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Abstract

This paper presents a method to automatically recog-
nize and model single and multi-output logic gates out of
a switch-level network, even for irregular transistor struc-
tures. Result subcircuit models are directly used in a sym-
bolic simulator for circuit analysis purposes. Other appli-
cations of derived netlists cover switch-level simulationac-
celeration and test generation tool enhancement.

1. Introduction

Transistor networks must be used in those cases in which
a high level of flexibility is demanded to adapt circuit de-
signsto their ever-increasing stringent performance require-
ments. Unfortunately, switch-level CAD tools are neces-
sarily more complex than the more conventiona gate-level
ones. However, the former tools gain efficiency if input
networks are maximally simplified. More specifically, if
groups of transistors/switches are packed into gates whose
associated model could be used instead.

The process of deriving clusters of transistors out of a
switch level network is also called circuit partitioning be-
causeit dividesorigina networksinto smaller partsthat in-
crease the coarseness of thefinal network.

Such network transformation can significantly reduce the
time of switch-level simulationsbecause network traversals
are greatly simplified in terms of number of e ementsto be
analyzed and, even, their model complexity. For instance,
the model of an ideal switchin afour-valued Boolean alge-
bra (described later in this paper) implies eight Boolean op-
erations, while the model for a 2-input AND isresolved in
just four.

Subcircuit model s of derived partitionsare usualy stored
asinput/outputtables, whereevery possibleoutputisrelated
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to agiven set of input stimuli. The size of such tables de-
pendsonthesubcircuits size, onthetypeof nodevalues(i.e.
continuousor discrete), and onthedelay model (zero, unit or
variable) of the devices. For zero/unit delay 1ogic/symbolic
simulators it is aso possible to have severa device tem-
platesto be used instead of the corresponding derived parti-
tion models. Those device templates are usualy simple be-
cause derived models do not require detailed timing infor-
mation, nor they haveawiderange of discretevalues. How-
ever, thereisalimited number of such device primitives.

For instance, the switch-levd circuit analyzer ANAMOS
[3] associates any detected subcircuit to a combination of a
reduced set of elementary primitives. However, it makes all
the identification process much more complicated, and ef-
fectiveness is not ensured when severa primitives have to
be used for a single subcircuit.

The switch-level symbolic smulator used in this work
has embedded the widely used inverters, buffers, n-input
AND, NAND, OR, NOR, XOR, and XNOR gates because
they al so have asimpleidentification from the derived mod-
els[11]. Asthis approach is restricted to a set of gates, it
is complemented by a sort of table-based solution that uses
Boolean expressionsinstead of input-ouptut tables.

The ability to derive models of transistor groups can be
used in most test generation (TG) tools to operate with a
broad scope of logic gates. Thus diminishing the TG com-
plexity, and eliminating the fal se faults caused by the use of
sets of elementary gates for non-primitivegates [8].

The remainder of the paper isorganized asfollows. Next
section reviews some previous works on transistor network
partitioning before sketching our approach in the two fol-
lowing sections. Thefirst oneintroduces circuit representa-
tion in symbolic processing environments because our cir-
cuit partitioning agorithm identifies and models transistor
group functions through a symbolic anadysis method in-
spired in event-driven simulators. The second one is de-
voted to the actua circuit partitioning and the fina algo-
rithm. Finally, we conclude by presenting a set of illustra-
tiveresults, aswell as by outlining switch-level based tools.



2. Circuit Partitioning Overview

Although sometimes network descriptions are hierarchi-
ca and do use subcircuit references for logic gates and,
even, contain higher level groupings, there are applications
in which these descriptions are totally flat. For instance, in
acell development process or for areverse engineering use.

Transistors alow a bidirectional communication be-
tween source and drain terminals. The consequent unknown
information flow causes extra operations to the simulation
engine. Furthermore, the inherent complexity of such type
of networks due to the number of componentsto be treated
clearly imposesthe need for automated methodsto partition
those netlistsinto more manageable subnetworks which are
independently analyzed for further useas single components
of ahigher-level network.

Generdly, the proposed methodsin therelated literature
consist of partitioning the network into channel-connected
transistorsthat usually match logic gate bounds.

Cerny and Gecsei [4] presented a simulator that used
Boolean models of connector-switch networks (CSN) [6] to
accelerate switch-level simulation. Modelsare stored inthe
form of decision diagrams (DDs) for CSNs that encode a
ten-vaued logic to deal with severa levels of discrete sig-
nal strength. DDs are derived from a direct analysis of CG
paths.

Theswitch-leve circuit simulator COSMOS[ 3] includes
program ANAMOS which partitions a network description
into a set of channel connected subnetworks from which
Boolean representations of their behaviors are built. The
simulation of result netlists is more straightforward, with
bidirectionaity related problems mostly solved by the con-
structed models. Related Bool ean representations are acou-
ple of BDDs to encode a three-valued response. To avoid
unnecessary subnetwork anaysis, Beatty and Bryant [1]
modified ANAMOS to work in an incremental fashion com-
puting a hash signaturefor every analyzed subcircuit.

Yokomizo et a. [16] present a subcircuit identification
method that is based on comparing subnetwork logic trees
with a set of logic trees in a library of functions that can
be used in pattern based (electrical) circuit ssimulators. Ap-
propriate net terminal swith capacitive loads are added after
each subcircuit to prevent decreasing accuracy. However,
parasitic elements might be eliminated if their effect does
not exceed the allowed error tolerance.

Hibner and Vierhaus[8] a so depicted a method for dig-
ital CMOS circuit partitioning. Their algorithm first deter-
mines longest paths from Vdd or Vssto an N or P tran-
sistor, respectively. Then, those connection points are re-
garded as starting pointsfor stage determination, which are
always channel-connected regions (CCRs) of the network,
i.e, groups of transistors interconnected through drain or
source ends. Functionad analysisis done by on and off path

traversal to find corresponding on and off path functions. If
resulting on and off sets are not complementary, a specific
check is performed to determine eventual high-impedance
States.

The same authors and Camposano [9] have recently pub-
lished adrasticimprovement on the original method. Inthis
new version, the transistor type is not taken into account
when finding pathsto Vdd or Vss and conflictive nodes are
marked for a specific flow determination algorithm that re-
quiressimpleinvertersbe given beforehand. Such modifica
tionsresultinamore genera and effective partitioninga go-
rithm for static CMOS circuits.

Wehbeh and Saab [15] propose a method in which cir-
cuit istraversed while constructing on and off set functions
for nodes. As they take into account signal strength, such
traversals have to be done for every discrete strength level.
In theend, result model s handle subnetwork functionality as
well assignd strength, and are used insidethe CHAMP sim-
ulator [14].

A different approach is presented by Huang and Over-
hauser [7]. Circuit description is first converted to an
adapted adjacence matrix which is partitioned. Then each
meatrix partitionis encoded for its identification with previ-
oudy defined elements.

Our approach is dlightly different to the former ones:
CCRsarenot restricted by any way (on-pathsmay includeN
transistors, CCRs may have more than one output, dynamic
logicstructuresare permitted, et cetera), and their analysisis
performed by symbolic event-driven simulation. The result
output functionsare used to build the corresponding model.

3. Symbolic Representation of Switch-Level
Circuits

The circuit structureis formally represented by a circuit
graph (CG). A CG(V, ) is a directed bipartite graph [5]
where V' can be decomposed into two digoint subsets (V
and D),and £ C (N x D)U (D x N).

The set of adjacent input verticesof v € V, denoted by
adj~ (v), contains every vertex for which vertex v isthe last
endpoint in an edge. Conversely, the set of adjacent output
vertices of v; isadjt (v) = {w € V | 3(v,w) € E}. Note
that the adjacency sets of avertex belongingto subset NV are
subsetsof D, and viceversa

N isthe set of (electrical or logica) nodes that can hold
avaue. In symbolic analysis frameworks such as the one
of thiswork, values of nodesn; € N are represented by
Boolean variables y;. The primary inputs (PI) and the pri-
mary outputs (PO) are distinct subsets of V. We shall con-
sider present state (PS) nodesto be part of Pl and next state
(NS) nodesincluded in PO.

The analysis of a circuit network is possible when each
node holds a nodal function which determines its value



under any possible combination of input and present state
nodes, i.e. any assignment to their corresponding variables.

Because binary values (0 and 1) are not enough to cor-
rectly model some of the common effects occurring at the
switch level, we extend the number of discrete values to
four: low (Z), unknown (X), high () voltage level, and
high impedance state (7). Unknown value X refers to
a situation in which there is a value conflict, while high
impedance 7 isrelated to those cases in which no deviceis
driving aknown vaue (1. or /) into the affected nodes.

Consequently, noda functions, f;, are Boolean
functions of a four-valued Boolean agebra (B, =
{Z,L,H,X},+,-,7,X) that are uniquely characterized
by two binary Boolean functions [13], i.e. any f; isrep-
resented by a pair of switching functions (f}, f7). The
on-set function (f}') indicates the cases for which node n;
isdriven to high voltage level, and the off-set function (f7)
determines the conditions, or variable combinations, for
which the node is e ectrically connected to ground.

In particular, input nodes n,; have functionsof the form

fi(z) = 2 = (v}, 2}) 1)

where z isthevector of variablesin By, and z;, isavariable
characterized by two binary variables.
Distheset of devicesd; € D that areassociated Boolean

functions ¢;(z) : BLadJ @l BLadJJr(d’)', where z is
the vector of device input variables from sup(¢;) = {y; |
n; € adj™(d;)}, i.e. from variables related to input nodes
of d;. (These variables are substituted by nodd functionsin
terms of input node variables when symbolically ssimulating
the network.)

Nodal functionsarederived from an event-drivensimula-
tion algorithm [12] which starts with all nodes set to Z and
continues by creating events to set Pl nodes to their corre-
sponding variables. The rest of events (i.e. nodes that are
added some Bool ean function to theonethey hold) iscaused
by device activity.

Transistors process symbolic information as it flows
through the network. Their behavior is reduced to asimple
switch, i.e. it can be off completely isolating both end nodes
or on, |etting data flow in both directions. Hence, transistors
are considered bi-directiona devicesthat modify both drain
(f4) and source (f;) nodd functions. The complete set of
equations® = (¢4, ¢) for aPMOS switch is expressed as
follows.

balfa, fg, fs) = fa(z) + fg(é) x fs(2) 2
¢s(fdafgafs) = fs(é) +fg (i) X fd(é)

whereproducts f{ x f, and f{ x f areproductsof functions
by avector of functions (those function pairsthat character-
ize f; and f;), and sums between function vectors are made
component by component,i.e. f+g = (f' + g%, f2+ ¢°).

Notethat only two devicefunctions(¢, and ¢ ) arerequired
because the transistor’ sgate nodal function (f,) isnot mod-
ified by the transistor activity.

A similar system describes the behavior of a NMOS
switch, with the off-set function of the gate substitutedin (2)
by the on-set function.

Themodel of anetwork consists of al nodal functions of
primary output and next state nodes once symbolic ssimula
tion has finished (i.e., there are no new events).

However, thisstep must be done after obtainingatransis-
tor subnetwork. This partitioning process will be described
in the next section.

4. Partitioning Algorithm

Circuits are partitioned into CCRs. Elements other than
transistorsare not includedin such partitions, but transistors
areincluded regardless of their position (in on or off-paths).
Each CCRisanayzed by taking profit of the symbolicsim-
ulation enginerather than by specific traversal agorithmsas
applied intheformer methods. This solutionisnot so effec-
tive but completely generic.

Asin [8], determination of CCRs are done by detecting
a set of possible stage outputs (SO) that are used as starting
pointsto obtain complete CCRsby “channel traversing” the
circuit. Once a CCR is detected, their input/output nodes
are determined to be simulable. Then, their model is built
after the symbolic simulation results, and their inner nodes
and al their devicesremoved. Also, CCR outputsare with-
drawn from SO. Figure 1 shows such processin an agorith-
mic form.

The process starts by determining SO before trying to
detect any CCR. SO isinitially assigned to PO, and then
increased with nodes that do not have any voltage source
attached to them and are gates of transistors or connected
as inputs to other devices. For the example in Fig. 2(a),
SO={y, z, v, u}. Thisset isdiminished at each iteration of
themain loop until it isempty.

Detection of a particular CCR is done by function
DFS(CG, n;). DFS(CG, n;) performs a depth-first search
over transistor channels, returning a CG that contains all
nodes and transistors effectively visited, i.e. not includ-
ing those only tested for search continuation. For instance,
DFS(CG,y) on the circuit in Fig. 2(a) returns the CG with
thetransistorsin the shadowed part marked, aswell as nodes
{v,w}.

Initial, globa CG should not contain loops. Instead, they
should be broken into two nodes for the present state (PS)
and next state (NS) sets, which areimplicitly includedin the
Pl and PO sets, respectively. However, if any loopisnot bro-
ken before applying the partitioning algorithm, result netlist
preservesthisloop outside CCRs (seetheresult of partition-
ing the output latches of the DCVSL gatein Fig. 2), unless



CG = partition( CG, PI, PO)
[* Detect dl possible stage outputs, SO. */
SO — PO
for each noden; € CG do
if (Ad; € adj™ (n;))[type(d;) = VSOURCE] then
for each device d; € adj™ (n;) do
if (type(d;) = OTHER) v
v (type(d;) = {PN}MOS) A (n; = gate(d; )) then
SO — SOU {n;}
I* Replace CCRs by higher-level devices. */
while SO # () do
get first noden; in SO, i.e. SO «— SO\ {n,}
CCR — DFS( CG, n; )
POccr, Plecr — 0
/* Derive CCR inputs. */
for each n; € CCR do
if (n; € Pl)V (CCRNadj™(n;) # 0) then
Plccr < Plecr U {7}
CCR — CCRU { deviceCreate(VSOURCE, n;) }
endif
/* Determine CCR outputs. */
for each n; € CCR do
if n; € SOthen
POccr < POccr U {n}
SO — SO\ {n;}
endif
[* Create CCR model. */
simulate( CCR)
®ccr +— mode Create( CCR)
deer — devlceCreate( SUBCKT, CCR)
CG — (CG \ CCR) U Plecr U POccr U {dCCR}
endwhile
end

Figure 1. Partitioning algorithm.

itisaself-loop for some CCR, i.e. thenodesin theloop are
interna to that CCR.

The construction of a CCR model is done by first creat-
ing virtua inputsto it, and then symbolicaly simulating it
so itsoutput nodes contain itsfunctional model, as shownin
Fig. 2(b). CCR inputsare nodes attached to devices that do
not belong tothe CCR, but that are able to supply somefunc-
tionsto them. In particular, Pl nodes are attached to voltage
sources that cannot belong to any CCR (they are not tran-
sistors) and supply (are in the input adjacency) a constant
function to the nodes.

CCR outputscan bederived inasimilar form, so to know
where will be placed the corresponding model. An output
isa CCR node, n; that constitutes an input to a device, d;,
not present in the same CCR, i.e. d; € adj*(n;). Also, dl
observabl e nodes (PO nodes) are considered to be outputs of

s o @]+ o

b a c d
fi= @+ (b+e)c)

e

(c) Gate-level circuit

Figure 2. A DCVSL gate partitioning example.

a CCR. Therefore, al these nodes are nodes present in SO.
Consequently, CCR outputs are nodes in the intersection of
CCR and SO.

The simulation results are used to build the associated
model viamodel Create{(CCR) function, and anew deviceis
generated to replace al transistors in the substituted CCR.
M odel scontai n either asum-of -product (SOP) expression or
ahbinary decision diagram (BDD) for each CCR output and
some additional data. Replacing devices have areferenceto
the corresponding model and their actua “ pinout” withinthe
network.

The cost of each simul ation depends on the number of in-
putsof thesimulated CCR and on the Bool ean functioncom-
plexity, and is usually affordable for most common circuits.



The result CG is made of as many devices as detected
CCRsplusextradevices, i.e. other than transistors. Differ-
ently from other approaches, a CCR may contain more than
just one output. However, primary inputsand outputs of any
CCR aredisjointsets, i.e. Plccr M POccr = 0.

Notethat the number of logic gatesin acircuit might not
beegual tothenumber of CCRsbecause therearelogicgates
made out of several stagesand pass-transistorsthat may con-
nect several logic gatesinto one CCR. For instance, an OR
gate will be divided into a NOR gate and an inverter at its
output. Conversely, pass transistor logic will cause CMOS
buffers and inverters be considered in the same CCR than
the pass transistors they are attached to.

5. Resaults and Conclusion

In this paper we have presented a switch-level net-
work partitioning agorithm based on grouping channel-
connected transistors without any other limitation. Correct
identification of result partitionsand functional model gen-
erationisaunique procedurethat iscarried out through sym-
bolic simulation to enable generic partitions be correctly
modeled. Result models are correct even for dynamic logic
gates, multiple output subcircuits, circuits containing de-
vices other than transistorsand any type of irregular transis-
tor structures, which surpasses the capabilities of the previ-
ousworksin literature.

Incorrect partitionsare a so model ed accordingly. There-
fore, should the global network contain a wrong transi stor
subnetwork, the derived network preserves the same faulty
functiona behavior [12].

Derived models can be used in a quite straightforward
formwithinlogic simulators and automatic test patters gen-
erators. In particular, we have embedded this partitioning
algorithminto a symbolic analysistool for switch-level cir-
cuits[12] that aso relies on symbolic simulation.

Table 1 shows the execution resultsfor the ISCASS5 [2]
circuit set. Original circuits are described at the gate level
and they have been flattened to the transistor level and re-
organized into CCRs later with the help of the partitioning
algorithm.

Differences between the number of partitionsin the last
column and the number of origina gates shown in the sec-
ond one are dueto the two-stage cells (AND and OR gates),
and to the XOR gates used in circuits c432 and ¢499. Such
XOR gates (see Fig. 3) have been designed with pass-
transistor logic to illustrate how thistype of logic may col-
lapse two different logic stages. in this case, the inverter in
the middle of the XOR isincluded in the gate's CCR. Also,
thelogic gate that is attached to input @ isincluded into the
XOR CCR. As a side-effect, the result CCR may have two
outputsif thislast gate output isused asinput for other gates.
Consequently, the validity of our method for multipleoutput

Table 1. Switch-level Partitioning

size CPU secs.
circuit | gates MOS | (4) (5) (6) | parts
c432 160 752 - 02 01| 164
c499 202 1384 - 05 03| 338
c880 383 1802 | 07 05 02| 529
cl355 | 546 2308 - - 02| 604
cl908 | 880 3446 | 14 10 0.7 | 1105
c2670 | 1193 5364 - - 23| 1875
c3540 | 1669 7504 | 3.2 21 21 | 2460
c5315 | 2307 11262 - 32 6.2 3552
6288 | 2416 10112 - 30 312672
c7552 | 3512 1539 | 6.4 4.6 10.2 | 5067

CCRsisproved.

The fourth column of table 1, labeled with number four
between parentheses, gives the CPU time on a SUN 3/60
for the signal flow analysis by Lee et a. [10]. The fifth
column shows the results of the partitioning a gorithm by
Hiubner et d. [9] on a SUN IPX (about 7.4 times faster
than a SUN 3/60, according to Dhrystone 1 benchmarks).
Next column gives the CPU time of our method on a SUN
Sparc 2. Though not directly comparable, results of thetwo
first methods are proportional to the number of gatesMOS,
whilethereisno such relationin our case. Thisisduetothe
fact that symbolic modeling depends on the CCR function
complexity rather than on its structure. Anyway, CPU time
issmall enough to enable its application even for large cir-
cuits.

Furthermore, our agorithm is shown to be completely
generic, thusableto deal with non-complementary logicde-
sign styles, multiple output subnetworks, and other irregu-
lar transistor structures, even if mixed with other devices.
In other words, the symbolic/functional approach can deal
with any type of switch level circuits, especially with those
that may possibly contain transistor configurationsthat can-
not be correctly treated with structural methods.

In the short term, we will include a hash table to store
models in order to reduce the number of different models
to be called. In the meantime, each subcircuit has its own
model.

Figure 3. A 8-transistor XOR gate.
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