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Abstract

Veri�cation of the functional correctness of VHDL spec-

i�cations is one of the primary and most time consuming

task of design. However, it must necessarily be an in-

complete task since it is impossible to completely exercise

the speci�cation by exhaustively applying all input patterns.

The paper aims at presenting a two-step strategy based on

symbolic analysis of the VHDL speci�cation, using a behav-

ioral fault model. First, we generate a reduced number of

functional test vectors for each process of the speci�cation

which allow complete code statement coverage and bit cov-

erage, allowing the identi�cation of possible redundancies in

the VHDL process. Then, through the de�nition of a con-

trollability measure, we verify if these functional test vectors

can be applied to the process inputs when it is interconnected

to other processes. If this is not the case, the analysis of the

non-applicable inputs provides identi�cation of possible code

redundancies and design errors. Experimental results show

that bit coverage provides complete statement coverage and

a more detailed identi�cation of possible design errors.

1 Introduction

Functional veri�cation of VHDL speci�cations is one of
the most time consuming tasks that a designer has to per-
form before synthesis. The aim is to verify that a descrip-
tion has the intended behavior: this can be accomplished by
identifying a series of meaningful simulation vectors. How-
ever, there are some drawbacks to this approach. Correct-
ness can only be guaranteed if an exhaustive application
of all possible input values is performed: this task is in-
feasible for actual designs. Formal veri�cation techniques
are promising but, at this stage, they are not widely used
in industrial environments, because they are still applica-
ble to small designs only. Random vector generation is
relatively easy, however it does not usually guarantee the
veri�cation of all functionalities of the design. Therefore, in
most cases, designers perform functional vectors generation
based on their knowledge of the speci�cation; this allows
the de�nition of a meaningful set of vectors but without
any guarantee to thoroughly exercise the speci�cation.

A di�erent approach bases the de�nition of functional
vectors generation on some metrics, often derived from soft-
ware engineering techniques. The metrics most applied con-
sider statements coverage and path coverage [15]. However,

while statement coverage is attainable, complete path cov-
erage is infeasible, since the path in a VHDL model grows
exponentially with the size of the description.

Aim of this paper is to propose a new functional vectors
generation strategy, based on bit coverage instead of state-
ment or selective path coverage [13, 3]. This allows a more
precise veri�cation of the correctness of the speci�cation,
covering anyway all statements and the most signi�cant
paths of the VHDL model. Our approach can analyze:

� Behavioral VHDL speci�cations, that is purely algo-
rithmic descriptions, before high-level synthesis;

� Structural VHDL speci�cations, described as a set of
interconnected VHDL processes, i.e. RT-level descrip-
tions of data-paths.

The approach we propose is based on test pattern gen-
eration, performed considering a VHDL-based fault model
and an implicit technique to perform test vectors identi�ca-
tion. This allows coverage of a larger number of design er-
rors than pure statement coverage and even than tag-based
approaches [8, 9]. A two-steps bottom-up procedure has
been de�ned. First, test pattern generation is performed
on each single process in isolation, by injecting behavioral
faults in the VHDL code. Then, considering the structural
description of the interconnected processes, a controllabil-
ity analysis is performed to identify the activability of these
test patterns at the inputs of the process, starting from the
primary inputs. The results of this approach are the fol-
lowing:

� The set of test patterns that cover all bits and therefore
all statements of each single process in isolation;

� The applicability of all test vectors to the single pro-
cesses, through a controllability analysis of the inter-
connected processes;

� Redundancies in the VHDL code, if any. Two types of
redundancies can be identi�ed in a VHDL description
representing the speci�cation of a design: redundan-
cies derived from the over speci�cation of a module,
e.g. behaviors of a module which can never happen;
or redundancies derived from the interconnection of
irredundant modules, e.g. behaviors of a module which
cannot be activated or observed.



The proposed methodology is composed of the following
steps.

� VHDL to BDD translation (Section 2). VHDL de-
sign entities are directly converted into BDD based de-
scriptions. This operation produces often less complex
BDDs in relation to the construction of BDDs starting
from the corresponding gate-level descriptions. In fact,
a smaller number of registers are involved in a VHDL
description with respect to its implementation, since
synchronization registers are not included [6]. More-
over, the device partitioning performed by the designer
usually produces unrelated functionalities which de-
pend on few input/output variables. This is a good cri-
terion for building small BDDs and the same operation
is hard to be performed on a 
at gate-level description.
However, whenever the size of BDDs increases consid-
erably (i.e. in case of circuits including large multi-
pliers) we adopt approximate techniques, both for test
generation [10] and controllability analysis.

� Single process VHDL functional vectors iden-

ti�cation (Section 3). The functional vectors iden-
ti�cation is based on test pattern generation tech-
niques [4, 12]. A fault model based on VHDL sig-
nal/variables stuck-at is used to identify functional
vectors and possibly code redundancies. The adopted
fault model based on [11] has been proved to well model
RT and gate-level stuck-at faults. Moreover, groups of
faults are concurrently inserted and symbolically simu-
lated instead of explicitly injecting one fault at a time
(e.g., [18]). A VHDL fault is certi�ed as redundant
if there is not at least one vector distinguishing the
fault-free and faulty BDD based representations.

� Interconnected processes analysis (Section 4).
Constraints related to the interconnections of modules
are taken into account by implicitly computing control-
lability sets, a concept related to controllability don't
care sets [1]. Such sets capture the information on all
vectors that can reach a module from the primary in-
puts of the circuit. This kind of sets is used to constrain
test generation for each module. The approximation
of this analysis concerns faults observability and the
con
ict between controllability and observability that
are not considered in this implementation. However,
this approximation allows the analysis of real size data-
paths. Moreover, if the BDD description of an isolated
module is unmanageable, a new approximated analysis
is applied.

By using the proposed methodology, functional tests can
be easily generated, guaranteeing the full code coverage for
each single process, the exact identi�cation of redundancies
and di�cult to test faults in the code, providing detailed
information to detect design errors in the VHDL model. A
byproduct of this technique is that the test vectors gener-
ated can be proved as very e�cient in terms of single stuck-
at fault coverage on the gate-level implementation [10].

2 VHDL and fault models

The considered VHDL description is a network of inter-
acting processes which may include signals feedbacks. The
VHDL speci�cation is parsed into an internal description,
where all VHDL templates inferencing registers are recog-
nized and combinational and sequential behaviors are sep-
arated [6]. Each VHDL process is internally modeled as a
combinational behavioral process, which may include data
dependent loops, or as a sequential process representing a
simple register. Registers are considered as delay elements
with a transparent functionality in the controllability anal-
ysis.

Behavioral VHDL descriptions accepted represent the
typical algorithmic description in which the time variable is
not considered, since it is introduced by the high-level syn-
thesis tool. Protocol descriptions and explicit controllers,
usually expressed in terms of extended �nite state machines
are not considered here, since they implicitly assume a ba-
sic timing of the operations. Most of the VHDL behav-
ioral constructs accepted by commercial high-level synthe-
sis tools are supported by the VHDL analyzer. Moreover,
the tool accepts also functions and procedures, which are
widely used by designers in this speci�cation phase. Main
constructs excluded are the after statement and the inclu-
sion of multiple wait instructions in the description. This
kind of description models behavioral descriptions and RTL
data-paths (more information can be found in [2]).

2.1 Behavioral Fault Model

The fault model adopted is associated with each single
VHDL process. The behavioral fault model considers those
failure modes of VHDL closely related to RT-level stuck-at
faults [10]. We assume a single-fault model in the process.
In particular, the fault model includes: bit failures (each
variable, signal or port is considered as a vector of bits.
Each bit can be stuck-at zero or one) and condition fail-

ures (each condition can be stuck-at true or stuck-at false,
thus removing some execution paths in the faulty repre-
sentation). The fault model excludes explicitly the incor-
rect behavior of the elementary operators (e.g., +;�; �; : : :).
Only single bit input or output faults are considered, thus
including all operator's equivalent faults.

2.2 VHDL to BDD

Di�erent techniques have been proposed in literature
to translate VHDL descriptions into the corresponding
BDDs [16, 17]. Such a translation is mainly required by
formal veri�cation tools (usually based on BDDs manip-
ulation) which have to accept VHDL descriptions as in-
put. In this work we use a similar approach to VHDL to
BDD translation, aiming however at building only a par-
tial BDD-based description of the speci�cation, instead of
the complete input/output mapping necessary for formal
veri�cation [16].



3 Single Process Analysis

Each process of the network is analyzed in isolation to
identify the functional test vectors allowing to deeply exer-
cise the speci�cation. This analysis is based on the following
steps.

The construction of the fault-free BDD and faulty BDD
descriptions is performed concurrently, by injecting behav-
ioral faults during the VHDL to BDD translation, by ap-
plying the algorithm introduced in [10].

For each fault F , the VHDL to BDD translation per-
forms a statement by statement symbolic execution and in-
jects the considered fault during the symbolic execution (or
e�ciency reasons, a group of faults is injected at each step).
After injection, the fault is traced during the translation of
the following statements, thus allowing the veri�cation of
its propagation to the primary outputs.

For all those faults for which the VHDL to BDD transla-
tion is completed, the functional test vectors identi�cation
procedure must verify if it is possible to generate a test
vector for such a fault. Therefore, for each output bit, we
compute the fault-free f and the faulty BDD fF . If the
function TV = f bdd xor fF is di�erent from the boolean
function zero for at least one bit of one output port of the
speci�cation, then the fault F is testable and the test vec-
tor corresponds to an assignment of the input values which
satis�es the function TV . Such an assignment allows the
activation of the signal, variable or condition bit in which
the fault is injected and then the propagation of its e�ects
to the outputs. This therefore guarantees functional veri-
�cation of a path from inputs to outputs. Otherwise, the
fault is de�ned to be behaviorally redundant [10].

If the BDD associated with the output function is man-
ageable, the test generation algorithm is always able to
classify a fault as redundant or testable. Unfortunately,
the size of BDDs for complex speci�cations can become too
large to allow the successful termination of the redundancy
identi�cation algorithm. To solve the input domain prob-
lem we propose to handle inputs by partitioning the entire
inputs domain into subsets which can be easily managed.
In fact, we randomly decompose the behavioral speci�ca-
tion in several BDD-based descriptions with reduced size.
Hence, in this case the problem of redundancy identi�cation
consists now in a multiple application of the algorithm to
sub-problems of a�ordable size, whose solution can be found
very e�ciently. The fault is classi�ed as redundant if and
only if no test vectors can be found for all sub-problems [10].

Whenever all these strategies fail to provide a man-
ageable BDD description of a process, faults that remain
untested are classi�ed as di�cult to test. Our approach
provides the exact code location of the fault, thus allow-
ing the designer to inspect that portion of code in order to
identify a potential design error.

4 Interacting Processes Analysis

To take into account the interaction among processes,
we compute a new type of controllability set for each pro-
cess. The concept of controllability don't care set has been

de�ned in logic synthesis [1] as the set of primary input
combinations that never occur. Two sets can be identi�ed:
external controllability don't care set (CDC

ext) and inter-

nal controllability don't care set (CDC). The �rst one is
the set containing the input patterns never produced by the
environment at the network's inputs, while the second one
refers to internal nodes. To compute the internal CDC set
the network is traversed by considering di�erent cuts mov-
ing from the inputs to the outputs. A CDC set is de�ned
for each cut, corresponding to the bit vectors never applied
to the nets traversed by the cut. Similar considerations
can be made for the observability don't care (ODC) set.
CDC and ODC sets are used for logic optimization and
for the synthesis of testable circuits at gate level [1]. The
concept of CDC set can be exploited in the analysis of in-
teracting VHDL processes, for functional veri�cation, since
it provides which bit vectors are applicable to a module.

4.1 Controllability Set Computation

Let us de�ne the controllability set (CS) of a process as
the set of all bit vectors that can be applied to the process
itself, given the interconnection topology and the functions
of the other processes in the speci�cation. The controlla-
bility set is the complement of the CDC set.

Computation of the controllability set of a process is
based on the image computation procedure adopted to
solve the implicit state enumeration problem for �nite state
machines [7]. The CS computation of each process is based
on the SIAM algorithm proposed by Coudert et al. in [7],
coupled with the use of subtree recombination [5] and ex-
tended with the possibility of saving on �le intermediate
BDDs.
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Figure 1. Example of CS computation.

The CS computation is performed by considering one
process Pi at a time and starting the analysis �rst from
processes depending on primary inputs only, followed by
processes depending on already analyzed processes. In case
non reconvergent paths exist for the process Pi, its con-
trollability set is given by the Cartesian product between
the set of codomains associated with the preceding pro-
cesses. Otherwise, the controllability set of Pi is given by
the codomain associated with the composition of the pro-
cesses belonging to the reconvergent paths.

In case the network of interacting processes has cycles,
all signals associated with the loops are identi�ed. Then,
components behaving as multiplexers are identi�ed and sig-
nals connected to such components are transformed into
primary inputs in order to open cycles. In fact, if multi-
plexers or equivalent processes can be identi�ed, cycles can



be virtually broken by driving the control inputs of the mul-
tiplexer in the proper con�guration. This operation allows
the computation of controllability sets for all processes, so
that such controllability sets do not depend on values prop-
agating inside the cycles. An approximate computation is
performed in case no multiplexers or equivalent processes
can be identi�ed: a cycle is cut and the controllability set
related to the cut is set to full controllability. This implies
that the resulting controllability set contains the exact one.

Figure 1 shows an example of controllability set compu-
tation: the exact formula for the computation of the con-
trollability set CS(Pi) is reported near each process Pi.

4.2 Design Errors Identi�cation

The combined analysis of the test vectors identi�ed con-
sidering the behavioral fault model and the controllabil-
ity sets computed for each process allows us to identify
those faults caused by the interconnections among pro-
cesses. These faults (either redundant or di�cult to test)
can occur either on the input ports or on internal process
signals or variables. In the �rst case, they are related to
a possible incorrect connection speci�cation. In the second
case they show a possible over speci�cation of the process,
when interconnected.

A fault in a process Pi is classi�ed as redundant if no
test vector exists belonging to CS(Pi). This analysis is
performed by building the fault-free BDD representation
and the faulty BDD of process Pi considering only the sub-
domain corresponding to CS(Pi). The fault-free and faulty
BDDs thus obtained are used as described in Section 3 to
perform functional tests identi�cation. If a functional test
does not belong to the input sub-domain corresponding to
the controllability set, this vector cannot be propagated
from the primary inputs to the process, and therefore the
associated faults cannot be activated. Redundant faults can
be inserted in the code, in order to correct the speci�cation.

The computation of controllability sets is performed be-
fore identi�cation and insertion of redundant faults and it
does not require a re-computation after the removal of each
redundant fault. In fact, the insertion of redundant faults
into a process Pi does not modify the controllability sets of
the other processes.

Lemma 1 Let Pj be a process depending on process Pi so

that CS(Pj) = image(Pi; CS(Pi)). The insertion of a re-

dundant fault in Pi does not alter CS(Pj).

Let P
0

i be process Pi after the insertion of a redun-
dant fault. A fault has been de�ned as redundant if no
test vectors exist which di�erentiate P

0

i from Pi. This
fact implies that image(P 0

i ; CS(P
0

i )) � image(Pi; CS(Pi))
and, from the de�nition of controllability set, CS(Pj) =
image(P 0

i ; CS(P
0

i )). Thus, the controllability set of Pj is
not altered by the injection of a redundant fault. Equiv-
alent reasonings can be applied to the general case of CS
computation in presence of reconvergent paths and cycles.

5 Experimental Results

The proposed methodology has been implemented by us-
ing the LEDA LVS Libraries for VHDL parsing, the CUDD
binary decision diagrams library for BDD manipulation and
the Berkeley VIS environment for interface and utilities.
The current implementation is composed of more than 120K
C code lines. Experiments have been run on a SunUltra
30/248 with 1Gbyte RAM.

The �rst set of experiments concerns single-process
VHDL descriptions. We selected well known high-level syn-
thesis examples [14] to verify the e�ectiveness of the pro-
posed bit coverage model with respect to the statements
coverage methodology. Functional test patterns have been
generated by adopting the proposed error model (stuck-at
on each VHDL signal and condition) and by injecting only
one fault for each VHDL instruction. This second method
guarantees the activation of all instructions and it can be
associated with the statements coverage methodology.

Name Inputs Outputs Data size Modules VHDL lines

di�eq 162 96 32 27 613

ellipf 258 256 32 37 866

�r 768 32 32 58 859

gcd 66 32 32 14 322

Table 1. Characteristics of single-process VHDL circuits.

Table 1 shows the characteristics of the analyzed bench-
marks in terms of input and output bits number, data size
of the signals involved, number of modules and VHDL lines
of the VHDL description of the benchmark at the RT level.
RT level descriptions are considered the starting point of
the synthesis process, while the single-process behavioral
descriptions represent the speci�cation.

Statement Coverage Bit Coverage

Name Err. Vec. CPU %Co. Vec. CPU %Co.

di�eq 24196 326 503 92.4 585 3256 99.3

ellipf 20764 196 74 98.7 265 1624 99.2

�r 23672 313 2930 93.8 490 4803 99.0

gcd 4714 290 2562 75.6 468 2264 97.3

average 18337 281 1517 90.1 452 2987 98.7

Table 2. Comparison on error coverage.

We assume that the designer generates functional test
patterns at the behavioral level (speci�cation) to verify the
correctness of the RTL description (implementation) that
has been manually designed. This method is commonly
used in industrial environments since behavioral synthe-
sis tools are not widely adopted yet due to the low pre-
dictability of their results. Random design errors have
been inserted in the RT level descriptions and functional
vectors have been simulated by using a commercial RTL
fault simulator. Table 2 shows the results of this compar-
ison. Random application of test vectors achieves on av-
erage 10% coverage. The statement coverage method does
not guarantee to cover an acceptable number of design er-
rors (90.1% on average). On the contrary, the proposed
VHDL fault model covers the majority of errors (98.7% on
average) with some cases higher than 99%. On the other
hand, bit coverage requires on average twice the execution
time (in seconds) than statement coverage. Concerning in-
teracting processes, we investigated the ability of the pro-



posed methodology to identify speci�cation redundancies
by using controllability sets. VHDL descriptions, designed
at the RT level, have been selected.

Name I. O. Mod. V.Lin. CPU Err. Red.Fau.

add-sub fp 33 16 26 1499 4969 3776 241

am2910 22 16 33 617 4965 4385 589

Table 3. Speci�cation redundancies identi�cation.

The �rst �ve columns of Table 3 show the characteristics
of the analyzed benchmarks: add-sub fp is a 16-bit 
oat-
ing point adder/subtractor and am2910 is the well known
processor. The time for the computation of the controllabil-
ity sets and for redundancies identi�cation is then reported.
The last two columns report the number of examined errors
and the number of redundant faults identi�ed by applying
the controllability analysis.

The analysis of each redundant fault identi�ed two im-
portant design errors. Concerning the add-sub fp descrip-
tion we found that the most signi�cant bit of the mantissa
normalization function was always stuck-at, thus avoiding
its correct functionality. Concerning the am2910 descrip-
tion, the POP operation was incorrectly described, thus be-
having as a PUSH operation. This made redundant the faults
on the instruction controlling the increment/decrement of
the stack pointer.

6 Concluding Remarks

This paper presented a new approach for functional vec-
tor generation based on a very precise behavioral error
model and a controllability metric for coverage evaluation.
The error model de�ned allows the generation of vectors
which aim at covering all bits of signals, variables and
conditions inside a VHDL process, while the controllabil-
ity metric provides a veri�cation of the interactions among
processes. The result of this generation, in addition to the
set of functional vectors, is also the identi�cation of those
parts of the code that may include design errors. In fact,
those errors which are not covered by the test generation
approach can be either behaviorally redundant faults, or
hard to test faults, which my identify design errors.

Further work will be directed in the extension of the
VHDL descriptions analyzed and to the combined analysis
of controllability and observability measures. Observability
metrics have been already presented in [9], however our
approach aims at de�ning observability sets in a similar
manner as the controllability sets de�ned here.
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