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The use of simplification before generation techniques ImtVbs, nggS_|
to enable the approximate symbolic analysis of large ana- IS 0 0 $ s
log circuits is discussed. This paper introduces an error Cys S — Csp

control mechanism to drive the circuit reduction, which
overcomes the accuracy problems of previous approaches.
The features and efficiency of the new methodology are
demonstrated through several practical examples.
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parameters are assigned a numerical value, symbolic ana- | o s 0 me 0 G e
lyzers handle circuits with symbolic parameters. The result E A T
of their analysis task is obviously a symbolic expression of e s P e 0
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the circuit characteristic at hand. One of the main limita- ) s b e TS me T
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tions of symbolic analyzers has been traditionally found in e e Te 0 et S e
the exponential increase of the expression length with the | . " ¢ }
circuit size [1]. On the one hand, this makes the symbolic '
results very difficult to interpret or use. On the other, it con- SBG
stitutes a drastic limitation to the maximum circuit size that
can be analyzed.

An important advance in the solution of these problems
has been achieved by the introduction of simplification

before and during generation techniques [1]. The role that
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these techniques play within the symbolic analysis flow is P G

better understood by looking at Fig. 1. A typical analysis SDG

problem starts from the small-signal model of the circuit.

Using some analysis technique (i.e., signal flow graphs, _ 9m19m4

MNA, etc.), a set of network equations, either in matrix or Av=

graph form, is obtained. Simplification before generation (Qus 1+ 9ds2(Gds 3+ asd+SCOma

(SBG) techniques either eliminate entries from the circuit Fig. 1. Combination of simplification strategies in

matrix, or eliminate graph branches and contract graph the symbolic analysis flow.

nodes, yielding a reduced matrix or graph which is much

easier to solve. contains a huge number of insignificant contributions. Sim-
Once approximated, the resulting simplified system of plification During Generation (SDG) techniques aim to

equations must be solved. The complete solution usually calculate directly an approximated solution, which con-

tains only the dominant contributions [1]-[3].
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the error induced by the reduction process. Section 2

reviews previous work and introduces a new methodology

to solve the problems of reported approaches. The method-
ology is extensively tested with practical examples in Sec-

tion 3.
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2. Simplification before generation

magnitude error (dB)
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2.1. Background and previous work

=

The computational complexity of the solution algo-
rithms for a set of network equations grows exponentially
with the circuit size. And so does the complexity of the
resulting symbolic expressions.

However, there are usually large differences among the
relative contribution of the different circuit parameters to 08 1(')7 108
the global circuit behavior. Negligible parameters make frequency (Hz)
computationally more expensive the solution of the set of Fig. 2. Magnitude and phase errors of Fig. 3 at
network equations and more difficult the interpretation of 1MHz< f < 100MHz due to the application of an
the results. SBG algorithm. Solid triangles denote the sampling

Reported SBG approaches simplify the system of equa- frequencies
tions prior to address its solution. In [4],[5], device param-
eters are eliminated from the nodal admittance matrix
while the error induced is below a given threshold. In [6],
graph branches are pruned or graph nodes are contracted
while their contribution to the network function keeps
below some given error. Although these techniques exhibit
significant differences, they share a common feature: the
error induced by a matrix entry elimination, or by branch
pruning or node contraction in a graph, is evaluated at a
single or a finite number of frequency points. Fig. 3. Integrator.

Therefore, accuracy is not guaranteed at frequencies
different from those in the set of sampling frequencies, as
the practical example in Fig. 2 illustrates. This figure 2.2. New SBG methodology
shows the magnitude and phase errors at
1MHz < f <100MHz, induced when sampling-based Our approach performs the approximation by replacing
SBG algorithms, like those in [4]-[6], are applied to the those elements whose contribution (appropriately mea-
integrator in Fig. 3. The magnitude and phase error specs sured) to the network function is small, with a zero-admit-
wereA|H| < +5dB andAg, <+5° inthe frequency range  tance (device removal) or zero-impedance element
1Hz< f < 100MHz. As Fig. 2 shows, the error specs are (contraction of nodes).
met at the sampling frequencies, but exceeded at interme-  The objective is to find the sequence of node contrac-
diate ones. tions and device removals yielding the simplest circuit

An obvious solution is to use a denser frequency sam- (smallest number of nodes and branches) and whose
pling, at least in the neighborhood of the poles and zeros of induced error keeps below some given threshold. First, it
the system. However, this increases noticeably the compu- must be decided if node contractions must be prioritized
tational cost of the algorithm, on the one hand, and there is over device removals or viceversa. After the SBG process,
not a systematic procedure on how dense should be the fre-the resulting simplified graph must be solved, commonly
quency sampling to guarantee full accuracy in a frequency by the application of a SDG process. The most efficient
range, on the other. The methodology presented herein SDG algorithms reported are based on the two-graph
solves this problem by introducing error evaluation mech- method [7] and their computational complexity grows
anisms which guarantee the required accuracy at any fre- much faster with the number of circuit nodes than with the
quency within a given range. number of devices. Therefore, node contractions are prior-

itized in our algorithm.

phase error (deg)
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together with all previously accepted contractions have
node been performed, exceeds the error specifications. A similar
test must be performed when each device removal is tried.

Evaluate contribution
of each node contractign

{7 contractions Our objective is to evaluate the maximum magnitude and
Try least phase deviations for any frequency in a given range in all
significant contractionr < error checking steps described above.
\% Let us denoteH ,(S) = N (S)/Dg,(s) thenetwork
function of the complete circuit with only the complex fre-
Error exceeded?—Ng P(:rfo;rn gquency s  as symbolic parameter, and
contraction Hap(s) = Nap(s)/Dap(s) the analogous network func-
Yes tion of a simplified circuit in which the appropriate node
— contraction(s) and/or device removal(s) have been per-
Evaluate contribution formed. The magnitude and phase errors are given by:
of each device remova| device
% removals
Try least H. (jw)|=|H,,(jw
significant removal<t——— AH| = ‘ ex(] )‘ ‘ ap(J )‘ -1-
Hex(jw)|
V
No Perform
Error exceeded” —T> removal ) )
Agy = OH(jw) —UH,(jw)
N, D., N, D,
Fig. 4. Flow diagram of the SBG methodology. = atan—>' - atan—=" — atan—2' + atan—2&
exr exr Napr Dapr

The different steps of the simplification algorithm are
graphically shown in Fig. 4. First, the contribution to the |y here subscriptsandi denote real and imaginary parts.
transfer function of the contraction of the terminal nodes of Therefore, the evaluation of the maximum magnitude
each device individually is computed individually and a g9 phase errors requires:
sorted list is built. The least significant contraction from
the list is picked and the induced magnitude and phase
errors are evaluated. If the allowed error is not exceeded and Hap(S) of (usually large) analog circuits, and
the node contraction is performed and all devices con- . an efficient technique to obtain the maxima of the
nected in parallel are removed. The contraction process  fynctions in (1) whemo varies within a given range.
continues iteratively with the following one in the sorted The first problem can be solved by means of numerical
list while the accumulated error in magnitude and phase jnterpolation techniques [7]. An efficient interpolation

does not exceed the specified maximum errors. When the tgchnique based on adaptive scaling able to handle large
contraction process is finished an analogous operation with 53104 circuits can be found in [8],[9].

* a technique to obtain the network functioHg(s)

device removals is performed. Our solution for the second problem is based on the use
) of interval analysis techniques [1@|H|  aAg, in (1)
2.3. Error evaluation are univariate functions im, which can take any value

o . within the frequency intervaw , w,] , where@ ~ and
As shown in Fig. 4, both, the node contraction and the ¢, are the lower and upper bounds of the interval, respec-
device removal processes start with an evaluation of the tively. The problem is solved if accurate estimates of the
contribution of each possible contraction or removal. That |ower and upper bounds oh|H| andg, , when
means that the difference in magnitude and phase behavior ¢ [w,, wy], can be calculated. This computation, com-
between the original circuit and a modified circuit in which  monly known as the interval extensionH]| avg, ’
a pair of nodes have been contracted or a device has beertan make use of interval arithmetic operators. Substitution
removed must be evaluated. Also, when each node contrac-of the real variablev in (1) and real operators (addition,
tion is tried it must be checked if the difference in magni- product’ quotient’ etc_) by the Corresponding interval vari-

tude and phase behavior between the original circuit and aples and operators vyields the so-called natural interval
the reduced circuit, in which the contraction at hand,



extension. Unfortunately, this computation usually yields
too conservative estimates of the maximum errors [11].
To solve this problem, the natural interval extension is

inal circuit versus those in the simplified circuit) and the
computation time are listed in Table 1.
A large, hierarchical example is the bandpass filter in

applied to the derivatives of (1). Although, the estimates of Fig. 6a. It is composed of four OTAs, whose transistor-
the derivatives are also very conservative, the zero inclu- level schematic is shown in Fig. 6b, and one biasing OTA,
sion in the resulting interval extension is enough to delimit shown in Fig. 6¢c. When expanding the small-signal mod-
frequency subranges in which the maximum magnitude els, the resulting circuit model contains 45 nodes and 619

and phase errors occur. Then, the exact frequency points
for which the maximum magnitude or phase errors occur in

basic devices.
The magnitude and phase plots of the voltage transfer

those frequency subranges are easily calculated using thefunction of this filter are shown in Fig. 7. A maximum cir-

Newton-Raphson method.
3. Experimental results

The efficiency and the complexity reduction capabilities
of the proposed SBG methodology are illustrated with the
circuits in Fig. 5(a)-(d) where the transistor models in
Fig. 5(e)-(f) were used. The maximum magnitude and
phase deviations allowed in the voltage gain were

Amags +3dB and A j,,5< +5° in the frequency range

f O[1Hz 1MHZ . The complexity reduction achieved
(measured as the number of devices and nodes in the orig-

phas

cuit reduction is required with maximum magnitude and
phase deviations:

A <*3dB

mag= —

AphaseS +5° )
in f 0[100Hz 100MHZ% . These magnitude and phase
constraints are shown together with the magnitude and
phase plots in Fig. 7.

The application of the SBG algorithm yields a reduced

circuit model containing only 31 nodes and 161 devices,

Table 1. Statistics for the circuits in Fig. 5.

, Circuits in Fig.| 5(@)| 5(b)] 5(c) 5(d
[ J L J J _ —
# nodes in | original 21 76 85 26
I —«:'_EA-_L [l-signal
n s L] Lkﬂ oael & simplified | 6] 16| 18] 7
@) (b) ll lir‘%..l( FL%| | ;:rgzl\lljgiesn:; original 50| 221| 229 253
el % [simplified | 11| 48] 52] 29
CPU time (s.) 0.8 84 114 11
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Fig. 5. (a) Simple BICMOS opamp; (b)uA741 ; ,
opamp; (c) HA725 opamp; (d) CMOS opamp; (e) < (b) 1 (c)

bipolar transistor model; and (f) MOS transistor
model.

Fig. 6. (@) Filter; (b) OTA schematic; and (c) bias-
ing OTA.
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Fig. 7. Bode plots before and after the application

of the SBG algorithm to the filter in Fig. 6.

while the magnitude and phase plots of the simplified cir-
cuit keep within the specified error limits, as shown in

Fig. 7. One important feature is that all devices of the bias-
ing OTA are eliminated in the simplification process. This

fact demonstrates the capability of the SBG algorithm to
detect and eliminate subcircuits which do not belong to the
signal path and, therefore, do not affect the network func-
tion.

As illustration of the symbolic expression calculation
after the SBG step, Fig. 8 shows the voltage gain provided
by the complete SBG+SDG methodology applied to the
CMOS opamp in Fig. 5(d). This example shows the possi-
bility of generating very compact, interpretable expres-
sions for the main behavior characteristics of even large
building blocks.

Conclusions

This paper has introduced an accurate, but efficient,
simplification before generation methodology. Based on
its cooperative work with simplification during generation

techniques, very readable and interpretable symbolic anal-

ysis is achievable.

Its extremely good behavior allows to address its com-
bination with hierarchical decomposition strategies for
very large circuit analysis. It is also being used to develop
new methodologies for symbolic pole/zero extraction, with
the objective to provide additional insight into the circuit
behavior.
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Fig. 8. Symbolic expression for the voltage gain of
Fig. 5(d).
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