taking also account of the values of combinational
gates inside the macro, not just at its boundaries.

7. References
[1] P. Ashar, S. Devadas, A. R. Newton. Sequential Logic

Synthesis. Kluwer Academic Publishers, 1992
[2] S. Malik, E. M. Sentovich, R. Brayton, A. Sangiovanni-

Vincentelli. Retiming and Resynthesis: Optimizing
Sequential Circuits Using Combinational Techniques. IEEE
Transactions on CAD of Integrated Circuits and Systems,
vol. 10, p. 74-84. January 1991

[3] K.T. Cheng, On removing redundancy in sequential circuits,
in Proc. 28th Design Automation Conf., June 1991, p. 164-
169

[4] H. Cho, G.D. Hachtel, F. Somenzi. Redundancy
identification and removal based on implicit state
enumeration. Proc. Intl. Conf. in Computer Design (ICCD-
91), October 1991, p. 77-80

[5] L. Entrena, K.-T. Cheng. Combinational and sequential logic
optimization by redundancy addition and removal. IEEE
Trans. on CAD, Vol. 14, No. 7, July 1995, p. 909-916

[6] W. Kunz, D.K. Pradhan. Recursive learning: an attractive
alternative to the decision tree test generation in digital
circuits. Proc. Intl. Test Conf., October 1992, p.816-825

 [7] R. E. Bryant. Symbolic Boolean Manipulation with Ordered
Binary Decision Diagrams. ACM Computing Surveys, Vol.
24, Nr. 3, 1992, p. 293-318

[8] C. Chang, K.-T. Cheng, N.-S. Woo, M. Marek-Sadowska.
Layout Driven Logic Synthesis for FPGAs. Proc. DAC-94,
p. 308-313. June, 1994

[9] S. C. Chang, M. Marek-Sadowska. Perturb and Simplify:
Multi-level Boolean Network Optimizer. Proc. ICCAD-94,
p. 2-5. November, 1994

[10] W. Kunz, P. R. Menon. Multi-level Logic Optimization by
Implication Analysis. Proc. ICCAD-94, p. 6-13. November,
1994

[11] U. Gläser, K.-T. Cheng. Logic Optimization by an Improved
Sequential Redundancy Addition and Removal Technique.
Proc. ASP-DAC. September, 1995

[12] L. Entrena, J. A. Espejo, E. Olías, J. Uceda. Timing
Optimization by an Improved Redundancy Addition and
Removal Technique. Proc. EURODAC’96, p. 342-347.
September 1996

[13] T. Kirkland, M. R. Mercer. A Topological Search Algorithm
for ATPG. Proc. ACM/IEEE 24th Design Automation Conf.,
p. 502-508. June, 1987

[14] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J.
Hwang. Symbolic Model Checking: 1020 States and
Beyond. LICS’90: 5th Annual IEEE Symposium on Logic in
Computer Science, p. 428–439, June 1990

Initial RAR RAR + BDDs
FF G C FF G C CPU

[s.]
FF G C CPU

[s.]
Imp.
[%]

s298 14 101 255 14 72 183 5 14 54 144 23 21.31
s386 6 104 305 6 64 179 7 6 54 150 19 16.20
s444 21 125 319 21 84 230 7 21 81 213 34 7.39
s526n 21 167 449 21 104 268 13 21 83 221 71 17.54
s420 16 125 310 16 97 256 12 16 97 256 15 0.00
s499 22 138 391 22 116 339 26 22 112 330 54 2.65
s382 21 118 306 21 89 240 8 21 81 215 34 10.42
s400 21 123 317 21 88 236 8 21 81 214 40 9.32
s832 5 243 726 5 127 400 65 5 122 373 102 6.75
s967 29 306 256 29 260 679 157 29 253 664 278 2.21
bbara 4 41 147 4 41 134 1 4 41 129 4 3.73
bbsse 4 49 227 4 49 188 3 4 49 185 6 1.60
dk16 5 92 520 5 92 464 17 5 91 447 31 3.66
dk27 3 18 49 3 18 45 0 3 16 42 0 6.67
dk512 4 33 113 4 32 101 1 4 30 92 2 8.91
ex1 5 96 531 5 94 434 14 5 95 422 33 2.76
ex4 4 41 159 4 41 138 1 4 41 135 4 2.17
ex7 4 32 127 4 31 114 1 4 28 92 2 19.30
keyb 5 72 620 5 72 592 15 5 72 585 35 1.18
planet 6 146 1137 6 146 1007 52 6 144 978 167 2.88
sse 4 49 227 4 49 188 3 4 49 185 6 1.60
styr 5 134 1045 5 134 905 47 5 134 879 98 2.87

Table 1. Experimental results

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

