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Abstract: A new approach is proposed to generate interpretable
symbolic expressions of small-signal characteristics for large
analog circuits. The approach is based on a complete, exact, yet
compact representation of symbolic expressions via determinant
decision diagrams (DDDs). We show that two key tasks of gener-
ating interpretable symbolic expressions — term de-cancellation
and term simplification—can be performed in linear time in terms
of the number of DDD vertices. With the number of DDD vertices
many-orders-of-magnitude less than the number of product terms,
the proposed approach has been shown to be much more efficient
than other start-of-the-art approaches.

1. Introduction
Mixed-signal (analog and digital) systems are becoming in-

creasingly important. While automation tools exist for digital cir-
cuits, analog design is still done manually and depends heavily
on designers’ experience. In this paper, we present a new ap-
proach to generate interpretable analytic expressions for small-
signal characteristics for typical analog building blocks.

Previous attempts to generate interpretable expressions are
based on various symbolic analysis methods to generate sum-
of-product representations for network functions. This area has
been studied extensively in 1960s-1980s [7]. However, the re-
sulting approaches are only feasible for very small circuits, since
the number of expanded product terms grows exponentially with
the size of a circuit, and resulting expressions become not in-
terpretable by analog designers. Recently, various approxima-
tion schemes have been developed. Approximation after gener-
ation is reliable but it requires the expansion of product terms
first [5, 11, 16]. Some improvement techniques based on nested
expressions have been proposed [2, 12]. But they generally suf-
fer symbolic term-cancellation and align-term problems. Ap-
proximation during generation extracts only significant product
terms [3, 15, 17]. It is very fast, but has two major deficiencies:
First, if accurate expressions are needed, then the complexity of
the approach becomes exponential. Second, it works only for
transfer functions. Other small-signal characteristics such as sen-
sitivities, symbolic poles and zeros, cannot be extracted in gen-
eral. Approximation before generations [6, 17] has also been pro-
posed.

In this paper, we show that both term de-cancellation and
dominate term generation can be performed elegantly in a new
framework based on Determinant Decision Diagrams (DDDs) [9,
10]. Section 2 reviews the concepts of DDDs ands-expanded
DDDs. Section 3 presents a general DDD-based framework for
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deriving interpretable symbolic expressions. Experimental re-
sults are described in Section 4. Section 5 concludes the paper.

2. Determinant Decision Diagrams
2.1. Concept of DDDs

Our approach is based on a newly-introduced graph represen-
tation of symbolic matrix determinants calledDeterminant Deci-
sion Diagrams(DDDs) [9]. Consider a simple RC filter circuit
shown in Figure 1. Its system equations can be written as
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Figure 1:An example circuit.
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We view each entry in the circuit matrix as one distinct symbol,
and rewrite its system determinant in the left-hand side of Fig-
ure 2. Then its DDD representation is shown in the right-hand
side. A DDD is a signed, rooted, directed acyclic graph with two
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Figure 2:A matrix determinant and its DDD.

terminal vertices, namely the0-terminalvertex and the1-terminal
vertex. Each non-terminal vertex is labeled by a symbolic symbol
denoted byai, and a positive or negative sign, denoted bys(ai).
It originatestwo outgoing edges, called1-edgeand0-edge. Each
vertexai represents a symbolic expressionD(ai) defined recur-
sively as follows:

1. if ai is the 1-terminal vertex, thenD(ai) = 1,
2. if ai is the 0-terminal vertex, thenD(ai) = 0,
3. if ai is a non-terminal vertex, thenD(ai) = ai s(ai)Dai+

Dai .



whereDai andDai
represent, respectively, symbolic expressions

represented by the vertices pointed by the 1-edge and 0-edge of
ai.

A 1-pathis a path from the root vertex (A in our example) to
the 1-terminal. A 1-path defines a product of symbolic symbols
and signs of the vertices that originate all the 1-edges along the
1-path. In our example, there exist three product terms:ADG,
�AFE and�CBG. The root vertex represents the sum of these
product terms and therefore the determinant.
2.2. s-Expanded DDDs

To exploit the DDD to derive interpretable small-signal char-
acterizations, we need to directly represent circuit parameters not
matrix entries. To this end, s-expended DDDs [10] can be used.

Consider the circuit in Figure 1 and its system determinant.
Let us introduce a unique symbol for each circuit parameter in its
admittance form. Specifically, we introducea = 1

R1
, b = f =

1

R2
, d = e = �

1

R2
g = k = 1

R3
, i = j = �

1

R3
, C1 = c; h =

C2; l = C3. Then the circuit matrix can be rewritten as"
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e f + g + hs i
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The original 3 product terms will be expanded to 23 product terms
in different powers ofs:

(a+ b+ cs)(f + g + hs)(k + ls) !
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We can represent these product terms nicely using a slight exten-
sion of the original DDD, as shown in Figure 3. This DDD has ex-
actly the same properties as the original DDD except that there are
four roots representing coefficients ofs0; s1; s2; s3. Each DDD
root represents a symbolic expression of a coefficient in the cor-
respondings polynomial. Each such DDD is called acoefficient
DDD, and the resulting DDD is called amulti-root DDD. The
original DDD in whichs is contained in some vertices is called
complexDDD. The s-expanded DDD can be constructed from
the complex DDD in a very efficient way [10].

3. A Framework for Interpretable
Small-Signal Characterization

A linear(ized) analog circuit can be described by a set of linear
equations in the following general form using the modified nodal
analysis (MNA) approach [14]:

Tx = w; (1)

where thecircuit unknown vectorx may be composed of node
voltages and branch currents, and thecircuit matrix T is a large
sparse symbolic matrix.
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Figure 3:An s-expanded DDD.

We consider small-signal characterization as finding inter-
pretable network functions, sensitivity expressions, symbolic
pole and zero expressions. According to Cramer’s rule, thekth
componentxk of the unknown vectorx is obtained as follows:

xk =

Pn

i=1
wi (�1)

i+k det(Tti;k)

det(T)
: (2)

Note that the numerator and the denominator are only composed
of the determinant and cofactors of the circuit matrix, which can
be represented effectively using DDDs. With this, interpretable
small-signal characterization can be performed by DDD manipu-
lation:

� A network function is defined as the ratio of an output un-
known from x over an input fromw. This can be rep-
resented as the ratio of two complex DDDs, or twos-
expanded DDDs.

� Under the assumption that poles are far away from each
other, the root splitting method can be applied to find sym-
bolic expressions for poles and zeros [4]. In this case, a pole
or zero can be represented as the ratio of two consecutive
coefficient DDDs.

� Sensitivity of a DDD with respect to a circuit parameter
amounts to finding a DDD cofactor. Sensitivities of general
small-signal characteristics with respect to circuit parame-
ters can be represented as expressions of DDDs and their
cofactors.

After we obtain the exact DDD representations of small-signal
characteristics, the key task is how to simplify a DDD or a ratio
of two DDDs.

It turns out that DDD-based simplification can be easily
performed by means of efficient DDD manipulations. More-
over, since we begin with the exact and compact DDD rep-
resentation of a symbolic matrix determinant, all the error
controlling mechanisms such as monitoring response magni-
tudes/phases, poles/zeros, can be effectively implemented in our
framework. This is only feasible previously in approximation-
after-generation procedures, which work only for small analog
circuits [5, 16].

Our DDD-based approximation algorithm uses the following
procedures: 1)discarding insignificant terms, 2) removing can-
celing termsand 3)generation of dominant terms.



3.1. Discarding Insignificant Terms
Discarding insignificant terms is to delete those terms not sig-

nificant to the characteristics of interest. It consists of two meth-
ods:device eliminationandnode contraction.

Consider a transfer function written in the following form:

f(p) =
N

D
=

pNp +Np

pDp +Dp

; (3)

wherep is a circuit element in the admittance form,Np (Dp)
is the sum of all the product terms inN (D) containingp from
which p is removed, andNp (Dp) is the set of product terms in
N (D) not containingp.

There are two scenarios wherep can be eliminated from both
N andD. First, if bothDp andNp are compared toN andD,

thenf can be simplified byf 0 =
Np

Dp
. This step removes those

devices that are not significant in the small-signal characteristics
of interest. It is calleddevice elimination.

Secondly, if bothpNp andpDp dominateN andD, thenf
can be simplified byf 0 = Np

Dp
. This is callednode contraction.

With this, the number of elements in each product term is de-
creased by one. Different from [17], which considers each in-
dividual devicep, we consider a group of devices connected to
a particular circuit node. This idea has been proven to be more
effective, since for such circuits as Opamp, many devices in the
bias circuity can be eliminated without affecting small-signal cir-
cuit behaviors.

Both device elimination and node contraction are performed
on complex DDDs and involve mainly DDDCofactor and Re-
mainderoperations which take liner time in the DDD size [9]. Af-
ter this procedure, the simplified DDDs are expanded into multi-
root DDDs which are further simplified by suppressing some co-
efficients of high powers ofs suppression of high powers ofs.

3.2. Elimination of Symbolic Cancellation
Term cancellation in the framework of determinant expansion

comes from the MNA formulation and device matching in ana-
log circuits. For an illustrative propose, consider the s-expanded
DDD in Figure 3. Sinceg = k = 1

R3
andi = j = �

1

R3
, term

agk cancels term�aji in the coefficientDDD of s0.
Symbolic canceling terms may greatly degrades the efficiency

of our dominant term generation algorithm (described in Sec-
tion 3.3). In practice, a majority of expanded terms may cancel
each other due to the MNA formulation. Removing canceling
terms has been known to be a difficult problem in determinant-
based symbolic analysis methods [5, 8].

We consider several matrix patterns shown in Figure 4. For
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Figure 4:Matrix patterns causing term cancellation.

example, case 1 may come from the rectangular appearance of a
floating resistor in the nodal admittance formulation.

LetL1,L2,L3, L4 denote, respectively, unique DDD symbols
at four rectangular positions(i; l); (i; k); (j; l); (j; k). Then we
can prove the following lemma:

Lemma 1 For each product term containingL1 andL4, there
exist a corresponding canceling product term containingL2 and
L3.

Canceling terms caused by matrix pattern cases 1 and 2 can
be removed efficiently from aDDD by using basic DDD op-
erations: first perform two cofactoring operations with respect
to eitherL1 andL4 or L2 andL3; then multiply the obtained
DDD with bothL1, L4, andL2; L3 respectively to obtain the
complete canceling terms; finally subtract all the canceling terms
from the original DDDs. All these operations can be done in lin-
ear time in the size of a DDD [9]. For our illustrative example,
the cancellation-free DDD is shown in Figure 5 with 13 paths.
Matrix patterns involving more than two rows (columns) can also
cause term cancellation. But our experimental results indicate
that most canceling term can be removed effectively by just con-
sidering cases 1 and 2.
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Figure 5:Cancellation-free multi-root DDD.

3.3. Generation of Dominant Terms
Many small-signal characteristics are dominated by a small

number of product terms calledsignificantor dominantterms. In
our framework, the extraction of significant product terms can be
transformed to the problem of findingk shortest paths in aDDD.

We need to introduce the notion of path weight in DDDs.

Definition 1 The cost of a path in a DDD is defined to be the
total cost of the edges along the path where each 0-edge costs 0
and each 1-edge costs�logjaij, and jaij denotes the numerical
value of the DDD vertexai that originates the corresponding 1-
edge.

We can show the following result:

Lemma 2 The most significant product term in a symbolic de-
terminantD corresponds to the minimum cost (shortest) path in
the corresponding DDD between the root and the 1-terminal.

The shortest path in a DDD can be found by depth-first search
in time O(V ), whereV is the number of DDD vertices [1]. A
nice property ofDDD is that after we find the shortest path from
a DDD, we can subtract it from the DDD using a basic DDD
operation [9], and then we can find the next shortest path in the
resulting DDD. In this manner, we can find thek shortest paths
in timeO(k � V ).

This procedure can be performed on thes-expandedDDD,
after the decancellation procedure. Error controlling is carried out
by enumerating the dominant terms from all the coefficient DDDs
simultaneously according to certain criteria, until the generated



terms, coming from different coefficient DDDs, well approximate
the exact expressions in terms of magnitudes and phases.

We note that this approach also handles numerical cancella-
tion. Since numerical canceling terms are extracted one after
another, they can be eliminated by examinating two consecutive
terms.

4. Experimental Results
The proposed approach has been implemented. Here we de-

scribe results for three integrated circuit examplesTwoStage,
Cascode, �A741 with schematics shown, respectively, in Fig-
ure 6, Figure 7, and Figure 8.

Vin1 Vin2

CL

CC

Vbias

Vout

M5

M3 M4 M6

M7

M2M1

VSS

VDD

Figure 6:Simplified two-stage CMOS opamp [4].
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Figure 8:Bipolar�A741 opamp.

For each circuit, DC analysis is carried out using SPICE and
our program reads in small-signal element values from the SPICE
output. The algorithms described in [9, 10] are used to construct
complex DDDs ands-expanded DDDs. Row 3 to row 9 in Table
2 summarize the statistics about the circuits, the complexDDDs

ands-expandedDDDs. We can observe thatDDD is highly
compact, and the number of vertices is many orders of magnitude
less than the number of product terms. For example, the denom-
inator of thes-expanded DDD for�741 has6:40 � 1019 product
terms, but the entireDDD to represent both the denominator and
numerator contains only 297117 vertices (this is for the complete
and exact transfer function)!

Next, we apply the proposed approximation algorithms to de-
rive interpretable symbolic expressions for transfer functions and
poles. In each simplification step, we monitor both magnitude
and phase of the simplified expressions to control the accumu-
lated error within a given frequency range. We perform device
removal and node contraction based on the complexDDD rep-
resentation. The results are summarized in row 10 to row 13.
We observe that this step removes devices that do not affect the
small-signal characteristics of the circuits (mainly the bias circu-
ity not in the signal path) and this reduces significantly the size of
a complexDDD.

Next, we construct multi-rootDDDs from the simplified
complexDDDs. Note that even after device elimination and
node constriction, the number of product terms by the matrix de-
terminant method is still in the range of millions. We then per-
form three simplifications: First, suppress those insignificant high
order coefficients. The results are shown in row 16 to row 18.
This reduces the size of eachDDD by about 10 percent. Second,
we perform de-cancellation, and the results are shown in row 19
to row 22. We see that over 80 percent terms are canceling terms.
However, we observe that elimination of canceling terms may not
necessarily reduce the size ofDDDs, since much sharing in the
original DDD may be destroyed.

Finally, we extract the significant terms from the resultings-
expandedDDDs. ForTwoStage, Cascodeand�A741, the num-
ber of product terms in the final simplified transfer functions (in-
cluding both the numerator and denominator) are respectively 6,
83, and 71. In Figure 9, Figure 10, and Figure 11, we plot the
voltage gain and phase responses using both the exact and simpli-
fied expressions. The results from Rainier [17] forCascodeand
�A741 are also plotted for comparison, where Rainier’s expres-
sions forCascodeand�A741 contain, respectively, 784 and 89
product terms. The whole simplification process takes 11.3 sec-
onds in Sun Ultra-I Workstation forCascode, and 54.7 seconds
for �A741.
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Figure 9:Accuracy comparison forTwoStage.

Figure 12 and Figure 13 show the distributions of number of
product terms with respect to different powers of s in the exact
symbolic expression, the expression after elimination of insignif-
icant terms and the expression after de-cancellation process in the
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denominator of transfer functions forCascodeand�A741.
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Figure 12:#terms distribution vs powers of s for cascode

The simplified voltage gain forTwoStagegiven by our pro-
gram is:

gm2gm6 + s1(gm2CC)

(ro2 + ro4)(ro6 + ro7)� s1(gm6CC) + s2(cdb6 + CL)CC

For TwoStage, Table 1 shows the exact values of three zeros and
three poles.

Since three poles are far away from each other, the pole split-
ting method can be used to find the symbolic expressions for three
poles. The resulting expression of the third pole based on DDD
manipulations is as follows:

�
gm3

cgd1 + cdb1 + cgs3 + cdb3 + cgs4
= �1:68 � 10
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Table 1:Zeros and Poles for Two Stage Opamp.

poles �1:68 � 107 �8:80 � 105 �373:74

zeros 3:18 � 109 �1:68 � 107 1:11 � 107

This agrees with the exact third pole described in Table 1. How-
ever, we note that if we apply the pole splitting method directly
on the simplified expression of the transfer function as done in
many previous approaches, we cannot obtain the third pole. This
is because the third pole and second zero cancel each other, and
the third pole information may get lost during a simplification.

5. Conclusions
A new approach is proposed to automatically generate inter-

pretable expressions for small-signal characteristics of large ana-
log circuits. Unlike simplification-during-generation approaches,
the proposed approach works on a complete and exact represen-
tation of transfer functions. It can monitor the errors in the mag-
nitude, phase, poles and zeros of simplified expressions, and thus
provides a reliable and robust simplification scheme. The pro-
posed approach is based on a compact but canonical representa-
tion of symbolic expressions, and has the time and space com-
plexity many-orders-of-magnitude less than the simplification-
after-generation approaches. It provides, for the first time, a
framework for deriving not only interpretable network functions,
but also interpretable expressions for other small-signal charac-
teristics such as poles, zeros and sensitivities. The proposed ap-
proach has been implemented and demonstrated a superior per-
formance over other state-of-art tools.
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