
1

Interoperability of Verilog/VHDL Procedural Language Interfaces

to build a mixed language GUI

Françoise Martinolle, CharlesDawson, Debra Corlette, Mike Floyd

Cadence Design Systems, Inc.

1. The mixed language design and verification
problem

1.1 Statement of the problem

Nowadays, designs become more and more complex and
are often developed by several teams that may use different
Hardware Description Languages. Mixed Verilog/VHDL
designs are proliferating because teams choose different
languages or because they are importing intellectual
property libraries of VHDL or Verilog cells. The authors of
paper [1] which compares Verilog and VHDL semantics
conclude that there is enough overlap between the two
languages for tools vendors to consider building bilingual
tools such as compilers, simulators etc… In this paper we
analyze the requirements for a mixed language GUI and
explain how the compatibility and interoperability of the
standard Verilog and VHDL language procedural interfaces
was key to build SimVision, Cadence NCSimulatorTM

graphical debugging and verification environment. The
principles highlighted in this paper can also be applied to
other kinds of applications such as Verilog/VHDL co-
simulation, testbench generation etc… In the following, we
will focus on the problems inherent to a Verilog/VHDL GUI
development.

In a mixed language design, the language boundaries are
very clearly defined and language construct mixing exist
only at the instance level. VHDL can be instantiated from
within a Verilog module and Verilog modules can appear as
sub-instances of a VHDL instance. Usually, models are
integrated by the generation of a shell or by direct
instantiation. The shell methodology seems to be the
preferred way for importing foreign models. A shell is the
interface to the model and is written in the HDL language
of the instantiating parent scope. A shell does not add an
extra level of design hierarchy; it simply places the behavior
of the imported model in the design. The shell bridges the
differences in the language syntax and creates
correspondence between the language constructs. All
communication issues between the languages are localized
in the shell. In the case where a shell interfaces a VHDL
description to a Verilog environment, the shell is a Verilog

compliant module definition equivalent to the VHDL entity
description. The shell only specifies the interface (ports,
parameters) while the behavior is left expressed in VHDL.
This constitutes a typical mixed language use model. In this
model, the challenges for a debug and verification
environment are:
1) to have the capability to refer to, select any object,
whether it belongs to a Verilog or VHDL instance,
2) to be able to navigate through the hierarchy and follow
net connections in either language domains,
3) to be able to set, get the value of any object in the design,
4) to have a language sensitive graphical debug context
(menus, messages) which adapts to the user actions.

1.2 A need for a mixed language procedural
interface

In such a context, it is important to have a software layer
between the GUI and the simulator or elaborator that
understands this use model in order to provide a clear,
simple view of the design. For example, shells should not
create an extra level of hierarchy and should be recognized
as means of interfacing foreign models. Port connections
should not show the artificial shell ports. Object values of
any VHDL or Verilog type should be representable. This
stresses the point that it is critical to define a Procedural
Interface that can access static and runtime information
independently of the language. It is desirable:
1) that a mixed language design for which artifacts of
integration can be hidden, is presented to the user,

2) to have a common methodology to access information or
to interact with the tool independently of the language,

3) to provide a smooth crossing of language domain,

4) that the unified design of the interfaces does not prevent
access to HDL specific information.

Therefore the PLI software layer should provide:

1) a simple post-elaborated view of the mixed HDL design,

2) a cohesive and unified way of getting language
information independently of the language,

3) a clear definition of the language boundaries and

Interoperability of Verilog/VHDL Procedural Language Interfaces to build a mixed language GUI

2

behavior of the interface functions at the boundaries,

4) complete support of the HDL specific semantical
information.

At Cadence, we had taken these requirements into account
and designed a Procedural Language Interface that can
handle both languages. For that, we chose to build a VHDL
Procedural Interface highly compatible with the standard
Verilog Procedural Interface (VPI) [2], [4]. The VHDL
Procedural Interface that we call VHPI is based on the same
concepts as the Verilog Procedural Interface, shares the
same architecture and software components [3], [6], [7].
From the user perspective, there is really only one interface
to learn since the mechanisms for accessing or modifying
HDL data are the same. A formal graphical information
model expresses specific language data access. Interface
operations are defined to work off the underlying
information model. The interoperability of the Procedural
Interfaces is expressed by the intersection of the language
specific information models. It relies on the definition of the
interface semantics at the language boundaries and on the
use of the same access mechanisms and Procedural
Interface functions regardless of the language. This results
in a very powerful interface that provides a smooth crossing
of the language domains. The next section covers the
advantages in using the VPI and VHPI interfaces to develop
a mixed language GUI. Details about the VPI and VHPI
interfaces can be found in [3], [4].

2. SimVision, a VHPI and VPI application

Our simulator GUI acquires all of its instantiated design
information, source information, value information, and
connectivity information from VPI and VHPI. VPI was
initially chosen because of the fact that an existing standard
interface provided all of the information required to produce
a graphical debug environment for Verilog. By using a
standard interface, additional manpower was not required to
duplicate existing functionality.

Both VPI and VHPI provide an information model and a
small, uniform, well-defined interface for obtaining this
data. The use of abstract handles to objects and consistent
mechanisms for accessing both handles and information
about the handles allowed for a clean, homogeneous
architectural boundary to be implemented between the GUI
and VPI/VHPI. The use of this clean architectural layer is
important. The consistency between the way VHDL and
Verilog data is described and accessed by the interfaces
allows this layer to be easily extended to cover both
languages. The traversal of objects and hierarchy in both
VPI and VHPI is identical. This allows for maximum code
reuse and minimal code additions in order for hierarchy
traversal to function for both languages. Since the
information models and access methods are nearly identical,
rapid development of a mixed language user interface could

take place. For example, the Navigator window that
displays the design hierarchy was extended to handle
VHDL and mixed language with one-man week of effort.
The amount of code changes for access to design data was
minimal and straightforward. Most of the code involved
was in properly displaying objects from the different
languages. The fact that VPI and VHPI navigation
functions return an abstract handle regardless of the
language allows for a mixed language design traversal to
happen. For each handle returned, the language of the
handle can be obtained by looking at the handle type. Once
the language is obtained, VPI or VHPI calls for more
specific information about the object can be made. This
allows the GUI to recognize a Verilog Module that is
instantiated in a VHDL instance and to adjust accordingly
when the user scopes into this module. When a language
boundary is crossed, the GUI automatically modifies the
menus for Verilog or VHDL specific terminology and the
scope change is a transparent operation to the user.

3. Conclusion

In this paper we have shown the reasons behind the
development and use of compatible standard interfaces for
developing a mixed language GUI. We have determined
VPI and VHPI requirements and extensions to handle
mixed language applications. This can enable third party
tool developers or internal CAD groups to easily write code
which can operate on a mixed language design. We are
confident that VHPI and VPI compatibility is a very
promising aspect for mixed language application
development. The VHPI Cadence interface is currently used
for input to the specification of a standard VHDL
Procedural Interface under the IEEE standards
organization.

References:
[1] VIUF spring 1996, "Verilog: Dialect of VHDL " John Willis,
Gabe Moretti, Paul Menchini.
[2] IEEE Std 1364-1995, IEEE Standard Hardware Description
Language Based on the Verilog Hardware Description Language
PLI TF and ACC interfaces Chapters 17-21, VPI interface
Chapters 22 and 23.
[3] IVC/VIUF 1998 "A Procedural Interface for VHDL and its
Typical Applications", March 16-18 1998, Françoise Martinolle,
Adam Sherer.
[4] IVC 1996, "The Verilog Procedural Interface for the Verilog
Hardware Description Language" Charles Dawson, Sathyam
Pattanam, David Roberts.
[5] IVC 1995, "INCA: A Next-Generation Architecture for
Simulation " Jay Lawrence, Cary Ussery.
[6] VIUF fall 1996 "VHPI, A Programming Language Interface for
VHDL" Doug Dunlop.
[7] BMAS 1997 IEEE/VIUF International Workshop on
Behavioral Modeling and Simulation1, "VHPI a VHDL Procedural
Interface" Françoise Martinolle, Sathyam Pattanam, Debra
Corlette.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

