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Abstract
Accurate modeling of noise coupling effects due to
crosstalk via the substrate is an increasingly important
concern for the design and verification of mixed analog-
digital systems. In this paper we present a technique to ac-
celerate the model computation using BEM methods that
can be used for accurate and efficient extraction of sub-
strate coupling parameters in mixed-signal designs.

1 Introduction

The design of single chip mixed-signal systems is currently
a very active research area, sparked by the ever continuous
emphasis on compactness and cost reduction and the wide-
spread growth and interest in wireless communications. A
major challenge in the design of such chips is the need for
accurate modeling of the parasitic noise coupling through
the common chip substrate, between high-speed digital and
high-precision analog components [1, 2, 3, 4]. Fast switch-
ing logic components inject current into the substrate caus-
ing voltage fluctuations which can affect the operation of
sensitive analog circuitry through the body-effect.

It is generally accepted that for frequencies up to a few
gigahertz, the substrate behaves resistively [3, 5]. Thus,
in order to model coupling effects, it is sufficient to solve
Laplace’s equation inside the substrate with appropriate
boundary and interface conditions. Many techniques have
been used to solve this problem, including Finite Element
(FEM) and Finite Difference (FD) methods [2, 6, 7, 8].
However, for complex layouts the number of unknowns
resulting from the discretization of the three-dimensional
substrate volume may become too large for practical pur-
poses. Boundary-Element methods (BEM) are very ap-
pealing for the solution of this type of problems because
the size of the matrix to be solved is dramatically reduced
since only the relevant boundary features are discretized [9,
10, 11]. However they produce dense matrices which are
expensive to store and factor directly. Iterative methods,
such as Krylov subspace algorithms, combined with some
sparsification technique to accelerate the computation of
matrix-vector products can be very efficient for solving
large BEM problem. Recently an eigendecomposition-
based method was presented that eliminates the need for
dense-matrix storage and can be used to accurately com-
pute substrate models while taking all of the substrate edge
effects into account [12]. Nevertheless its computation
time for large, dense circuits is still high. In this pa-

per we present an efficient technique for substrate coup-
ling parameter extraction, based on a precorrected-DCT
technique that extends the eigendecomposition-based tech-
nique and accelerates operator-vector application. The
method provides a substantial speedup in terms of compu-
tation time and allows for efficient and accurate extraction
of substrate models in large layouts.

In the next section we summarize the problem of
modeling substrate coupling and review the functional
eigendecomposition technique. Then we present the
precorrected-DCT technique and show how it can be used
to speed up the extraction process producing a model that
can be used to perform coupled circuit-substrate simula-
tion. Complexity comparisons between the proposed and
currently available techniques is provided in Section 4.
Computational results from applying the proposed tech-
nique to an actual layout are presented in Section 5. Finally
conclusions are drawn in Section 6.

2 Background
2.1 Problem Formulation and Model computation
Assuming the electrostatic approximation, a commonly
used model for the substrate is to consider it as a stratified
medium composed of several homogeneous layers charac-
terized by their conductivity, as shown in Figure 1 [3, 11]
On the top of this stack of layers a number of ports or
contacts, assumed planar, are defined, which correspond
to the areas where the designed circuit interacts with the
substrate. Figure 1 also shows schematically the resist-
ive coupling model that we seek to extract. In the fig-
ure the substrate backplane is shown as electrically groun-
ded. Floating substrates can also be handled with minimal
modifications to the formulation.

Modeling the coupling through the substrate amounts to
computing the relation between a set of injected currents
and the resulting potential distribution. Thus, given a set
ofm contacts, we seek a model that relates the currents on
those contacts,Ic to their voltage distributionVc. In prac-
tice, for reasons of accuracy it is necessary to discretize
each of the contacts into a collection ofn disjoint panels.
Using a Galerkin scheme [13], the current density on each
panel is assumed uniform and a set of equations relating
the currents and potentials on all panels in the system is
then formulated

�p = ZpIp (1)

whereIp;Vp 2 Rn andZp 2 R
n�n , Ipi denotes the total
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Figure 1: Cross-section of substrate showing a 3D model
as an homogeneous multilayered system with contacts on
the top surface.

current on paneli andVpj the average potential on panel
j. Entry(i; j) in the impedance matrixZp is given by

Zpij =
1

aiaj

Z
si

Z
sj

G(x; y;x0; y0) da da0 (2)

whereai andaj are respectively the areas of paneli andj
andG(x; y;x0; y0) is the Green’s function, which accounts
for the problem’s boundary and interface conditions, and
relates the potential at some observation point(x; y) due
to a unit current injected at some source point(x0; y0).
ClearlyZp is dense since currents injected into any panel
i produce a non-zero potential on every other panelj.

Extraction of the substrate coupling model is accom-
plished by appropriately setting the voltages at the con-
tacts and solving (1) for the detailed current distribution.
The current flowing into each contact is then obtained by
summing the currents from all panels in the contact. The
algorithm is similar to the standard capacitance extraction
problem [14]: extraction of the full model requiresm lin-
ear solves for a system withm contacts. The straightfor-
ward way to accomplish this task requires the computation
of Zp using (2). In [3] it was shown that the Green’s func-
tion G(x; y;x0; y0) for the bounded substrate with groun-
ded backplane can be written as a double infinite series of
cosines inx andy. It was also shown that by truncating
the series toM terms and rewriting the resulting equation,
each entryZpij can be constructed from linear combina-
tions of appropriate terms from a two-dimensionalM�M
array fFlmg, which is computed once and for all with
a Type-1 Discrete Cosine Transform (DCT) [15]. Given
Zp, direct solution of (1) using Gaussian elimination is
overwhelmingly expensive. Instead, an iterative algorithm
such as the Generalized Minimum RESidual algorithm,
GMRES [16]. However, each iteration of GMRES re-
quires a matrix-vector product,ZpI

k
p , at a cost ofO(n2)

which, coupled with theO(n2) memory required to store
the denseZp, limits the size of the problem to be analyzed
to a few hundred panels.

2.2 Sparsification via Eigendecomposition
Recently, the application of well-known eigendecomposi-
tion techniques to this problem were proposed in order to
speedup the matrix-vector product required at each itera-
tion of GMRES [12]. In this method the computation of
the matrix-vector product, which corresponds in essence
to computing a set of average panel potentials given a sub-
strate injected current distribution, is performed by means
of an eigenfunction decomposition of the linear operator
that relates injected currents to panel potentials (without
loss of generality we will consider square layouts,a = b).
In [12] (and previously in [3] albeit with a different ob-
jective) it was shown that the surface eigenfunctions of the
linear integral operatorL that relates injected currents to
panel potentials are'ij(x; y) = cos (i�x=a) cos (j�y=a)
(for a derivation of the eigenvalues,�ij , see [3, 12]). In
this technique, the global current densityq(x; y) is first
represented as

q(x; y)=

M�1X
m=0

M�1X
n=0

qmn #

�
x�

�(m) a

M
; y �

�(n) a

M

�
(3)

whereqmn is the total current at panel(m;n), �(r) = (r+
1=2) and#(x; y) is a square-bump function that serves as
an averaging function, defined as

#(x; y) =

8<
:

M2

a2
( � a

2M
� x; y � a

2M

0 ( elsewhere:

Then, the eigenfunctions of the integral equation operator
are used to expandq(x; y),

q(x; y) =

1X
i=0

1X
j=0

aij 'ij(x; y): (4)

If the coefficientsaij can be quickly computed, then the
potential can then be readily obtained as

�(x; y) =

1X
i=0

1X
j=0

�ij aij 'ij(x; y): (5)

Truncating (5) to a finite series withM �M coefficients,
allows us to compute the average panel potential�pq at
position(p; q) as [12]

�pq=

M�1X
i=0

M�1X
j=0

bij cos

�
�(p)� i

M

�
cos

�
�(q)� j

M

�
(6)

It can be shown [12] that theM �M coefficientsfaijg
can be computed via a forward Type-2 DCT, and then the
M �M arrayf�pqg via an inverse Type-2 DCT (both im-
plemented efficiently with FFT’s [15]). Thus, theZpI

k
p

product can be computed inO(2 �M2 � log
2
M) operations.

If we assume that all panels are minimum sized cells on the
M �M substrate grid, then if for instance only10% of the
cells are occupied by actual panels (i.e. n = (0:1)M2),
a realistic number, the cost of computing the denseZpI

k
p

product directly isO(0:01 �M4). At M = 128, eigen-
decomposition is already an order of magnitude faster than
direct multiplication.
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Figure 2: Representation of coarse grid discretization and
current projection into cells.

3 Accelerating Potential Computation Via
Precorrected-DCT

For large layouts, with many substrate contacts, even
the eigendecomposition algorithm becomes overly ex-
pensive. Fortunately it is possible to significantly spee-
dup the matrix-vector product using the precorrected-DCT
(PcDCT) algorithm. The main idea behind the PcDCT al-
gorithm is to realize that the effect of an injected current in
a panelpi on the potential of another far away panelpj , can
be considered the same for small variations in the distance
between panels. Similar ideas have been used extensively
in multipole-accelerated algorithms [17, 14, 11]. The ap-
proach developed here is reminiscent of other precorrected
algorithms previously published [18] and relies on a simple
coarser-grid projection method, which can be used in com-
bination with the DCT to accelerate the computation of the
matrix-vector product while taking into account all of the
substrate boundary effects.

Consider a group of panels at some location (call it cell
gi) and another cell,gj , far away fromgi. If a current is
injected in some panel ingi, this current will have a similar
effect on every panel ofgj , as long as the distance between
cells is large, wherelarge depends of the substrate’s pro-
file. Similarly, if the same current is injected in another
panel ingi the effect ongj will be the same. Thus, for the
purposes of computing the effect ongj ’s potential, it may
suffice to distribute the current uniformly over the entire
cell gi (see Figure 2 for a representation). With the above
considerations we can construct an algorithm to approx-
imately compute a potential distribution due to an injected
current distribution. This algorithm is composed of four
main steps: aprojection stepto construct a coarse (cell-
level) representation for the detailed panel current distri-
bution, acomputation stepto obtain the coarse potential
distribution resulting from the coarse current representa-
tion, aninterpolation stepto interpolate the detailed panel
potentials from the coarse (cells) potential distribution, and
a correction stepto calculate the nearby panel interactions
directly, and make the appropriate corrections. To this end,
the substrate top surface is first divided into a coarse grid of
cells (unrelated to the underlying fine panel discretization).
The panel currents are then projected onto those cells, for
instance such that the total sum of the panel currents in
each cell is uniformly distributed over the cell. Given the
panels’ current vectorIp, we can compute the cells’ cur-

rent vectorIg as
Ig =WIp (7)

wheres2 is the number of grid cells,n is the number of
panels andW 2 Rs

2�n is a simple incidence matrix indic-
ating whether a panel belongs to a given cell or not. Once a
vector of cell currents is obtained, the corresponding vec-
tor of cell potentials can be computed. For this operation,
the eigendecomposition technique previously reviewed is
used. This operation is represented as

�g = L Ig (8)

whereL is again the linear operator that represents Pois-
son’s equation, now applied to the coarse grid of cells,
which makes the operation extremely efficient. Once the
vector of cell potentials,�g is known, the corresponding
panel potentials can be trivially obtained from

~�p =W T
�g: (9)

~�p, given by (9), represents an approximation to the panel
potentials computed under the assumption that all cells
were distant enough from each other. Such assumption
is clearly not true everywhere, since for instance cells are
not far away from themselves nor from their nearest neigh-
bor cells. Since the approximation is of poor accuracy for
nearby panel interactions, it is necessary to compute the
nearest-neighbor interactions directly for each panel, and
to make appropriate corrections to~�p. This is done in a
manner similar to the precorrected FFT scheme [18]. First,
we remove from every cell potential the influence of the
self and nearest neighbor cell’s currents. The contribution
of the current on a specific celli to the average potential
of another cellk,  ik can be written as ik = qi h

i
k, where

qi is the sum of all the injected currents in celli and the
hik coefficients can be obtained from appropriate combina-
tions of the result of a Type-1 DCT on the coefficientsbij
of (6). This DCT needs to be computed only once and dis-
carded afterwards, thus its cost is negligible. Furthermore,
we should emphasize that one needs to compute and store
thehik coefficientsonly for self and nearest-neighbor cell
interactions. For every cellk, the total contribution tok’s
panel potentials from self and neighbor cells can then be
written as

	k =
X
i2N

hikIpi (10)

whereN represents the set of neighbor cells andIpk is the
vector of panel currents in cellk

The second piece of the precorrection requires the com-
putation of the exact near panel interactions,Vk, for cell
k. One way to perform this computation is to use the
Green’s function directly to determine the individual re-
lations between panel currents and potentials for panels in
neighbor cells and panels within the same cell. These re-
lations can be represented as a set of small matricesZi

k

which as a whole are simply a sparsified version of the
largeZp in (1). Vk can be written as

Vk =
X
i2N

Zi
kIpi : (11)



Finally, the corrected potential of cellk’s panels,�pk , is
then given by

�pk = ~�pk �	k + Vk: (12)

where the approximate self and nearest neighbor cell inter-
actions are subtracted and the exact near panel interactions
are added.

As described, the algorithm uses a simple coarse-grid
projection scheme whereby the current for all panels in a
cell is uniformly distributed over the cell. Theoretically,
the choice ofs, the cell discretization parameter, has negli-
gible effect on accuracy. Higher accuracy can be obtained
by using higher-order nearest neighbor cells in the exact
computation or by refining the projection scheme, simil-
arly to what is suggested in [19] in a different context.

4 Complexity Comparison

In this section we compare the efficiency of the proposed
precorrected-DCT accelerated algorithm with the Green’s
function method (i.e. direct computation ofZp and solu-
tion of (1) using GMRES) as well as the unaccelerated
eigendecomposition method presented in [12]. In the fol-
lowing we will usem as the number of contacts,n as the
number of panels,M as the number of cells per side in
the eigendecomposition method ands as the number of
PcDCT cells in each dimension.

For large circuits with several hundreds of contacts,
the dominant cost of using the Green’s function method
is O(mKG n

2) where KG is the average number of
GMRES iterations. Similarly, the cost of using the eigen-
decomposition method isO(4mKEM

2 log
2
M) where

KE is the average number of GMRES iterations. Since
n is typically on the order ofM2, the eigendecomposition
method is clearly more efficient than the Green’s function
method. For the PcDCT method the cost is mainly depend-
ent on the number of cellss2. Assuming an uniform distri-
bution of panels on the surface, the average number of pan-
els per cell isn=s2. The dominant cost factor in the com-
putation of a GMRES iteration isO(4s2 log s+ 5n2=s2).
The total cost is thenO

�
mKM (4s2 log s+ 5n2=s2)

�
. For

small s the second term is clearly dominant and the cost
will decrease with increasings. For increasings the first
term becomes dominant and the cost gradually becomes
independent ofn. For some intermediate values ofs both
terms are comparable and the total cost is seen to be much
smaller than that of the eigendecomposition method (since
s�M ).

The storage requirements for all three methods are read-
ily obtained. The Green’s function method requiresO(n2)
(mostly for storage of the denseZp), while the eigen-
decomposition method requiresO

�
(u+ 1)M2

�
with u

being the the number of cosine modes per cell. Storage
requirements for the PcDCT method isO(s2 + 5n2=s2)
where the first term corresponds to the DCT matrix, and
the second term to the precorrection matrices. Dominance
of each term as a function ofs follows the behavior out-
lined for the computational cost and thus for appropriate
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Figure 3: Example substrate profiles.

Method Green’s EigenD. PcDCT1PcDCT2
Discretization non-unif. uniform non-uniform
# contacts 52 52 52 52
# panels 2647 17764 2647 2647

Avg # panels/contact 51 341 51 51
Size of DCT 512 � 512 256� 256 32� 32 64� 64

Table 1: Relevant characteristics of the various solution
methods when applied to the example problem.

values ofs the PcDCT method is also more memory effi-
cient.

It is easy to see that for layouts where the contacts
are grouped into several separated clusters, an appropriate
choice can be made such that the number of direct interac-
tions is reduced and the method’s performance will be su-
perior. This coupled with the fact that for the precorrected-
DCT method non-uniform panel discretizations are al-
lowed, makes the method extremely efficient and allows
for the extraction of larger, more complex circuits.

5 Computational Results
We present numerical experiments that show the efficiency
of our extraction algorithm when compared to straightfor-
ward usage of the Green’s function. For completeness we
also include results for the basic (unaccelerated) eigen-
decomposition method, which allows us to account for the
speedup provided by the proposed technique.

For an example problem with 52 contacts on a256�m�
256�m substrate [12], three different extractions were per-
formed using different substrate profiles. The profiles used
here were taken from [20] and have also been used else-
where as benchmarks [11, 19]. The vertical substrate pro-
files are shown in Figure 3 and correspond respectively to
technologies with single-layer, high resistivity and low res-
istivity substrates with grounded backplanes. An extrac-
tion was also performed using afloatingsingle layer sub-
strate. Table 1 shows the relevant characteristics of the
example problem for the various solution methods. Note
that accuracy constraints will limit the discretization used
with each method. In these examples a non-uniform dis-
cretization was required for the Green’s function method.
Thus, a simple, yet efficient, non-uniform discretization
algorithm was developed and it was also used with the
precorrected-DCT algorithm. The standard eigendecom-
position method, however, requires the use of a uniform
discretization. The discretizations used were chosen such
that similar accuracy was attained with all methods. The



Memory Usage Green’s EigenD. PcDCT1 PcDCT2

single layer 139MB 20.4MB 6.4MB 6.5MB
single + floating 139MB 20.7MB 6.3MB 6.4MB
high-resistivity 141.0MB 24.9MB 6.9MB 7.2MB
low-resistivity 138MB 22.5MB 6.4MB 6.6MB

Table 2: Memory requirements for complete extraction for
the various methods.

CPU Time Green’s EigenD. PcDCT1 PcDCT2

single layer 25350 3018 243 294
single + floating 25944 3275 267 314
high-resistivity 123630 8406 687 830
low-resistivity 30966 4995 360 452

Table 3: CPU Time required for complete extraction for
the various methods (seconds on a Sun Sparc Ultra-1).

eigendecomposition method has the highest accuracy be-
cause a minimal uniform discretization was used. For the
PcDCT method the choice ofs has, theoretically, a negli-
gible effect on accuracy. The error in that method mainly
depends on theorder of the approximation scheme, as
mentioned in Section 3.

Tables 2 and 3 detail respectively the memory and CPU
time required by each method to extract the full substrate
conductance matrix. The results in Table 2 show that
the eigendecomposition method as well as the acceler-
ated precorrected-DCT algorithm are considerably more
efficient than the Green’s function method in terms of
memory requirements. The accelerated precorrected-DCT
algorithm requires about 3 times less memory than its un-
accelerated counterpart and almost 20 times less memory
than the Green’s function method. Table 3, on the other
hand, shows that the precorrected-DCT method is ex-
tremely efficient in terms of computational cost showing
speedups of over an order of magnitude over the unaccel-
erated version and as high as 180 over the Green’s func-
tion method for the most CPU-intensive problem (on aver-
age two orders of magnitude speedup are obtained over the
Green’s function method).

6 Conclusions
In this paper we presented an efficient algorithm for extrac-
tion and modeling of substrate coupling effects in mixed-
signal designs. The algorithm, based on a precorrected-
DCT algorithm that can be used to accelerate operator ap-
plication in BEM methods, was shown to be both compu-
tationally and memory efficient. Speedups of up to two or-
ders for magnitude, together with significant memory sav-
ings were obtained on the examples presented, with con-
trollable accuracy, thus enabling the analysis of large por-
tions of mixed-signal integrated circuits.
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