C-based Synthesis Experiences with a Behavior Synthesizer, ” Cyber”

Kazutoshi WAKABAYASHI
C&C Media Research Laboratories, NEC Corp.
4-1-1 Miyazaki Miyamae-ku Kawasaki 216-8555, Japan

wakaba@ccm.cl.nec.co.jp

Abstract

This paper presents C-based behavioral hardware de-
sign environment. Initially, we discuss motivations
of the design environment and the merits and demer-
its of the C language as a behavioral hardware lan-
guage. The configuration of the environment of which
main component is a behavioral synthesizer “Cyber”,
is presented. Then, we explain various aspects of the
C-based design method using some design erperiences
for both control dominated circuits and data intensive
circuits. Lastly, we summarize current status of our
C-based design and discuss problems to diffuse C-based
design method widely.

1 Motivation
1.1 To raise level of abstraction

The importance of top-down verification has been
emphasized. Hardware algorithm should be verified
at behavioral level first, then cycle behavior should
be verified at RT level. However, not so many de-
signers describe behavioral description, but they start
with “synthesizable” RT description. The main rea-
son might be that they don’t like to describe two
different descriptions at behavior level and RT level,
since describing their design in a formal language cor-
rectly(syntactically and semantically) itself, is time
consuming task. By any way, description for simu-
lation and synthesis must be the same. Consequently,
a practical behavior synthesis system which allows de-
signers to describe their design just at “synthesizable”
behavior level as a final description, is most important
to realize C-based algorithmic hardware design envi-
ronment.

1.2 Why C-based synthesis?

Our behavior synthesis system, “Cyber” accepts
behavior descriptions in either C or behavioral VHDL.
We are promoting C-based design more than VHDL-
based, since behavioral VHDL is not powerful enough

to describe control dominated circuits of complex tim-
ing. In addition, C simulation is faster than VHDL
simulation, and C model is convenient for HW/SW
Co-simulation, also C development environment is of
good quality, inexpensive and widely diffused.

Extensions and subset: However, C language re-
quires additional semantics to describe hardware ac-
curately. First, we extend C to support “bit-length”
and “in/out port” declarations as inevitable nature
for hardware. Secondly, we include “synchronization”,
“clocking(cycle boundary)”, “concurrency” for control
dominated area. Lastly, various data transfer types,
such as register, terminal, latch, tri-state transfer, are
introduced for lower level description of control dom-
inated circuit. The second and third extensions are
NOT necessary for many circuits. These extensions
aims to make the language cover both behavioral and
RT levels seamlessly, which enables designer to tune-
up the C code as in detail as he like.

Also, to synthesize high quality hardware, point-
ers for dynamic data structure, dynamic allocations
and recursions are deleted from “synthesizable” sub-
set. Pointers which are located on linear memory
space are very harmful to speed up the synthesized
circuit. Run-time dynamic features are not realistic
for hardware synthesis since all necessary components
have to be fixed at synthesizing (compilation) time.
We call the subset of C with above extensions as “Be-
havior Description Language (BDL)”.

2 C-based hardware design environ-
ment

Our behavior synthesis system “Cyber” reads be-
havioral C(BDL) and VHDL, and generates “logic
synthesizable” RT descriptions in C(BDL), Verilog,
VHDL, NEC original RT language and internal format
to our logic synthesizer (Fig.1). Designer can verify
his hardware algorithm by C (or behavioral VHDL)
simulation and verify cycle behavior at RTL simula-



[S——
‘ ] Software *HW/SW Co-simulation
VHDL —> +SOC System simulatio

Pl
,,,,,,,,,,,, C »| C compile
&

— S S
Xtende Translatof—
Hardware bithandling """
Constralnts@ infout port
\
Area,Delay,

—
t
2 Cyber estimation ﬁ

Verilog, [S———"1 ™. - Cycle accurate sim.
- ) f——————p . .
VHe[t)cL RTL simulator Timing veri.

. Property Checker

Power estimation
FPGA (emulation

A

Bit accurate sim.
Algorithm veri.

on
3
5]

a
ICIRY)
(@]
=
@
o
c
]
b

Figure 1: C-based Hardware Design Environment

tion. It is very important that algorithm and timing
verification can be done separately. Currently, a de-
signer has to find out both algorithm bugs and timing
bugs by RT simulation. This is so confusing that RT
simulation period becomes so long. Other merits of
behavioral C simulation is as follows: C simulation is
much faster (100x) than RT simulation, and a hard-
ware C model can be easily simulated with software
model then HW/SW co-simulation could be handled
with usual C environment.

Cyber generates “bit and cycle accurate C code” at
RT level, which is compilable with usual C compiler
and which runs much faster than RT-VHDL or RT-
Verilog simulator, therefore, designer don’t have to
know Verilog or VHDL. Currently, commercial logic
synthesizer users have to go through RTL Verilog or
VHDL.

In our synthesis environment, IP’s can be at any
level; behavior, RT, gate or transistor level. IP’s lower
than behavior level, are called as functions in behavior
description, and synthesized as structural components
by behavior synthesis. Many designer face the difficul-
ties in using RT level IP’s, but behavior level IP’s are
easier to use since they can be various number of cycle
circuit and can be dissolved into a main process at be-
havior synthesis phase, where IP’s and main process
can share hardware resources. We believe behavioral
IP’s might be as useful as library functions in software.

The difficulties for C simulation is “bit accurate”
simulation, which is very important especially for DSP
area; e.g. graphical filters, encryptions. As stated in
the previous section, BDL, an extended C language,
has bit handling expressions such as bit-length decla-
ration, bit extraction, concatenation. The BDL de-
scription is automatically transformed into bit accu-
rate C code. The important thing is that designer

describes only one description both for behavior simu-
lation and behavior synthesis. All modifications, even
if they derived from the found bugs or delay problems
at RT simulation or gate simulation, should be made
at behavioral description. For such sake, back anno-
tation function from RT or gate level to BDL(C) is
very important. In our environment, generated RT
description has tags to corresponding behavior (e.g.
line number). In addition, snap-shots(e.g. dump or
print command) for some variables in behavior, are
passed to synthesized RT description. The designated
variables are dumped also at RT simulation. Mapping
information from variables to registers, from arrays to
memories, from operations to function units are also
provided. It is also easy to find out corresponding be-
havior code from generated gate level circuits, even if
they are synthesized by a commercial logic synthesis
tool, since the generated micro architecture has some
rules of structure and and regular naming rules.

Additional attractive merit of C-based synthesis
is empowering property checking. Current property
checker can verify only small circuit with a few hun-
dred FF’s, however, with information from behavioral
synthesis system, it can verify much larger circuit.

Since Cyber has 10 years history, we received many
requests from designers, and we implemented so many
synthesis options to generate various types of circuits
according to circuit constraints. Some of those syn-
thesis features will be explained in the next section
with design examples.

3 Issues through design experiences

In this section, we discuss several issues for C-based
synthesis methodology with some successful design ex-
periences.

3.1 NIC chip for PC cluster (Control
dominated circuit)

Firmware or hardware for large embedded con-
troller? We designed a network interface card (NIC)
chip for Windows NT cluster, based on the “Virtual
Interface Architecture” by C-based synthesis with Cy-
ber. This chip has very complicated control, so ini-
tially, designers try to design a master controller with
firmware for this chip since designing this controller
at RT level is too complex. However, this NIC chip
requires 1.25Gbps and this speed was a bit too fast
for firmware control. Therefore, they decided to try
C-based behavioral synthesis. The behavior descrip-
tion is 23,000 lines in BDL (“clocking” expressions are
used), which consists of more than 20 parallel commu-
nicative processes. The synthesized circuit contains



more than 1,000 states in total. The largest con-
trolling FSM has more than 300 states. This chip
is so complicated that one of the designers said, “we
couldn’t design such complex NIC chip if we haven’t
used behavior synthesis”. Also, he added, “behavior
description for Cyber is much easier than firmware
description, because we can use flexible control like
multiple branches and we don’t have to worry about
data transfer problem between registers and busses
which is essential for firmware design”. The chip area
was reduced by approximately 40% and performance
was improved by around 30% from designers expecta-
tions. This example shows that many MPU((software)
controlled chip can be replaced by faster and lower-
power hardware since the hardware can be synthesized
from the original C program for software control. This
means behavior synthesis enlarges hardware domain
for embedded controllers.

Controlling delay of FSM: The delay of control-
ling FSM is not negligible to that of datapath in con-
trol dominated circuits. Thus, minimizing FSM delays
is a crucial synthesis task. State encoding techniques
at logic synthesis is not powerful enough to control de-
lays and area of large FSM, so we apply an unique be-
havioral partitioning technique which can partition a
FSM into several FSMs of any number of states. This
partitioning give us controllers of target performance.

3.2 DSP chip for CCD video camera
(Data intensive circuit)

Design unit size for C-based synthesis: Real
time color graphic processor for CCD video cam-
era, consists of many modules, e.g. frame buffer
read/write part, black level adjustor, matrix trans-
former, white balancing, high pass filter, gamma ad-
justor, etc. Those modules are appropriate size for
RT-based design, or logic synthesis, and it is OK also
for C-based behavior synthesis. However, they are too
small to take full advantage of C-based synthesis. We
synthesized this whole chip as one synthesis unit. The
above modules are dissolved into one process.

Automatic pipelining: The whole behavior is syn-
thesized as a sequential circuit of 10 cycles at first.
Then, it is automatically transformed into a pipelined
circuit which feeds data every cycle with 10 cycle la-
tency. The behavior included conditionals of different
number of operations, which is not easy for manual
pipelining. Automatic pipelining of entire behavior is
a very effective synthesis function for DSP area.

Fast simulation by rapid-prototyping: RT sim-
ulation for graphical data processing takes very long
time, such as 1 day long for one frame. Then, as a
fast cycle accurate verification tool, our environment
provide FPGA emulator which is rapidly synthesized
from the behavior. The turn-around-time from behav-
ior to FPGA is not so short like software simulation,
but not so long. For this case, 10 seconds for Cyber
synthesis, 10 minutes for logic synthesis and 40 min-
utes for commercial FPGA layout and FPGA board
configuration. Designer found out an “algorithm” bug
which occurs only after one whole frame is processed.
This kind of bugs are difficult to find by RT simula-
tion.

An advantage of our emulation on our C-based envi-
ronment is that designer can describe debugging func-
tions (e.g. observation of state register from IO pins,
check illegal conditions and output alarm to I0’s) in
a behavior (by #ifdef in C) and synthesize the debug-
ging circuit onto the FPGA of which only IO pins can
be probed. Final circuit without debugging circuit can
be synthesized just by changing compile option.

This C-based synthesis environment enable us to
designed this chip just with one man-month, while it
took 10 man-month by RT-based design.

3.3 v42bis data compression

Existent C program into hardware: The C
codes for the above two examples are newly described
as a hardware behavior, but this example is initially
described as a C application program and then used
as a hardware description. The modifications to the
existent software is proceeded as follows: original C
description feeds entire ASCII file from the standard
input, then generates compressed file to the standard
output. Designer changed the program flow such that
one ASCII character in a FIFO is fed and compressed
in sequence. Then, he add some descriptions such as
handshaking with FIFO, initial request, flush request,
etc, to satisfy the hardware IO specifications. Lastly,
he modified integer variable into smaller bit length(1,8
or 12bit) variable to get a smaller circuit. The mod-
ified C(BDL) can be compiled by usual C compiler
and also synthesized in a minutes by Cyber. Though
it is said that v42bis data compression algorithm is not
suitable for hardware since the algorithm is sequential,
this V42bis data compression chip is synthesized and
successfully verified just with one week.

3.4 SDH AU pointer controller

Application specific synthesis: This example is
the first commercial chip designed by Cyber in 1994.



In SDH network, many channels data are transmitted
by time-multiplexed way. Though the processing of
one channel is complicated, time-multiplexed behavior
for many channels makes design more difficult, even if
it is described at behavior level. Time-multiplexing
is a typical problem for transmission equipments, so
we provided domain specific synthesis function. This
function generates circuit for time-multiplexed data
automatically from the behavior for one channel.

The synthesized circuit and manual design has very
different architecture, even though their IO behaver is
equal. C-based synthesis gave us not only 1/10 de-
sign period, but less area and better performance chip
than manual design. This example shows us that ap-
plication specific synthesis could be a strong design
leverage.

3.5 DES Encryption

Processor vs virtual computing: The feature of
encryption algorithm is long bit-length data(64bit,
128bit) operation and many bit-extraction and -
insertion operations, which is realized by “shift” and
“mask” operations in C language, These data type
and operations are not performed efficiently by gen-
eral purpose processor. We experimented to compare
the performance of synthesized FPGA and a Pentium
processor for a DES encryption program. The result
is remarkable. Even though the clock frequency of
FPGA is less than 1/10 of Pentium, encryption speed
of FPGA is 800 times faster than Pentium.! This
means the encryption code on Pentium requires 8,000
times more cycles than synthesized FPGA dedicated
to encryption. This performance of the FPGA syn-
thesized from C program, gives us a dream of “vir-
tual (reconfigurable) computing” concept for embed-
ded system and also for general computing system.

4 Summary

As discussed above, C-based synthesis has already
reached at practical phase. Actually, it leverages hard-
ware design and enlarges hardware domain for embed-
ded systems. This design methodology is suitable for
HW/SW co-design or System-On-Chip design. Be-
havioral IP’s, and reuse of behavior description would
be a key to cope with huge SOC chips.

I'We measured the Pentium speed on Windows95 by echoing
characters on the display. Therefore, Pentium speed includes
file I0’s. However, if you encrypt your data on your windows
machine, this is the encryption speed you can get. In addition,
Cyber, of course, is able to generates various speed circuit. We
picked a moderate sized circuit.

However, there are many barriers to introduce C-
based behavioral hardware design methodology to real
design teams. Design teams for large equipments
are hierarchically constructed such as system design
group, RT design, circuit design and layout design.
Many system designers use human language as a spec-
ification language, and unfortunately, not many of
them know C language. Currently, system designer
only have to pass their specification to RT designers,
and RT designer have to verify algorithm and cycle
behavior formally by RT simulation. However, C-
based design methodology requires system designers
to formalize their design and to simulate it. They
are not familiar to CAD tools and sometime don’t
like to use them. Secondly, not many RT designers
know C language, either. Since they are accustomed to
concurrent language like RT-VHDL, RT-Verilog, they
say they feel sequential language like C as somewhat
strange. They also claim that they feel anxiety to
design circuit without images of structural RT com-
ponents. Lastly, behavioral synthesis tool must be-
come more optimizing power than C compiler since
requirements for size and speed for hardware is more
strict than software. Current behavior synthesis is not
mature enough to generate excellent circuits without
tune-up the behavioral description. Manuals telling
what C description produces good hardware must be
provided. We are implementing new synthesis func-
tions every week, which enables us to synthesize better
quality circuits. However, too many synthesis options
confuses users. Automatic selection of these synthesis
options is important, though it is very difficult since
good circuit is varying according to the constraints.

On the other hand, good news is that C-based hard-
ware synthesis conducts software designers to come
into hardware fields. Embedded system divisions with
large software group and small hardware group, didn’t
try to design chips by themselves instead of software
on processor, since they believe chip design costs huge
man-power. However, they began to think of synthe-
sizing chips from their C programs by tuning it for
hardware by the proposed environment. We found
that good software designer describe good C code for
hardware by our training experiences. Finally, we be-
lieve that hardware design at 2000’s will be dominated
by C-based behavioral design instead of RT-based de-
sign.



	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index


