
Data Type Analysis for Hardware Synthesis from Object-Oriented Models

Martin Radetzki, Ansgar Stammermann, Wolfram Putzke-Röming, Wolfgang Nebel
OFFIS Research Center, Escherweg 2, 26121 Oldenburg, Germany

e-mail: radetzki@offis.uni-oldenburg.de

Abstract

Object-oriented modeling of hardware promises to help deal with
design complexity through higher abstraction and better support
for reuse. Whereas simulation of such models is rather easy to
achieve, synthesis turns out to require the application of quite so-
phisticated techniques. In this paper, we devise a solution of the
foremost problem, optimized synthesis of object-oriented data
types. The outlined algorithms have been implemented for an ob-
ject-oriented dialect of VHDL and may also contribute, possibly in
a co-design context, to synthesis from languages such as C++ or
Java. We explain our synthesis methods and show their impact
with the example of a microprocessor model.

1 Introduction

The need to keep productivity up with the growing complex-
ity of hardware units under design has been and continues to be
among the most pressing design methodology issues. It has been
effectively addressed by design at ever-higher abstraction, from
gate via register-transfer to behavioral level, supported by the ap-
plication of synthesis tools to hardware description languages such
as VHDL [9]. In this progress, the use of object-oriented tech-
niques, proven in software engineering [5], in hardware design
could be the next step not only to increase the abstraction, but also
the potential for reuse of hardware models [1]. Moreover, it could
also contribute to a unified representation supporting the co-de-
sign of hardware and software [10].

Since the early 90s, a variety of proposals have been made
to extend VHDL for object-orientation, among them [3, 11, 12]
concentrating on object-oriented data types and [13] on VHDL de-
sign entities. Also a language integrating some object-oriented
concepts with a Verilog-like syntax has been reported on [6]. Oth-
er authors used object-oriented software programming languages
such as C++ to model hardware ([10], chapter 9). The focus, so far,
has largely been on modeling for simulation of system functional-
ity and performance evaluation.

Taking such initial model as a specification, it is an obvious
approach to manually refine it to the degree of detail required for
hardware synthesis. Currently, this means designers would have to
remove all object-oriented constructs, which is not only a tedious
and error-prone task, but also requires a costly transition to a total-
ly different conceptual model. Therefore, capability of automatic
synthesis directly from object-oriented models is highly desirable.

Another motivation to deal with synthesis of object-oriented
constructs is the increasing use of software languages, e.g. dialects
of C such as the recently commercialized Handel-C [4], to allow a
more software-like specification of hardware in the fields of re-
configurable computing and hardware-software-systems. An ex-
tension of this approach to utilize the benefits of, say, C++ or Java
would be a natural step. For instance, use of Java for hardware-
software-specification has recently been reported on at past IC-

CAD [7]. Also, there is research on language-independent object-
oriented co-specification [8].

Results of our research on optimized synthesis from object-
oriented hardware models will be presented in the remainder of
this paper. The next section is devoted to a detailed description of
the major problems to be addressed and will introduce an example
to be used for further motivations and explanations. Analysis
methods explained in the third section will be the basis for opti-
mized resource allocation outlined in section four. The implemen-
tation of algorithms for an object-oriented dialect of VHDL,
Objective VHDL [11], and results obtained therefrom are de-
scribed in the fifth and sixth section, respectively, and lead us to
some conclusions regarding the state of our research and necessity
of further work.

2 Problem formulation

Basic to object-orientation is the concept of classes compris-
ing attributes (data fields) and operations (methods). An object is
an instance of a class. Classes can be derived from each other. A
derived class inherits attributes and operations from its parent,
which allows to factor out common properties of the derived class-
es for a single implementation in the parent. Moreover, the derived
class can have additional properties or redeclare an inherited oper-
ation.

Fig. 1: Inheritance hierarchy of µP data

Consider, for example, data types occurring in a micropro-
cessor (Fig. 1). Basically, we have instructions and operands. An
instruction may have zero, one, or two operands as attributes. An
operand may be an address or a value. An address may address a
register (RegAddr) or a memory location (MemAddr). Also, there
are different types of values, e.g. Byte and Word.

Polymorphism comes into play when related classes have to
be handled in a uniform way. For instance, a data field ’operand’
of an instruction may either be an address or a direct value. Hence,
it must be able to hold not only class Operand, but also all classes
derived from Operand. Likewise, we want to store both, instruc-
tions and operands, in a memory. To this end, we derive both from
a parent class, Object, and declare the memory so as to hold in-
stances of Object and all derived classes (cf. Fig. 2). An instruction

Object

Instruction

Operand
Value

Address

RegAddr

MemAddr

Byte

Word

1

0-2

. . .

parent derived class

register is another example; it should be able to contain any con-
crete instruction such as LOAD or ADD derived from class In-
struction.

In software, polymorphism is easily implemented with ref-
erences which all have the same size. However, considering the
instruction register in hardware, we certainly do not want it to con-
tain a reference to some instruction stored elsewhere. Instead, the
register should itself be able to contain any physical instruction.
As well, a register in the register file should contain an operand,
and an address register should contain an address, not a respective
reference. This, however, imposes the task of determining the
storage space required for any of these polymorphic objects when
synthesizing hardware from an object-oriented model.

Conceptually, a memory declared polymorphic with class
type Object must be able to also store any class derived from Ob-
ject. But some of these classes might not occur in the system be-
cause no objects are created from them (e.g. Object, which is only
used to declare a common memory for instructions and operands)
or only be used in another system which (re-)uses the same inher-
itance hierarchy. And some classes might, according to data flow
(see Fig. 2), occur only in some part of the system. For instance,
in the memory, and in the register file as well, there will never be
a register address since this class only occurs as part of an instruc-
tion. Or, in a RISC processor, the operand within an instruction
may only be of class RegAddr, not MemAddr. The aim of this
work is to utilize the resulting storage space optimization poten-
tial.

Fig. 2: Data flow in µP model

We therefore define static data type analysis as the task of
determining the class types that may have to be held in a polymor-
phic object through inspection of data flow and program structure
of an object-oriented hardware model.

3 Data type analysis

In case of objects, e.g. VHDL variables, accessed only from
a single sequential part of a hardware model, data type analysis
can be performed using classic data flow analysis techniques.
Concurrent access to an object, as possible with VHDL signals,
does however require the application of other, more pessimistic,
algorithms due to statically unpredictable interleaving of concur-
rent reads and writes. Both aspects, as well as the combination of
the developed analysis methods, will be addressed in the follow-
ing. Basic to the presentation are the following terms:

Definition 1:

Be Obj = {obji | i = 1, ...,n} the set of polymorphic objects of a
hardware model under consideration. BeType the set of all class
types occurring in the inheritance hierarchies used.

• The type vector is the vector whosei-th elementTi
is the set of types to be contained byobji.

• Theconstraint vector is the vector whosei-th ele-
ment is the set of types to be maximally contained by , i.e.
the class ofobji and all its derived classes.

Example 1:Sets and vectors corresponding to Fig. 1 and Fig. 2

• Obj = {MEM, IR, AR, RF}

• Type = { Object, Instruction, Operand, Address, RegAddr,
MemAddr, Value, Byte, Word }

• CRF = {Operand, Address, RegAddr, MemAddr, Value, Byte,
Word} (CRF: element ofC corresponding to RF)

• TRF = { MemAddr, Byte, Word } as analysis result (see sect. 6)

3.1 Sequential objects
If Obj are sequential objects, the adaptation of data flow

analysis (DFA) techniques [2] to our problem allows to determine
the sets of typesTi

out, i = 1, ...,n, which are potentially contained
by objectsobji after execution of a statementS when the analogue
setsTi

in before the statement are known. This leads to the follow-
ing syntax-directed formulation of data flow equations for the four
basic sequential statements shown in Fig. 3:

Fig. 3: DFA of sequential statements

• After an assignment S fromobji to objj, any type contained by
the source that meets the type constraint of the target may be
contained by the target. Non-target objects are not affected (Eq.
1). Note: if the right hand of an assignment is an expression, it
will be handled like a function call, cf. 5.3.

(1) where

• Any branch,S1 or S2, of an alternative (if, case) statementS
may be executed; we don’t know statically which. Thus, the ef-
fects of both branches are unified (Eq. 2). Note: if there are more
than two branches,S2 is chosen another alternative.

(2)

• We deal with a sequenceS of statementsS1 followed byS2 by
using the output of the first as the input of the second statement,
see Eq. 3. For a longer sequence we chooseS2 another se-
quence.

(3)

• Finally, a loopS as shown in Fig. 3 shall be considered. The type
vector generated by the statements inside the loop may

Memory (MEM)

Register File (RF)

Address Register (AR)

Instruction Register (IR)
Instruction Operand

Address

Object
source sink

T Type
n⊆

C Type
n⊆

ob ji

S1

S2

S1 S2

S1

AssignmentS Alternative S

SequenceS
Loop S

Tin

Tout

Tin

Tin

Tin

Tout

ToutTout

ob jj ob ji←

T
out

S T
in()= Tk

out Tk
in

if k j≠

Ti
in

Cj∩ if k j=






=

T
out

S T
in() S1 T

in() S2 T
in()∪= =

T
out

S T
in() S2 S1 T

in()()= =

S1 ∅()

be propagated back to its start when the loop is iterated.
is therefore used in addition toTin as input to the inner statement
S1. For a while loop whoseS1 need not be executed at all, we
would cover the case of bypassing the loop by adding an unmod-
ified Tin:

(4)

We now demonstrate sequential DFA with a simple example
(Ex.2 corresponding to Fig. 1, 2). Consider the instruction register
IR, whose first operand be a RegAddr loaded into the address reg-
ister AR (line 1). After that the set of types for AR is { RegAddr
}. This is used to load the value of the addressed register from the
register file RF into AR (line 2), after which AR may contain types
{ MemAddr }. Finally, this value is assigned to an address bus in
line 3 so as to address memory MEM. Globally, AR must of
course be able to contain both types. The point, however, is the
knowledge that only the RegAddr type is used to address RF, and
only MemAddr is put on the address bus, but not the respective
other type.

Example 2:Implementation of register-indirect addressing
(1) AR IR.getOp(1); – – TAR = { RegAddr }
(2) AR RF[AR]; – – TAR = { MemAddr }
(3) AddrBus AR;

3.2 Concurrent objects
In case of objectsObj available to concurrent parts of a

hardware description, e.g. VHDL signals which can be read and
written from several processes, we cannot make statements about
the sequence of accesses in general. Thus, DFA is not applicable,
and we have to make the more pessimistic worst-case assumption
that any type a value of is ever assigned to such concurrent object
may be passed on when the object is read from. For instance, if the
statements from Ex. 2 were concurrent, AR could contain a value
of type RegAddr or MemAddr when assigned to AddrBus.

We handle assignments between concurrent
objects by adding the set of types contained by the source,obji, to
the set of types that the target,objj, must be able to contain:
(5)

Comparing Eq. 5 to the casek = i of Eq. 1,Ti is unified with, not
replaced by . Also, we do not have the notion of type sets
Tin before andTout after a statement because, as mentioned before,
we do not consider a precedence relationship between concurrent
assignments in static analysis. Therefore, Eq. 5 is obviously recur-
sive. Additional indirect recursion may be introduced through oth-
er assignments; e.g. would cause a mutual
dependency betweenTi andTj. We will apply fixed-point iteration
(FPI) to yet obtain a solution.

To formalize FPI, we define the assignment matrixA with
elements as follows:

(6)

This allows us to write Eq. 5 for alli andj as a single matrix mul-
tiplication with addition and multiplication :
(7) wheret is an index for iteration.
We start iteration with types defined by the known types of
all non-polymorphic objects assigned to the polymorphicobji.
Each step propagates types according to direct assignments. It
takes at mostn steps to propagate types transitively between then

objects. Thus, iteration will reach a steady state
after no more thant = n iterations.

Since matrix multiplication complexity is , FPI will
take time in worst case. It is, however, a realistic assump-
tion that each object is the target of only a few assignments. Then
a lot of entries inA will be , which can be considered by opti-
mized data structures (see 5.1) and algorithms (see 5.4) to keep the
problem tractable for largen. Moreover, we will use design hier-
archy to decompose the problem into smaller ones (see 5.3).

3.3 Linking the algorithms
Having considered sequential and concurrent objects inde-

pendently of each other up to here, we will now devise how to deal
with assignments from a sequential object, , to a concurrent
object, , and vice versa. The problem is that in these cases
DFA depends on the type sets generated by FPI and vice versa,
which would require a costly iteration of these algorithms. Key to
the solution are references between sets of types allowed by a
modified notion of type vectors basic to the rest of the paper:

Definition 2:

Be Obj, Type as defined in Def. 1. A type vector
 is a vector whosei-th elementTi is

the set of

• types to be contained byobji, and

• pairs of references to other objects’ contained types and type
constraints to be applied when including these inTi.

Now, the assignment will yield the type set
. The meaning is that all types inTi of Obji

which meet constraintCj are to be included intoTj whenTi comes
to be known: . This is the same operation as
performed by FPI (see Eq. 5) and will therefore be delegated to the
FPI algorithm.

Another assignment, , may pass on the refer-
ence contained inTj to Tk. We have to consider thatobjk does not
receive types fromobji through a direct assignment, but indirectly
via objj. Thus, constraintCk of the targetand constraintCj of the
intermediate object are applied: .

We now consider a concurrent object as a target of an as-
signment from any source object in the same way as
devised for sequential targets in the two previous paragraphs. If
the source is concurrent, the pair will represent element
Aij of the assignment matrix (Eq. 6) in subsequent FPI. Since en-
tries with wouldn’t have any effect, they can be discard-
ed. If the source is sequential, the link toobji will result in the
inclusion of DFA results forobji into FPI. Also the propagation of
links according to the previous paragraph will be performed with
the side effect of faster FPI convergence due to the use of direct
links to represent indirect data flow.

Fig. 4: Type set links between polymorphic objects

Fig. 4 shows how the type sets of objects will be linked to
represent data flow of Fig. 2 and Ex. 2. Note that links are in the
inverse direction of data flow. Solid lines represent direct assign-

S1 ∅()

T
out

S T
in() S1 T

in
S1 ∅()∪() T∪ in

, while loop= =

←
←

←

ob jj ob ji←

T j T j Ti Cj∩()∪=

Ti Cj∩

ob ji ob jj←

Aij Type⊆

Aij

Cj if Obj j Obji or i← j=

∅ else



=

∪ ∩
T t 1+() T t() A⋅=

Ti 0()

T t 1+() T t()=

O n
2()

O n
3()

∅

ob ji
s

ob jj
c

T Type Ob j Type×()∪()n⊆

ob jj
s

ob ji
c←

T j ob ji C j,(){ }=

T j T j Ti Cj∩()∪=

ob jk
s

ob jj
c←

Tk ob ji C j Ck∩,(){ }=

ob jj
c

ob ji←

ob ji C j,()

Cj ∅=

MEM

IR
RF

ARgetOp

direct
inverse

indirect
inverse

flow

flow

ments. The dotted line stands for a propagated link originating
from AR receiving data from MEM via RF. There is, on the other
hand, no such link from IR to RF because their type constraints are
disjoint (). Finally, the box hides functiongetOp
called in Ex. 2. Handling of such hierarchy will be explained in
section 5.3.

4 Resource allocation

Given objectsObj and type vectorT, resource allocation
means to determine and allocate for each single polymorphic ob-
ject the minimum storage space required to contain a
value of any type inTi. The number of bits forobji is computed by
functionBitsize as follows:

• obji must be capable of containing the largest type and a tag rep-
resenting the current type of the object:

(8)

• .The size of the tag depends on its encoding. For one-hot and ful-
ly encoded tags see Eq. 9. To save space, one could alternatively
apply variable-length (Huffman) encoding, using less bits for
the tag of typest with largeBitsize(t).

(9)

• The size of a class type is the sum over the size of its attributes
a. If the attribute is of a class type or polymorphic,Bitsize(a)
will be computed recursively. Size of all primitive types is
known.

(10)

During synthesis, we will allocate a bitvector ofBitsize(obji) bits
to hold the state of the polymorphic objectobji.

5 Implementation for Objective VHDL

In the previous sections, we have formulated the developed
concepts for data type analysis universally so as to be applicable
to object-oriented hardware models in general. We will now verify
their practical applicability with an implementation for Objective
VHDL, an extension of VHDL for, among other concepts, object-
oriented class types, class inheritance, and polymorphism. The
implementation will be part of a preprocessing system for the
translation of Objective VHDL into plain VHDL, allowing to use
existing VHDL tools for simulation and synthesis (Fig. 5). The
system consists of the commercial LEDA front-end extended to
parse and analyze Objective VHDL semantically, and the OFFIS
back-end for optimization and Standard VHDL code generation.

Fig. 5: Objective VHDL preprocessor system

In the following, we will report on the implementation of
data type analysis for Objective VHDL. Data flow analysis as pre-
sented in 3.1 will be implemented with an optimized data structure
and extended to cope with special VHDL features, namely loops
with exit andnext statements and hierarchical modeling. Fixed
point iteration will be formulated as an algorithm on the devised
data structure. Resource allocation in the sense of section 4 is a
relatively straight-forward task within translation (cf. Fig. 5) and
will not be considered here.

5.1 Basic data flow analysis
We represent the type vectorT as defined in Def. 2 by adec-

laration table containing one entry for each polymorphic Objec-
tive VHDL variable or signal (objectobji). Currently, the table is
simply a linked list; it may however be implemented as a hash ta-
ble to allow faster search for a particular object. The set of types
and linksTi corresponding toobji is a linked list of elements as
shown in Fig. 6. Elements contain either a reference to a class type
or a link to another object in the declaration table together with the
applicable type constraint. Such constraint is always a set includ-
ing a parent class and its derived classes and can therefore be rep-
resented by a simple reference to the parent class.

Fig. 6: Data structure for type vectorT

To implement the DFA equations of 3.1, the required oper-
ations, unification and intersection, are implemented on the de-
vised data structure. DFA is carried out with a syntax-directed
algorithm: For each kind of statement (assignment, sequence, al-
ternative, loop) there is a procedure computing on the declaration
table the corresponding transformation of type vectorT. These
procedures are invoked according to the sequence of statements in
the Objective VHDL model under analysis.

5.2 Handling of loops
The problem with VHDL loops is thatexit andnext state-

ments may be used to leave them and to jump back to their begin-
ning, respectively. In nested loops, these statements can even
jump across loop boundaries (see Ex. 3). We had to extend DFA
techniques so as to cope with these features.

Example 3:exit andnext statements in (Objective) VHDL loops

The effect of anext statement is that not only the type vector
 generated by the complete interior of the loop (cf. Eq. 4)

may be propagated to the beginning of the loop, but also the type
vector generated up to the point before thenext state-

TIR TRF∩ ∅=

ob ji Obj∈

Bitsize ob ji() max Bitsize t() | t Ti∈{ } Tagsize Ti()+=

Tagsize Ti()
card Ti() if one hot encoded–

ld card Ti()() if fully encoded



=

Bitsize t() Bitsize a()
a Attributes t()∈

∑=

Objective VHDL

LEDA
analyzer

Library inter-
mediate format

Data type
analysis

Translation

Standard VHDL

VHDL
simulation

front-end back-end VHDL world

VHDL
synthesis

other
applications

. .
 .

. .
 .

Type

Object

. . .Variable

Signal

Constraint
declaration table set of types and links

outer_loop: while loop_condition loop
inner_loop: for loop_range loop

:
next outer_loop when next_condition;
exit outer_loop when exit_condition;

:
end loop;

end loop ;

S1 ∅()

S1next ∅()

ment. Anexit statement may cause the type vector valid before the
exit to be propagated to the end of the loop. Considering multiple
next statements,next(1) ...next(m), and multipleexit statements,
exit(1) ...exit(n), we therefore re-write Eq. 4 as:

(11) ,

wherenext(0) andexit(0) denote normal loop iteration and conclu-
sion, respectively, at the end of the loop. Eq. 11 can be computed
efficiently with two runs throughS1.

A similar technique is used to handlereturn statements in
procedures and functions. We also remark thatprocess state-
ments, which are restarted after their last statement, are handled
like loops.

5.3 Handling of hierarchy
VHDL offers two sorts of hierarchical modeling to the de-

signer1. First, design hierarchy may be described through instan-
tiation of design entities (entity/architecture pairs). Second,
functional decomposition into subprograms calling other subpro-
grams is provided. With each call to a subprogram or instantiation
of a design entity, different actuals may be passed to the formal
parameters or ports, respectively. We take this fact into account
through aninstance tree(Fig. 7) corresponding to instantiation
and call hierarchies. Each node (instance) has its own declaration
table so that different instances can be analyzed independently.

The connection between an instanceI and the higher level in
hierarchy,H, is through interface objects (i.e., formal subprogram
parameters and entity ports). If such interface object (see the bub-
bles ofgetOp in Fig. 4) is an input parameter or port, it gets a link
to the assigned actual in the declaration table. If the interface ob-
ject is for output, the link is in the other direction, and in case of
inout objects there is one link in either direction. Thereby, connec-
tion between the instances is established. The flow of data types
through the interface objects will be computed by FPI (see 5.4).

The case of recursive subprogram calls is irrelevant as not
synthesizable with current tools. It could, however, be dealt with
allowing loops in an instance graph and handling all the recursive
invocations the same. Global signals declared in packages are tak-
en into account through a list of used packages at the root of the
instance tree.

Fig. 7: Instance tree

5.4 Fixed point iteration
The implemented fixed point iteration algorithm listed in

Fig. 8 computes the basic FPI equation (Eq. 5) and consideres hi-

1. Objective VHDL adds a third kind, hierarchical modeling of
data with associated functionality through an inheritance hierar-
chy.

erarchy (cf. 5.3). It combines local iteration of a declaration table
T and recursive descent into the instance tree.

The body of procedureFPI is repeated until all sets of types
have converged (line 2). For each objectobjj in T (line3) and all
its links to objectsobji from which data are received (line 4), types
are propagated fromobji to objj according to Eq. 5 (line 8). Be-
fore, if obji is located at a deeper level of hierarchy (line 5), the
declaration table of the instance containingobji is iterated (line 6)
by a recursive call toFPI. In this case, it is first checked by call to
a function,SteadyState, in line 2 whether the set of types for an in-
put of that instance has changed. If not,FPI can return immediate-
ly; otherwise iteration must be carried out.

(1) procedure FPI(T) is
(2) while not SteadyState(T) loop
(3) for j in 1 to n loop
(4) for each (obj i , Cj) in obj j loop
(5) if DeeperHierarchy(obj i)
(6) FPI(DeclTable(obj i));
(7) end if ;
(8) Tj := Tj (Ti Cj);
(9) end loop ;
(10) end loop ;
(11) end loop ;
(12) end ;

Fig. 8: Fixed-point iteration algorithm

6 Results

The implemented analysis tool has been applied to a model
of the microprocessor data flow (Fig. 2). Results are listed in
Table 1. An ’X’ means that a polymorphic object (rows) must be
able to contain a value of a class type (column). A ’–’ stands for a
class type which need not be considered thanks to data type anal-
ysis results. The blank fields result from types which are incom-
patible with the type constraint of the object. Finally, bit-size
values shown in the right-hand columns have been calculated
from the analysis results according to section 4. Values corre-
spond to automatic optimization using methods presented in this
paper (auto), manual implementation of the 32-bit processor with
bitvector data types (man), and synthesis without any optimization
(nopt).

The main optimization potential in this case stems from in-
structions having only short operands (IR.OP) of class types Byte
and RegAddr, but no full 32-bit words or memory addresses. This
has been correctly recognized by analysis, allowing the reduction
of IR and MEM width to 32 and 34 bits, respectively, instead of
an unoptimized 80 bits. However, each memory element still has
2 bits more than a manually implemented 32-bit architecture. The
reason are the tags used to distinguish values of the four class

T
out

S T
in() S

i 0=

n

∪ 1exit i() T
in

S1next i() ∅()
i 0=

m

∪ 
 = =

package(s)

top-level entity

top-level architecture

instantiated
entity #1

instantiated
entity #i...

... ...

subprogram

. . .

. . .called subprograms

......
HI

H
I

Byte Word Reg
Add.

Mem
Add.

Instr. auto
[bit]

man
[bit]

nopt
[bit]

MEM X X — X X 34 32 80

IR X 32 32 80

IR.OP X — X — 9 8 32

RF X X — X 34 32 34

AR X X 33 32 33

Table 1: Optimization results

∪ ∩

types present in memory, requiring 2 bits when fully encoded (cf.
section 4). While these tags are a nice feature to detect run-time
errors during simulation, e.g. loading of an operand into the in-
struction register, a manually designed hardware implementation
of the microprocessor would in some cases make no difference be-
tween the encoded types. For instance, an operand would be re-in-
terpreted as instruction when loaded into IR. On the other hand,
the different instruction types definitely must be told apart by a tag
(i.e. opcode). We are currently implementing techniques to auto-
matically determine from control and data flow cases when a tag
can be omitted so as to automatically accomplish the bit-widths
that would result from manual design.

To show the practical applicability of data type analysis, we
have measured run time of our implementation. Table 2 lists CPU
time required on a Sparc 20 workstation for data flow analysis and
fixed point iteration of ten benchmarks. The table also shows for
each benchmark its numbers of component instances, polymor-
phic objects (50% of which are signals and 50% variables), as-
signment operations between these objects, and interface objects
through which instances communicate. Benchmarks are worst
case to analysis run time in the sense that each of the 50 used class
types is propagated through the complete hierarchy with the result
that each polymorphic object has to hold the maximum set of
types (i.e. all types allowed by its type constraint).

With each row, the number of polymorphic objects and their
assignments,n, approximately doubles. While DFA run time dou-
bles as well, the more significant FPI run time tends to triple.
Thus, we estimate an experimentally obtained complexity O(1.5n
) when design hierarchy and limited communication through in-
terface objects can be exploited, as opposed to the analytical
worst-case O(n3) for non-hierarchical models. Since a model
with 10230 instances of complex data types would result in a large
hardware implementation (130k gates only for registers when as-
suming 32-bit objects), the 12 minutes required for its optimiza-
tion are justified. If a model should be too large to be handled fast
enough by our implementation, we could still split it into separate-
ly analyzed parts.

7 Conclusion

As part of our work on synthesis from object-oriented hard-
ware models, we have presented data type analysis techniques tar-
geting at an optimized synthesis of class types and polymorphism.

Analysis is carried out statically with a combination of data flow
analysis techniques for objects accessed sequentially and a fixed-
point iteration for objects in the concurrent domain. Its results can
be used to implement objects with a minimized number of bits.

We have implemented our analysis methods for Objective
VHDL, an object-oriented extension to VHDL, and reported ex-
perimental optimization and run time results. Yet, concepts have
been formulated general enough to be helpful also for synthesis
from other object-oriented languages.

Experimental results show a significant benefit of our tech-
niques as compared to non-optimized synthesis of object-oriented
data types. Currently, we cannot fully achieve the results one
would obtain from a manual design at "bit level", i.e. without data
abstraction. However, our future work includes the implementa-
tion of techniques to utilize further optimization potential.

From a run time performance perspective, the available im-
plementation of data type analysis can be applied to considerably
large hierarchical models. There are starting-points to further op-
timize the software, and even if a model would turn out too large
for global analysis, one could still split it to locally optimize the
parts.

8 References

[1] A. Allara, M. Bombana, P. Cavalloro, W. Nebel, W. Putzke-
Röming, M. Radetzki.ATM cell modelling using Objective
VHDL. Proc. Asia South Pacific Design Automation Con-
ference (ASP-DAC), 1998, pp. 261-264.

[2] A. V. Aho, R. Sethi, J. D. Ullman.Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[3] P. J. Ashenden, P. A. Wilsey, D. E. Martin.SUAVE: Pain-
less Extension for an Object-Oriented VHDL. Proc. VHDL
Int’l Users’ Forum (VIUF, Fall Conference), 1997, pp. 60-
67.

[4] M. Aubury, I. Page, G. Randall, J. Saul, R. Watts.Handel-C
Language Reference Guide. Technical Report, Oxford Uni-
versity Computing Laboratory, 1996.

[5] G. Booch.Object Oriented Design. Benjamin/Cummings
Publishing, Redwood City, 1991.

[6] S.-T. Cheng, P. C. McGeer, M. Meyer, T. Truman, A. San-
giovanni-Vincentelli, P. Scaglia.The V++ System Design
Language. Proc. Design Automation and Test in Europe
(DATE), Designer Track, Paris, France, 1998, pp. 3-10.

[7] R. Helaihel, K. Olukotun.Java as a Specification Language
for Hardware-Software-Systems. Proc. IEEE/ACM Int’l
Conf. on Computer Aided Design (ICCAD’97), San Jose,
California, 1997, pp. 690-697.

[8] E. Holz et al. INSYDE Integrated Methods for Evolving
System Design—Application Guidelines. ESPRIT Project
8641 Report, Humboldt University Berlin.

[9] IEEE Standard VHDL Language Reference Manual. IEEE
Std 1076-1993.

[10] S. Kumar, J. H. Aylor, B. W. Johnson, W. .A. Wulf.The
Codesign of Embedded Systems: A Unified Hardware/Soft-
ware Representation. Kluwer, 1996.

[11] M. Radetzki, W. Putzke-Röming, W. Nebel, S. Maginot,
J.-M. Bergé, A.-M. Tagant.VHDL language extensions to
support abstraction and re-use. Proc. 2nd Workshop on
Libraries, Component Modelling, and Quality Assurance.
Toledo, Spain, 1997, pp. 47-62.

[12] G. Schumacher, W. Nebel.Inheritance Concept for Signals
in Object-Oriented Extensions to VHDL. Proc. Euro-DAC
with Euro-VHDL, IEEE CS Press, 1995, pp. 428-435.

[13] S. Swamy, A. Molin, B. Covnot.OO-VHDL. Object-Ori-
ented Extensions to VHDL. IEEE Computer, October 1995.

instan-
ces

polym.
objects

assign-
ments

interf.
objects

DFA
[s]

FPI
[s]

a1 1 10 32 0 0.05 0.02

a2 3 30 96 4 0.07 0.12

a3 7 70 224 12 0.12 0.57

a4 15 150 480 28 0.18 2.00

a5 31 310 992 60 0.35 6.02

a6 63 630 2016 124 0.70 17.05

a7 127 1270 4064 252 1.37 45.48

a8 255 2550 8160 508 2.80 118.02

a9 511 5110 16352 1020 6.10 299.55

a10 1023 10230 32736 2044 13.15 731.63

Table 2: Optimization run times (worst case)

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

