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Abstract

Modern IC design requires accurate analysis and mod-
eling of chip-level interconnect, the substrate and package
parasitics. Traditional approaches for such analyses are
computationally expensive. In this paper, we discuss some
recent novel schemes for extraction and reduced order mod-
eling that help overcome this computational bottleneck.

1 Introduction

In recent years, increasing operating frequencies caused by
faster digital chips and the emergence of integrated Radio
Frequency (RF) applications has introduced a number of
new design modeling challenges. In particular, parasitic ef-
fects of chip-level interconnect, the substrate and package
can no longer be ignored, or modeled in a simple manner.
Moreover, at these high frequencies, the signal wavelength
becomes comparable to the size of circuit structures. In
some cases, lumped element circuit models cease to be ac-
curate and distributed effects need to be captured. In addi-
tion, high frequencies cause complex interactions between
structures that traditionally could be analyzed separately.
As a consequence, traditional extraction tools using rule-
based schemes are becoming inadequate and must be re-
placed by methods that model electromagnetic effects more
accurately. Unfortunately, even when accurate extraction
can be done, the sheer size of the resulting models makes
circuit level analysis impractical.

Typical simulations problems consist of analyzing a
large transistor network combined with the extracted on-
chip interconnect, parasitics, models of passive linear com-
ponents, models for the package and board level intercon-
nect. For example, the accurate simulation of a Low Noise
Amplifier (LNA) requires in addition to the modeling of the
transistor circuit, incorporating parasitics due to the inter-
connect and substrate and package. A simpler model would
not reliably predict the stability of the amplifier. These type
of simulations cause a number of difficulties. First, lumped
element networks produced by chip-level layout extraction

tools can result in millions of capacitive, resistive and in-
ductive elements. On-chip passive elements (such as induc-
tors) and packages have significant distributed effects and
are naturally modeled in the frequency domain by a trans-
fer function matrix. Of all the general circuit-level anal-
ysis methods, only the method of Harmonic Balance can
efficiently handle a mixture of time-domain and frequency-
domain methods. Unfortunately, this solution technique is
applicable to a small class of problems, and most digital cir-
cuits are analyzed in the time-domain with Spice-like tools.

In this paper, we describe recent novel techniques which
help in modeling increasingly complex circuits. We first
discuss efficient algorithms for solving large linear systems
associated with electrostatic and electromagnetic simula-
tion of layout structures required in the extraction process.
Next, we describe techniques which generate reduced order
models from the results of the extraction. These reduced
order models can be used in a higher-level, non-linear, time
domain (Spice) or frequency domain (Harmonic Balance)
simulation. Finally, we demonstrate such analyses with a
number of examples.

2 Static and full-wave extraction

Extracting compact, accurate linear models for packages,
interconnect, and components plays a significant role in
modern IC designs. Models can be extracted in a variety of
ways, but for the high accuracy that demanded by the criti-
cal sections, only numeric simulation at the electromagnetic
level suffices.

Simulation methods can be broadly divided into two
classes. Methods in the first class use differential equa-
tion formulations. Finite-element (FE) [2], finite-difference
(FD) [15], and finite-difference time-domain (FDTD) [16]
approaches all fall into this class. Methods from the sec-
ond class use integral equations. The method-of-moments
(MoM) approach [6] is based on integral equations. While
the integral formulation leads to dense matrices, it allows us
to apply Green’s theorem, reducing volume integrals to sur-
face integrals. This can reduce the matrix dimension signif-
icantly since the discretization only involves surfaces such
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as the boundary of a conductor or the interface between two
dielectrics. For typical IC, board, package or MCM simula-
tions, where the material variation is usually simple (layered
dielectric media), the integral approach has become very
popular due to the use of surface discretizations. However,
the matrix dimension can still easily be in the thousands for
complex problems. Traditional direct methods for matrix
solution cannot be used to solve such large systems and in
recent years a number of novel schemes have been devel-
oped for the rapid solution of the matrices associated with
extraction.

Maxwell’s equations govern the behavior and perfor-
mance of integrated circuits. At lower frequencies, in an
electro or magnetostatic regime, these equations reduce to
Laplace’s equation. At higher frequencies, a full electro-
magnetic simulation must be performed.

For example, in the standard problem of capacitance ex-
traction in three dimensions, we compute the charge density
� by solving the following integral equation:

�(r) =

Z
S

G(r; r0)�(r0)dS0: (1)

where� is the potential, andG is the Green’s function
which evaluates the potential at the positionr due to a
point charge atr0. For example, in free-spaceG(r; r0) =

1=(4��0jjr� r
0jj) and�0 is the permittivity of vacuum. ICs

are typically embedded in layered dielectric media. In such
layered media, analytic expressions for the Green’s func-
tions do not exist. These Green’s functions are character-
istic to a particular silicon process and can be numerically
precomputed and stored for efficiency [17].

In order to be numerically solved, the integral equa-
tion is discretized by various methods such as colloca-
tion or Galerkin methods [11] or higher order Nystrom
schemes [8]. The problem is then reduced to the solution
of a linear system of equations of the form:

A� = �: (2)

For full-wave solutions, the formulation and numerical
discretization is a little more involved. The time-harmonic
Maxwell’s equations are solved using the electric field in-
tegral equation [10]. Again, the problem is reduced to the
solution of a linear system of the form:

B(j!)X(!) = V; (3)

where

B(j!) = (�
� j!A�
1

j!
�); (4)

is a matrix composed of a sparse Ohmic interaction (resis-
tive) matrix
, a dense vector potential (inductive) matrix
A and a dense scalar potential (capacitive) matrix�. V is
the applied (potential) stimulus andX(!) are the unknown
currents.

2.1 Fast Algorithms for Dense Matrix solution

For many years, the use of integral equation based for-
mulations was limited because of the following problem:
The matricesA andB associated with the electrostatic and
electromagnetic simulation are dense. Dense linear alge-
bra is computationallyexpensive. Direct solution of the
these linear systems using Gaussian elimination requires
O(N2) storage andO(N3) time and is impractical for large
problems. Fortunately, typical systems arising from inte-
gral equations are well conditioned and can be solved by
Krylov-subspace iterative schemes such as GMRES [14].
Iterative solvers require application of the matrixA to a
sequence of recursively generated vectors. The dominant
costs become theO(N2) time and space required for con-
structing and storing the matrix and theO(N2) time re-
quired for each matrix-vector product. Unfortunately, for
modern state-of-the-art systems, the problem can easily re-
sult in having many thousands to a million unknowns, obvi-
ating the use of such methods.

Most of the algorithms in recent years have focussed
on the numerical compression (or sparse representation) of
these dense matrices. Instead of having to represent the ma-
trix with O(N2) elements with a sparse representation us-
ing onlyO(N) orO(NlogN) numbers. This is achieved by
exploiting the structure arising from the physical properties
of the problem.

FastCap [11] and FastHenry [7] employ an algorithm
called the Fast Multipole Method [4]. The fast multipole
method (FMM) [4], while originally developed for parti-
cle simulation problems, can be combined with iterative
techniques to solve the dense matrices arising from inte-
gral equations. This method is based on the observation
that the field due to a charge (or current) source decays
smoothly with distance and can be dramatically compressed
using multipole expansions. While the algorithm is fast,
because this implementation of the FMM is tailored to the
free-space1=jjr � r0jj kernel, dealing with common situ-
ations such as layered dielectrics is difficult. Another ap-
proach called the Precorrected-FFT [13] combines the use
of the Fast Fourier Transform with an interpolation based
approach for the rapid computation of the matrix vector
products. This algorithm has a much smaller memory re-
quirement than the FMM.

More recently, IES3 (“ice cube”), an Integral Equation
Solver for three-dimensional problems [9] was shown to
have significant performance advantages over competing
approaches. IES3 compresses dense matrices, by exploit-
ing the smooth variation in interaction strength. By an ap-
propriate ordering of elements, large parts of the interac-
tion matrix become numerically low-rank and can be com-
pactly represented using their singular value decomposition
(SVD). The time and memory required to compress the ma-
trix is onlyO(N logN), whereN is the matrix dimension.
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The time required by a matrix-vector multiply using the
compressed representation is alsoO(N logN). Combin-
ing the compressed representation with an iterative solver
such as GMRES results in an efficient method for solving
the integral equation. In Figure 3 we present a timing com-
parison of IES3and direct methods for the simulation of an
RF test socket (in Figure 1).

Figure 1 illustrates the compressed representation via a
rank map for the capacitance extraction of an RF test socket.
The rank map shows the partitioning of the matrix into sub-
matrices and the rank of each submatrix. The structure of
this rank map is similar for most extraction problems and
results in nearly linear storage requirements.

Figure 1. Charge distribution on an RF socket
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Figure 2. Compression of the matrix

3 Reduced Order Modeling of Linear Sys-
tems

The large linear systems resulting from the extraction are
described using an inordinate amount of modeling data.
Their representation must be considerably compressed in
order to render them useful for circuit analysis. Such com-
pression can be achieved through reduced-order modeling.
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Figure 3. IES 3 vs direct schemes

These linear systems are described using the state-space
equations

B(s)X(s) = RI(s); O(s) = LTX(s): (5)

Here,X(s) is a vector of state variables,B(s) is a matrix
that describes the state equations,I(s); O(s) are vectors
representing the system inputs and outputs.L andR are
constant incidence matrices that specify the location of the
input/output ports. From the circuit analysis point of view,
only the behavior of the linear system at its ports is of inter-
est. This behavior is fully described by the system transfer
function,H(s)

O(s) = LTB(s)�1R| {z }
H(s)

I(s): (6)

The reduced-order model should capture with sufficient
accuracy the input-output behavior of the original linear
system in the desired frequency range. In addition, the
reduced-order model should have efficient representations
in both the time and frequency domains.

Extraction programs model chip-level interconnect para-
sitics as large, lumped-element, linear networks, consisting
of up to millions of capacitive, resistive, and even inductive
elements, (RLC circuits in general ).

The equations describing the RLC circuits can be
brought to the form

(G+ sC)X(s) = RI(s); O(s) = LTX(s): (7)

whereG andC capture the dissipative and reactive parts
of the system, respectively. These matrices are typically
too large to be of practical use in the analysis of the com-
plete circuit. In general, a reduced-order model preserves
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the same form of the equations, however, involving much
smaller matrices.

(Ĝ+ sĈ)X̂(s) = R̂Î(s); Ô(s) = L̂T X̂(s): (8)

The smaller matrices are obtained by projection of the
original system matrices into “well-chosen” subspaces. De-
pending on the choice of the spaces and of the projec-
tion, model reduction methods can achieve different desired
properties.

The PVL (Pad´e via Lanczos) family of algorithms [1, 3]
first transforms the system matrixG + sC into I + sA by
a change of variables. Here,A = (G + s0C)

�1C, and
s0 is the frequency-domain expansion point. The new sys-
tem matrix is projected from the left and the right onto the
block-Krylov subspaces spanned by[R;AR;A2R; : : :], and
[L;ATL; (AT )2L; : : :], respectively. The projection of the
problem onto the block-Krylov subspaces is calculated im-
plicitly by a block-Lanczos algorithm. The transfer function
of resulting reduced system is shown to represent a matrix-
Padé approximation of the original transfer function. By the
definition of the Pad´e approximation, the Taylor expansions
of the original and the approximant coincide up to the2nth

term.
H(s)� Ĥ(s) = O((s � s0)

2n
); (9)

The Pad´e approximation computed by PVL-type methods is
optimal in the sense that it generates the largest achievable
number of matched Taylor coefficients. Unfortunately, the
Padé approximation does not always maintain certain desir-
able properties of the original circuit such as stability and
passivity. These properties can often be regained by simple
post-processing.

An alternative method, first implemented in PRIMA [12]
is to project the originalG + sC system matrix both
from right and left onto the same block-Krylov subspace
[R;AR;A2R; : : :]. This method generates a sub-optimal
Padé-type approximation, matching only half of the possi-
ble Taylor coefficients for a given matrix size. In return, the
passivity of the reduced-order model is preserved.

Other model-reduction methods have also been pro-
posed. By considering multiple expansion pointss1; s2; : : :,
with their corresponding system matrices,A1; A2; : : :, one
generates a subspace spanned by union of block-Krylov ba-
sis vectors. This family of methods called rational-Krylov
schemes is described in [5] and, while being relatively ex-
pensive to apply, has the potential of producing the most
compact models.

As an example we show the reduction of a package
model. The package is originally modeled by a linear cir-
cuit consisting of more than 4000 RLC elements. The sim-
ulation of the integrated circuit, in this case a low-noise-
amplifier, in its true environment was extremely slow due to
the large package model network. By applying PVL-based

model-reduction with post-processing for passivity, a model
consisting of only 80 state variables was produced. Figure 4
shows the transfer function of one package pin, calculated
exactly and from the reduced-order model. There is almost
no loss of accuracy due to model reduction despite the two
order-of-magnitude decrease in complexity.
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Figure 4. Reduced-order model of a package
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Figure 5. Full-wave reduced inductor model

The linear systems resulting from the time-harmonic
Maxwell equations, as solved by IES3, are of a similar form
but slightly different in nature,

(�
� j!A�
1

j!
�)X(!) = R; (10)

Note that the equations are only defined on the imaginary
axis of the complex plane (s = j!). The very large and
dense matrices that describe the transfer function are now
frequency dependent. However, for typical RF structures
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(which are usually a small fraction of the wavelength), this
dependence is weak. These matrices can be projected in
subspaces spanned by system solutions (and transpose so-
lutions) at multiple frequency points, resulting in a signif-
icantly more compact transfer function representation with
excellent approximation properties. For systems that are not
dependent on frequency, a multipoint Pade-́like approach
will exactly capture exactly two moments at each point. For
systems that have weak frequency dependence this level of
accuracy degrades only slightly. In Figure 5 we compare
simulations based on reduced-order full-wave modeling of
a spiral inductor (solid line) to exact transfer function eval-
uations (circles). We also present comparison to measure-
ment (dotted line). In this example, the the dimension of the
dense matrices was 2200. The dimension of the reduced-
order model matrices was only 12. Eight evaluation points
(circles) were chosen for system solves. Excellent agree-
ment is observed between the exact transfer function evalu-
ations and reduced order simulations. Clearly, if one needs
a detailed simulation it is much more efficient to do it (at
the expense of a few system solves) via a reduced model.

4 Conclusion

In this paper we discussed a number of schemes for over-
coming the computational complexity involved in the simu-
lation and modeling of modern ICs, parasitics of packages,
chip-level interconnect and the substrate. We described a
number of algorithms, based on dense matrix compression,
for efficient capacitance and full-wave extraction. We also
discussed a variety of Krylov-subspace based approaches
for constructing reduced order models of large RLC circuits
and full-wave distributed structures. Finally, we discussed
a few of the open problems associated with the passive re-
duction of frequency dependent matrices that arise in simu-
lation of distributed structures.

This compact full-wave representation, however is only
useful in frequency domain analysis. The generation of a
time-domain model from a frequency-domain matrix trans-
fer function requires the solution of a realization problem.
There are a number of ad-hoc approaches for doing this.
For example, it is easy to construct a polynomial represen-
tation of the frequency dependent reduced model and to use
a larger companion matrix to reduce it to a frequency inde-
pendent form (7). It is also relatively easy to enforce stabil-
ity by projecting unstable poles out of the model. Unfortu-
nately, passivity is hard to preserve because of the underly-
ing “non-passive” polynomial interpolation that is required
to obtain the standard state space representation (7). The re-
alization problem is difficult and has been extensively stud-
ied in the control literature. Currently, most practical solu-
tions are of a rather ad-hoc nature and the problem can be
considered an open.
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