
Hardware Synthesis from C/C++

Abhijit Ghosh, Joachim Kunkel, Stan Liao
{ghosh, kunkel, stanliao}@synopsys.com

Synopsys Inc. 700 E. Middlefield Road, Mountain View, CA, 94043 U.S.A

Abstract
Before attempting to synthesize hardware from a pro-
gramming language like C or C++, we need to introduce
additional semantics to be able to describe hardware
behavior accurately. In particular, concurrency, reactiv-
ity, communication mechanisms, and event handling se-
mantics need to be added. Also, a synthesizable subset of
the language needs to be defined, together with synthesis
semantics for programming language constructs. With
these enhancements, it is possible to create C/C++ de-
scriptions of hardware at the well-understood RTL and
behavioral levels of abstraction, providing an opportu-
nity to leverage existing, mature hardware-synthesis
technology that has been developed in the context of
HDL based synthesis to create a C/C++ synthesis sys-
tem. In this paper, we will present some of the key ingre-
dients of a C/C++ synthesis system and elaborate on the
challenges of hardware synthesis from C/C++.

Introduction
The high level of integration provided by today’s proc-
essing technology has brought new challenges in the de-
sign of digital systems, where entire systems consisting of
hardware and software are being integrated into single
systems-on-chip. This trend challenges EDA tool devel-
opers to provide tools that support the development of
such systems and provide the productivity improvements
required to design such systems in a cost-effective man-
ner.

For most design flows in use today, designers at the sys-
tem level start the design process by creating C/C++
models of their system. Often, the aim is to validate their
algorithms and the system functionality. C/C++ is the
language of choice for several reasons. Firstly, significant
part of the system is implemented in software, which is
often written in C/C++ and can be plugged into the
model. Secondly, C/C++ provides capabilities that are
beyond traditional HDL, allowing compact descriptions
at a high level of abstraction. However, there is no uni-
form modeling style for modeling systems in C/C++ and
most designers develop their own modeling style. There-
fore, their models are of little use to anyone but them-
selves or their immediate group. In most cases, these
models are thrown away and a written specification (de-
rived from this model) is handed to the implementers of
the system. A written specification is often ambiguous,
open to interpretation, incomplete and inconsistent. More

importantly, there is no way to verify the correctness or
consistency of such a specification. Since the implemen-
tation is based on this specification, the time spent in
tracking bugs and inconsistencies in the specification has
a negative impact on designer productivity.

Many designers have realized the problems with the
written specification and have embarked on creating ex-
ecutable specifications. An executable specification is a
model (typically in C/C++) at a high level of abstraction
that captures the complete system functionality and tim-
ing (to some extent). This model is written in a well-
established style so that it can be developed by one per-
son and used by another. An accurate executable specifi-
cation can provide tremendous benefits during the design
of complex systems. These benefits are:

• Avoids inconsistency and errors and helps in ensur-
ing completeness of the specification.

• Ensures unambiguous interpretation of the specifica-
tion.

• Helps in validating system functionality before im-
plementation begins.

• Helps in the creation of testbenches that can be used
throughout the design process.

However, an executable specification in C/C++ solves
only half of the problem of modern system design. In
today’s methodology, this executable specification has to
be converted into an implementable HDL (Verilog or
VHDL) model. There are several disadvantages to this
approach. Firstly, recoding a C/C++ specification into a
HDL is manual and time consuming. This process is also
error prone, requiring significant effort in verifying the
HDL code. Also, in today’s methodology, the imple-
mentable model is at the register-transfer level, which is
at a lower level of abstraction than the executable specifi-
cation. Therefore, the designer has to manually create the
datapath and the finite-state machine. These are time con-
suming tasks.

In a C/C++-based design flow, designer productivity can
be significantly improved because we can eliminate
translation into an HDL by synthesizing directly from
C/C++ specifications. This not only reduces translation
time, but eliminates bugs during translation which can
take significant time to track down. In addition, we can
also ease the verification bottleneck by reusing the test-
benches that were developed during system validation.
Finally, significant productivity gains can be obtained by

synthesizing from a higher level of abstraction than reg-
ister-transfer level (RTL).

The promise of increased productivity in a C/C++-based
design flow has led us to develop a C/C++-based design
environment, called Scenic. In this paper, we will present
parts of this environment (discussion of the entire envi-
ronment is beyond the scope of this paper). At first we
will present the modeling constructs needed to model
hardware efficiently in C/C++. We will then present some
details on how a C/C++ specification can be synthesized.
We will conclude with some observations on the chal-
lenges facing C/C++ synthesis tool developers.

Modeling Hardware in C/C++
C/C++ are software programming languages and have
little support for describing hardware efficiently. To
model hardware in C/C++, we need the following lan-
guage features that are not present in the C/C++ lan-
guages.

Concurrency: Hardware is inherently parallel, while
C/C++ programs are inherently sequential. Therefore, we
introduce the notion of processes, which are programs
that execute concurrently. The semantics is akin to that of
communicating sequential processes. Instead of extend-
ing the language through a new syntactic construct, we
encapsulate concurrency in an object or class definition.
We can then build hardware processes by using sub-
typing and virtual function facilities of C++. Scenic proc-
esses have semantics similar to always blocks in Verilog
or a process loops in VHDL.

Signals: In software, parallel processes communicate
using primitives such as semaphores, critical regions, etc.
Such primitives assume that the processes have easy ac-
cess to each other’s states, which is not true for hardware.
Therefore, our hardware processes communicate with
each other through signals (Scenic signals have wire se-
mantics and therefore easily implementable in hardware).
Once again, instead of adding new syntactic constructs,
we use template classes for signals and use template in-
stantiation to derive signals of particular types.

Reactivity: Hardware is inherently reactive, i.e. it is in
continuous interaction with its environment. Reactivity is
essential to describing hardware systems at all levels of
abstraction. We implement reactivity through a hybrid of
event-driven and process-driven approaches. More details
on this can be found in [1].

Hardware data types: Arbitrary precision signed and
unsigned integers, bit vectors and fixed point types are
needed to model hardware efficiently. We model these
data types as classes.

A complete description of all hardware primitives sup-
ported in the Scenic environment is beyond the scope of
this paper. The following is an example of a 16-bit CRC
generator described using the classes that are provided

with the Scenic environment (some modeling constructs
are highlighted in bold).

struct crc_ccitt : public sc_sync {
const sc_signal<bool>& reset;
const sc_signal<bool>& in;
sc_signal_bool_vector& out;

crc_ccitt(const char * NAME,
sc_clock_edge& CLK,
const sc_signal<bool>& RESET
const sc_signal<bool>& IN,
sc_signal_bool_vector& OUT)

: sc_sync(NAME, CLK), reset(RESET),
 in(IN), out(OUT)
{

watching(reset.delayed() == 1);
}

void entry();
};

void crc_ccitt::entry()
{

bool s;
sc_bool_vector crc(16);

if (reset == 1) {
out = 0;

}
wait();

while (true) {
crc = out;
s = crc[15] ^ in;
out = (crc.range(14,12), crc[11] ^ s,

 crc.range(10,5), crc[4] ^ s,
 crc.range(3,0), s);

wait();
}

}

Synthesis from C/C++
An executable specification is generally not ready for
synthesis. Refinement is the process by which just enough
implementation details and constraints are added to an
executable specification to make it an implementable
specification, i.e. a specification that is synthesizable and
can achieve good quality of results. The amount of im-
plementation detail added depends on the degree of con-
trol over synthesis that the user wants. Typically, the
more control the users want, the closer to register-transfer
level (datapath + finite-state machine) of detail they have
to specify. If a higher level of abstraction, such as be-
havioral level is desired, then the user loses some control
over the architecture because the synthesis tool selects it
(though the user has some control over directing the tool
towards the right architecture, e.g., by specifying con-
straints on resources and timing).

Refinement consists of three steps. The first step is called
data refinement, whereby C/C++ built-in types are re-
placed by data types of the right precision determined by
the user. One example of such refinement is the refine-
ment of floating-point types to fixed-point types.

The second step is control refinement. The most impor-
tant aspect of control refinement is specifying the in-
put/output behavior of each block in the design, i.e. when
inputs are sampled and when outputs are produced. Dur-
ing control refinement, a user may decide what level of
abstraction she desires to synthesize from. For a behav-
ioral level of abstraction, defining the I/O behavior and
setting the design constraints is all that is required. To
refine a design to RTL, the user has to create the finite-
state machine and the datapath herself.

The third step in refinement is to ensure that the appro-
priate coding style has been followed and that all synthe-
sizable models use constructs from the synthesizable sub-
set. The synthesizable subset for C/C++ consists of the
entire C language except the obvious constructs that do
not have a well defined hardware semantics, namely dy-
namic memory allocation, pointers, arbitrary gotos, re-
cursion, etc.

Since the C/C++ language can support various levels of
abstraction, there are few restrictions on what can be
specified for synthesis. The hardware semantics of C/C++
operators and expressions involving such operations are
similar to that of most HDLs. Semantics of control flow
statements like if-then-else, switch-case, while, etc. are
also well defined. A structural datapath consisting of
arithmetic operators can be specified as easily as a finite-
state machine. A behavioral model (one without an ar-
chitecture) can specified more easily.

The C/C++ synthesis tool leverages state-of-the-art and
mature behavioral and RTL synthesis and logic optimi-
zation capability. The C/C++ language description is
parsed into an intermediate representation on which vari-
ous compiler optimizations like constant propagation,
common sub-expression elimination, etc. are performed.
Existing work in parallelizing compilers can be leveraged
to discover loops that can be parallelized or pipelined,
and memory accesses that can be disambiguated (e.g., it
may be possible to determine that a[i] and a[j] do not
access the same memory location), thereby eliminating
unnecessary dependencies and increasing the throughput
of a design. Depending on the level of abstraction of the
input description, the intermediate representation is either
converted into a control-data-flow graph that can be used
for behavioral synthesis, or is converted into a form that a
hardware generator (also called netlister) can use to gen-
erate hardware for RTL synthesis. Existing RTL and be-
havioral synthesis algorithms can then be leveraged to
produce quality of results that are comparable to those
obtainable through traditional means.

Apart from being used for ASIC implementation, such a
synthesis tool can provide other benefits. It can be used
with low optimization effort for area/speed estimation. It
can also be used for exploration of the architecture of
hardware blocks.

Challenges
For the most part, synthesis from C/C++ descriptions is
similar to synthesis from HDL descriptions, which is a
mature technology today. However, C/C++ presents some
unique challenges for synthesis. Firstly, synthesis of de-
scriptions using pointers is difficult. Due to effects such
as aliasing, analysis of pointers and where they point to is
non-trivial. Though one can restrict synthesizable pro-
grams to exclude pointers, this problem cannot be ig-
nored in the long term because users will demand the
flexibility of pointers. There is some progress in this area
(see [2]), though more work needs to be done.

C/C++-based synthesis will enable a new set of designers
currently unfamiliar with HDLs to design hardware.
Some of these designers will have more experience in
software than in hardware, especially in synthesis and
synthesis friendly coding styles. The challenge for the
tool developer is to provide a coding style checker that
will check not only for the synthesizable subset, but will
check for coding styles that produce poor quality of re-
sults. This is a difficult problem because a “good” coding
style is hard to quantify.

To increase designer productivity further, parts of the
refinement process, in particular data refinement, should
be automated. Existing work in floating-point to fixed-
point refinement [3] should be extended to cover integral
data types.

Another challenge is in extending the synthesizable sub-
set to include object-oriented features like virtual func-
tions, multiple inheritance, etc. More work is required to
define the object-oriented semantics for hardware before
synthesis can be attempted.

Finally, C/C++-based synthesis will be acceptable only if
the entire flow works. This means that a complete verifi-
cation flow and interoperability with existing HDL mod-
els has to be established before C/C++ synthesis tools get
adopted.

References
[1] S. Liao, S. Tjiang and R. Gupta, “An Efficient Im-
plementation of Reactivity for Modeling Hardware in the
SCENIC Design Environment”, Design Automation
Conference, pp. 70-75, June 1997.

[2] L. Semeria and G. De Micheli, “SpC: Synthesis of
Pointers in C. Application of Pointer Analysis to the Be-
havioral Synthesis from C”, International Conference on
Computer-Aided Design, pp. 340-346, November 1998.

[3] M. Willems, V. Bursgens, H. Keding, T. Groetker, H.
Meyr, “System Level Fixed-Point Design Based on an
Interpolative Approach”, Design Automation Conference,
pp. 293-298, June 1997.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

