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Abstract

This paper presents a method to automatically recog-
nize and model single and multi-output logic gates out of
a switch-level network, even for irregular transistor struc-
tures. Result subcircuit models are directly used in a sym-
bolic simulator for circuit analysis purposes. Other appli-
cations of derived netlists cover switch-level simulation ac-
celeration and test generation tool enhancement.

1. Introduction

Transistor networks must be used in those cases in which
a high level of flexibility is demanded to adapt circuit de-
signs to their ever-increasing stringent performance require-
ments. Unfortunately, switch-level CAD tools are neces-
sarily more complex than the more conventional gate-level
ones. However, the former tools gain efficiency if input
networks are maximally simplified. More specifically, if
groups of transistors/switches are packed into gates whose
associated model could be used instead.

The process of deriving clusters of transistors out of a
switch level network is also called circuit partitioning be-
cause it divides original networks into smaller parts that in-
crease the coarseness of the final network.

Such network transformation can significantly reduce the
time of switch-level simulations because network traversals
are greatly simplified in terms of number of elements to be
analyzed and, even, their model complexity. For instance,
the model of an ideal switch in a four-valued Boolean alge-
bra (described later in this paper) implies eight Boolean op-
erations, while the model for a 2-input AND is resolved in
just four.

Subcircuit models of derived partitions are usually stored
as input/output tables, where every possible output is related
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to a given set of input stimuli. The size of such tables de-
pends on the subcircuits’ size, on the type of node values (i.e.
continuousor discrete), and on the delay model (zero, unit or
variable) of the devices. For zero/unit delay logic/symbolic
simulators it is also possible to have several device tem-
plates to be used instead of the corresponding derived parti-
tion models. Those device templates are usually simple be-
cause derived models do not require detailed timing infor-
mation, nor they have a wide range of discrete values. How-
ever, there is a limited number of such device primitives.

For instance, the switch-level circuit analyzer ANAMOS
[3] associates any detected subcircuit to a combination of a
reduced set of elementary primitives. However, it makes all
the identification process much more complicated, and ef-
fectiveness is not ensured when several primitives have to
be used for a single subcircuit.

The switch-level symbolic simulator used in this work
has embedded the widely used inverters, buffers, n-input
AND, NAND, OR, NOR, XOR, and XNOR gates because
they also have a simple identification from the derived mod-
els [11]. As this approach is restricted to a set of gates, it
is complemented by a sort of table-based solution that uses
Boolean expressions instead of input-ouptut tables.

The ability to derive models of transistor groups can be
used in most test generation (TG) tools to operate with a
broad scope of logic gates. Thus diminishing the TG com-
plexity, and eliminating the false faults caused by the use of
sets of elementary gates for non-primitive gates [8].

The remainder of the paper is organized as follows. Next
section reviews some previous works on transistor network
partitioning before sketching our approach in the two fol-
lowing sections. The first one introduces circuit representa-
tion in symbolic processing environments because our cir-
cuit partitioning algorithm identifies and models transistor
group functions through a symbolic analysis method in-
spired in event-driven simulators. The second one is de-
voted to the actual circuit partitioning and the final algo-
rithm. Finally, we conclude by presenting a set of illustra-
tive results, as well as by outlining switch-level based tools.



2. Circuit Partitioning Overview

Although sometimes network descriptions are hierarchi-
cal and do use subcircuit references for logic gates and,
even, contain higher level groupings, there are applications
in which these descriptions are totally flat. For instance, in
a cell development process or for a reverse engineering use.

Transistors allow a bidirectional communication be-
tween source and drain terminals. The consequent unknown
information flow causes extra operations to the simulation
engine. Furthermore, the inherent complexity of such type
of networks due to the number of components to be treated
clearly imposes the need for automated methods to partition
those netlists into more manageable subnetworks which are
independentlyanalyzed for further use as single components
of a higher-level network.

Generally, the proposed methods in the related literature
consist of partitioning the network into channel-connected
transistors that usually match logic gate bounds.

Cerny and Gecsei [4] presented a simulator that used
Boolean models of connector-switch networks (CSN) [6] to
accelerate switch-level simulation. Models are stored in the
form of decision diagrams (DDs) for CSNs that encode a
ten-valued logic to deal with several levels of discrete sig-
nal strength. DDs are derived from a direct analysis of CG
paths.

The switch-level circuit simulator COSMOS [3] includes
program ANAMOS which partitions a network description
into a set of channel connected subnetworks from which
Boolean representations of their behaviors are built. The
simulation of result netlists is more straightforward, with
bidirectionality related problems mostly solved by the con-
structed models. Related Boolean representations are a cou-
ple of BDDs to encode a three-valued response. To avoid
unnecessary subnetwork analysis, Beatty and Bryant [1]
modified ANAMOS to work in an incremental fashion com-
puting a hash signature for every analyzed subcircuit.

Yokomizo et al. [16] present a subcircuit identification
method that is based on comparing subnetwork logic trees
with a set of logic trees in a library of functions that can
be used in pattern based (electrical) circuit simulators. Ap-
propriate net terminals with capacitive loads are added after
each subcircuit to prevent decreasing accuracy. However,
parasitic elements might be eliminated if their effect does
not exceed the allowed error tolerance.

Hübner and Vierhaus [8] also depicted a method for dig-
ital CMOS circuit partitioning. Their algorithm first deter-
mines longest paths from Vdd or Vss to an N or P tran-
sistor, respectively. Then, those connection points are re-
garded as starting points for stage determination, which are
always channel-connected regions (CCRs) of the network,
i.e., groups of transistors interconnected through drain or
source ends. Functional analysis is done by on and off path

traversal to find corresponding on and off path functions. If
resulting on and off sets are not complementary, a specific
check is performed to determine eventual high-impedance
states.

The same authors and Camposano [9] have recently pub-
lished a drastic improvement on the original method. In this
new version, the transistor type is not taken into account
when finding paths to Vdd or Vss and conflictive nodes are
marked for a specific flow determination algorithm that re-
quires simple inverters be given beforehand. Such modifica-
tions result in a more general and effective partitioningalgo-
rithm for static CMOS circuits.

Wehbeh and Saab [15] propose a method in which cir-
cuit is traversed while constructing on and off set functions
for nodes. As they take into account signal strength, such
traversals have to be done for every discrete strength level.
In the end, result models handle subnetwork functionality as
well as signal strength, and are used inside the CHAMP sim-
ulator [14].

A different approach is presented by Huang and Over-
hauser [7]. Circuit description is first converted to an
adapted adjacence matrix which is partitioned. Then each
matrix partition is encoded for its identification with previ-
ously defined elements.

Our approach is slightly different to the former ones:
CCRs are not restricted by any way (on-paths may include N
transistors, CCRs may have more than one output, dynamic
logic structures are permitted, et cetera), and their analysis is
performed by symbolic event-driven simulation. The result
output functions are used to build the corresponding model.

3. Symbolic Representation of Switch-Level
Circuits

The circuit structure is formally represented by a circuit
graph (CG). A CG(V;E) is a directed bipartite graph [5]
where V can be decomposed into two disjoint subsets (N
and D), and E � (N �D) [ (D � N ).

The set of adjacent input vertices of v 2 V , denoted by
adj�(v), contains every vertex for which vertex v is the last
endpoint in an edge. Conversely, the set of adjacent output
vertices of vi is adj+(v) = fw 2 V j 9(v; w) 2 Eg. Note
that the adjacency sets of a vertex belonging to subsetN are
subsets of D, and vice versa.
N is the set of (electrical or logical) nodes that can hold

a value. In symbolic analysis frameworks such as the one
of this work, values of nodes ni 2 N are represented by
Boolean variables yi. The primary inputs (PI) and the pri-
mary outputs (PO) are distinct subsets of N . We shall con-
sider present state (PS) nodes to be part of PI and next state
(NS) nodes included in PO.

The analysis of a circuit network is possible when each
node holds a nodal function which determines its value



under any possible combination of input and present state
nodes, i.e. any assignment to their corresponding variables.

Because binary values (0 and 1) are not enough to cor-
rectly model some of the common effects occurring at the
switch level, we extend the number of discrete values to
four: low (L), unknown (X), high (H) voltage level, and
high impedance state (Z). Unknown value X refers to
a situation in which there is a value conflict, while high
impedance Z is related to those cases in which no device is
driving a known value (L or H) into the affected nodes.

Consequently, nodal functions, fi, are Boolean
functions of a four-valued Boolean algebra (B4 =
fZ;L;H;Xg;+; �;Z;X) that are uniquely characterized
by two binary Boolean functions [13], i.e. any fi is rep-
resented by a pair of switching functions (f1i ; f

0
i ). The

on-set function (f1i ) indicates the cases for which node ni
is driven to high voltage level, and the off-set function (f0i )
determines the conditions, or variable combinations, for
which the node is electrically connected to ground.

In particular, input nodes ni have functions of the form

fi(x) = xk = (x1k; x
0
k) (1)

where x is the vector of variables inB4, and xk is a variable
characterized by two binary variables.
D is the set of devices di 2 D that are associated Boolean

functions �i(z) : B
jadj�(di)j
4 7! B

jadj+(di)j
4 , where z is

the vector of device input variables from sup(�i) = fyj j
nj 2 adj�(di)g, i.e. from variables related to input nodes
of di. (These variables are substituted by nodal functions in
terms of input node variables when symbolically simulating
the network.)

Nodal functions are derived from an event-driven simula-
tion algorithm [12] which starts with all nodes set to Z and
continues by creating events to set PI nodes to their corre-
sponding variables. The rest of events (i.e. nodes that are
added some Boolean function to the one they hold) is caused
by device activity.

Transistors process symbolic information as it flows
through the network. Their behavior is reduced to a simple
switch, i.e. it can be off completely isolating both end nodes
or on, letting data flow in both directions. Hence, transistors
are considered bi-directional devices that modify both drain
(fd) and source (fs) nodal functions. The complete set of
equations � = (�d; �s) for a PMOS switch is expressed as
follows.

�d(fd; fg ; fs) = fd(z) + f0g (z)� fs(z)
�s(fd; fg; fs) = fs(z) + f0g (z)� fd(z)

(2)

where productsf0g �fs and f0g�fd are products of functions
by a vector of functions (those function pairs that character-
ize fs and fd), and sums between function vectors are made
component by component, i.e. f + g = (f1 + g1; f0+ g0).

Note that only two device functions (�d and �s) are required
because the transistor’s gate nodal function (fg) is not mod-
ified by the transistor activity.

A similar system describes the behavior of a NMOS
switch, with the off-set function of the gate substituted in (2)
by the on-set function.

The model of a network consists of all nodal functions of
primary output and next state nodes once symbolic simula-
tion has finished (i.e., there are no new events).

However, this step must be done after obtaining a transis-
tor subnetwork. This partitioning process will be described
in the next section.

4. Partitioning Algorithm

Circuits are partitioned into CCRs. Elements other than
transistors are not included in such partitions, but transistors
are included regardless of their position (in on or off-paths).
Each CCR is analyzed by taking profit of the symbolic sim-
ulation engine rather than by specific traversal algorithms as
applied in the former methods. This solution is not so effec-
tive but completely generic.

As in [8], determination of CCRs are done by detecting
a set of possible stage outputs (SO) that are used as starting
points to obtain complete CCRs by “channel traversing” the
circuit. Once a CCR is detected, their input/output nodes
are determined to be simulable. Then, their model is built
after the symbolic simulation results, and their inner nodes
and all their devices removed. Also, CCR outputs are with-
drawn from SO. Figure 1 shows such process in an algorith-
mic form.

The process starts by determining SO before trying to
detect any CCR. SO is initially assigned to PO, and then
increased with nodes that do not have any voltage source
attached to them and are gates of transistors or connected
as inputs to other devices. For the example in Fig. 2(a),
SO=fy; z; v; ug. This set is diminished at each iteration of
the main loop until it is empty.

Detection of a particular CCR is done by function
DFS(CG, ns). DFS(CG, ns) performs a depth-first search
over transistor channels, returning a CG that contains all
nodes and transistors effectively visited, i.e. not includ-
ing those only tested for search continuation. For instance,
DFS(CG,y) on the circuit in Fig. 2(a) returns the CG with
the transistors in the shadowed part marked, as well as nodes
fv; wg.

Initial, global CG should not contain loops. Instead, they
should be broken into two nodes for the present state (PS)
and next state (NS) sets, which are implicitly included in the
PI and PO sets, respectively. However, if any loop is not bro-
ken before applying the partitioning algorithm, result netlist
preserves this loop outside CCRs (see the result of partition-
ing the output latches of the DCVSL gate in Fig. 2), unless



CG = partition( CG, PI, PO )
/* Detect all possible stage outputs, SO. */
SO PO
for each node ni 2 CG do

if (6 9dj 2 adj�(ni))[type(dj) = VSOURCE] then
for each device dj 2 adj+(ni) do

if (type(dj) = OTHER)_
_ (type(dj) = fP,NgMOS) ^ (ni = gate(dj)) then

SO SO [ fnig
/* Replace CCRs by higher-level devices. */
while SO 6= ; do

get first node ns in SO, i.e. SO SO n fnsg
CCR DFS( CG, ns )
POCCR; PICCR  ;

/* Derive CCR inputs. */
for each ni 2 CCR do

if (ni 2 PI) _ (CCR\ adj�(ni) 6= ;) then
PICCR  PICCR [ fnig

CCR CCR[ f deviceCreate(VSOURCE, ni) g
endif

/* Determine CCR outputs. */
for each ni 2 CCR do

if ni 2 SO then
POCCR  POCCR [ fnig

SO SO n fnig
endif

/* Create CCR model. */
simulate( CCR )
�CCR  modelCreate( CCR )
dCCR  deviceCreate( SUBCKT, CCR )
CG (CG n CCR) [ PICCR [ POCCR [ fdCCRg

endwhile
end

Figure 1. Partitioning algorithm.

it is a self-loop for some CCR, i.e. the nodes in the loop are
internal to that CCR.

The construction of a CCR model is done by first creat-
ing virtual inputs to it, and then symbolically simulating it
so its output nodes contain its functional model, as shown in
Fig. 2(b). CCR inputs are nodes attached to devices that do
not belong to the CCR, but that are able to supply some func-
tions to them. In particular, PI nodes are attached to voltage
sources that cannot belong to any CCR (they are not tran-
sistors) and supply (are in the input adjacency) a constant
function to the nodes.

CCR outputs can be derived in a similar form, so to know
where will be placed the corresponding model. An output
is a CCR node, ni that constitutes an input to a device, dj,
not present in the same CCR, i.e. dj 2 adj+(ni). Also, all
observable nodes (PO nodes) are considered to be outputs of

Figure 2. A DCVSL gate partitioning example.

a CCR. Therefore, all these nodes are nodes present in SO.
Consequently, CCR outputs are nodes in the intersection of
CCR and SO.

The simulation results are used to build the associated
model via modelCreate(CCR) function, and a new device is
generated to replace all transistors in the substituted CCR.
Models contain either a sum-of-product (SOP) expression or
a binary decision diagram (BDD) for each CCR output and
some additional data. Replacing devices have a reference to
the correspondingmodel and their actual “pinout” within the
network.

The cost of each simulation depends on the number of in-
puts of the simulated CCR and on the Boolean functioncom-
plexity, and is usually affordable for most common circuits.



The result CG is made of as many devices as detected
CCRs plus extra devices, i.e. other than transistors. Differ-
ently from other approaches, a CCR may contain more than
just one output. However, primary inputs and outputs of any
CCR are disjoint sets, i.e. PICCR \ POCCR = ;.

Note that the number of logic gates in a circuit might not
be equal to the number of CCRs because there are logic gates
made out of several stages and pass-transistors that may con-
nect several logic gates into one CCR. For instance, an OR
gate will be divided into a NOR gate and an inverter at its
output. Conversely, pass transistor logic will cause CMOS
buffers and inverters be considered in the same CCR than
the pass transistors they are attached to.

5. Results and Conclusion

In this paper we have presented a switch-level net-
work partitioning algorithm based on grouping channel-
connected transistors without any other limitation. Correct
identification of result partitions and functional model gen-
eration is a unique procedure that is carried out throughsym-
bolic simulation to enable generic partitions be correctly
modeled. Result models are correct even for dynamic logic
gates, multiple output subcircuits, circuits containing de-
vices other than transistors and any type of irregular transis-
tor structures, which surpasses the capabilities of the previ-
ous works in literature.

Incorrect partitions are also modeled accordingly. There-
fore, should the global network contain a wrong transistor
subnetwork, the derived network preserves the same faulty
functional behavior [12].

Derived models can be used in a quite straightforward
form within logic simulators and automatic test patters gen-
erators. In particular, we have embedded this partitioning
algorithm into a symbolic analysis tool for switch-level cir-
cuits [12] that also relies on symbolic simulation.

Table 1 shows the execution results for the ISCAS85 [2]
circuit set. Original circuits are described at the gate level
and they have been flattened to the transistor level and re-
organized into CCRs later with the help of the partitioning
algorithm.

Differences between the number of partitions in the last
column and the number of original gates shown in the sec-
ond one are due to the two-stage cells (AND and OR gates),
and to the XOR gates used in circuits c432 and c499. Such
XOR gates (see Fig. 3) have been designed with pass-
transistor logic to illustrate how this type of logic may col-
lapse two different logic stages: in this case, the inverter in
the middle of the XOR is included in the gate’s CCR. Also,
the logic gate that is attached to input a is included into the
XOR CCR. As a side-effect, the result CCR may have two
outputs if this last gate output is used as input for other gates.
Consequently, the validityof our method for multiple output

Table 1. Switch-level Partitioning

size CPU secs.
circuit gates MOS (4) (5) (6) parts

c432 160 752 – 0.2 0.1 164
c499 202 1384 – 0.5 0.3 338
c880 383 1802 0.7 0.5 0.2 529
c1355 546 2308 – – 0.2 604
c1908 880 3446 1.4 1.0 0.7 1105
c2670 1193 5364 – – 2.3 1875
c3540 1669 7504 3.2 2.1 2.1 2460
c5315 2307 11262 – 3.2 6.2 3552
c6288 2416 10112 – 3.0 3.1 2672
c7552 3512 15396 6.4 4.6 10.2 5067

CCRs is proved.
The fourth column of table 1, labeled with number four

between parentheses, gives the CPU time on a SUN 3/60
for the signal flow analysis by Lee et al. [10]. The fifth
column shows the results of the partitioning algorithm by
Hübner et al. [9] on a SUN IPX (about 7.4 times faster
than a SUN 3/60, according to Dhrystone 1 benchmarks).
Next column gives the CPU time of our method on a SUN
Sparc 2. Though not directly comparable, results of the two
first methods are proportional to the number of gates/MOS,
while there is no such relation in our case. This is due to the
fact that symbolic modeling depends on the CCR function
complexity rather than on its structure. Anyway, CPU time
is small enough to enable its application even for large cir-
cuits.

Furthermore, our algorithm is shown to be completely
generic, thus able to deal with non-complementary logic de-
sign styles, multiple output subnetworks, and other irregu-
lar transistor structures, even if mixed with other devices.
In other words, the symbolic/functional approach can deal
with any type of switch level circuits, especially with those
that may possibly contain transistor configurations that can-
not be correctly treated with structural methods.

In the short term, we will include a hash table to store
models in order to reduce the number of different models
to be called. In the meantime, each subcircuit has its own
model.

Figure 3. A 8-transistor XOR gate.
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