Hierarchical Constraint Transformation using Directed Interval Search

for Analog System Synthesis

*

Nagu R. Dhanwada, Adrian Nunez-Aldana and Ranga Vemuri
{nagu,anunez,ranga} Qececs.uc.edu
Laboratory for Digital Design Environments
Department of ECECS, University of Cincinnati
Cincinnati, OH 45221-0030

Abstract

In this paper, we present a hierarchical approach for
constraint transformation. The important features of
this are: a genetic algorithm (GA) based search en-
gine that computes design parameter ranges, a hierar-
chically organized characterization mechanism based on
the concept of directed intervals that assists the search
engine and an analog performance estimator. FErper-
mments were conducted comparing the hierarchical ap-
proach with a flat bottom-up one. The results obtained
demonstrate the cffectiveness of the former approach.
Erperimental results highlighting the impact of using
the characterization information within the constraint
transformation process are also presented.

1. Introduction and Motivation

Crucial to a top—down mixed-signal design process [12]
is a mechanism to propagate the specifications and
constraints on the design elements used at one level
to those at the next level. This task of transforming
the system-level specifications onto component level
constraints is called Constraint Transformation [3].
Efficient automation of this task is one of the the most
important steps in automating the design of analog and
mixed analog-digital systems.

VASE is a mixed-signal synthesis system being devel-
oped at the University of Cincinnati [17]. Figure 1 shows
the analog synthesis flow in VASE. The VHDL-AMS
compiler and architecture generator [18] transforms the
VHDL-AMS specification into net-lists of components.
The constraint transformation and component selection
step translates this system level net—list and system con-
straints onto component design/performance parame-
ters while selecting a suitable implementation for the
components from a library.

To select these components the synthesis algorithms
need information about the performance of components
in the library. The task of characterizing an analog

*This work is sponsored by USAF, Air Force Research Labo-
ratory, WPAFB under contract number F33615-96-C-1911

Anal og Behavi or
in VHDL- AVB

VHDL-AMS Compiler
and Architecture
Generator

Analog Component
Library

Analog + Constraints l

Post Synt hesis
Syst em Per f or mance

Syst em Topol ogy

Constraint Transformation
and Component Selection

Performance
Estimator

Constraints on
I'ndi vi dual Modul es

R R N + Topol ogy
Circuit Synthesis

Si zed Transistor
Net - Li st

Transi st or
Sizing from
Esti mat or

Layout Synthesis

Anal og Layout

Figure 1. Analog Synthesis in VASE

component library is complex because of the number of
interacting parameters involved. In the worst case, the
characterization information for an analog component
could be viewed as a very large table of values of
design parameters versus the performance parameters.
However, such a representation cannot be readily
used in a meaningful way by an automatic synthesis
tool. Thus from a synthesis point of view, we need a
characterization mechanism that generates information
that could be used effectively by the analog synthesis
algorithms. Thus, a component characterization
method should be an inherent part of a constraint
transformation framework. Eckmuller et al [11] present
a characterization technique based on numerical simu-
lations for CMOS analog circuits. This characterization
mechanism is geared more towards assisting the manual
design of analog circuits, rather than automatic CAD
tools. Feasibilty and performance evaluation of analog
circuits using numerical macro-modeling techniques
was proposed in [15].

There are two aspects to the constraint transforma-
tion problem: Constraint Model Generation, where
a model relating the design/performance parameters
is generated and Constraint Allocation, where actual
values are assigned to these parameters. Although the
latter problem has been addressed by many [7, 10],
there have been very few methods that perform the
entire process. Arsintescu et al [3] address the problem
of AC constraint transformation for a class of linear

continuous-time circuits using hierarchical parameter
modeling and constrained optimization techniques.
However in [3] the problem of topology selection
during the process of constraint transformation is not
considered as they start by assuming that the circuit
is fully designed a priori. At the circuit synthesis
level, Kruiskamp and Leenaerts [6] present an opera-
tional amplifier synthesis tool that does simultaneous
topology selection and circuit sizing using genetic
algorithms. Maulik et al present a method to handle
simultaneous topology selection and circuit sizing using
a mixed-integer non-linear programming method [7].
All these approaches attempt to find point values (not
ranges) for the design parameters which is equivalent
to computing a single point in the parameter space of
the system that meets the constraints.

Leenaerts in [16] presents a circuit synthesis technique
based on interval analysis. A numerical interval solution
technique 1s used to partition the design constraints.
This approach is limited by the solution method that
can handle linear equations only. On the other hand
our technique that is based on an exploration (search)
and estimation oriented approach is not constrained by
such issues.

In this paper we present an approach for performing
constraint transformation and topology selection, start-
ing from the system level. This is based on the formu-
lation of constraint transformation as a search problem.
The main features of this approach are a Genetic Al-
gorithm (GA) based search engine, a component char-
acterization method, and an analog performance esti-
mator (APE). The APE estimates the performance of
an analog circuit along with the anticipated sizes of the
circuit elements, given the various design parameters
[5]. Both component characterization and constraint
transformation are based on a directed interval repre-
sentation of the relationships between design and perfor-
mance parameters. The search engine computes ranges
for the design parameters that satisfy the system level
constraints. Each set of design parameters constitute
a sizing solution and the set of sizing solutions (corre-
sponding to the design parameter ranges) generated by
the APE aid in pruning the vast search space of an un-
derlying circuit synthesis tool. This kind of a pruning
would not be possible if the constraint transformation
step computes point values instead of intervals for the
design parameters.

Figure 2 shows the hierarchical and flat approaches to
constraint transformation. In the latter approach the
search method takes a flat view of the parameter space
of all the components in the system. This causes the
size of the search space to be huge which tends to affect
the performance of the search engine. Therefore, in

Level-1 IGA

Search Space Partitions
Level2 }o._ ./
1GA T ‘

" i
Search Space of the | GA | | WL
N Level-2
1GA

Hierarchical Approach

Figure 2. Search Space Partitioning

the hierarchical method we adopt a two-level approach
where the top-level Interval Genetic Algorithm (IGA)
acts as a search space partitioner. FEach of these
partitions generated by the search space partitioner
could be searched independently by the lower level
IGAs. Thus, such a hierarchical approach improves the
overall search process by partitioning the otherwise
huge search space into smaller segments. Each of these
partitions correspond to the component level perfor-
mance constraints that are generated by the top-level
GA. Without any component characterization infor-
mation, the search process would be oblivious to the
interactions among the various design and performance
parameters. Such knowledge about the relationships
among the design and performance parameters would
help guide the search engine. Besides, this information
should be in a form that could be readily used by the
search engine. All these necessitate the presence of a
component characterization mechanism in a constraint
transformation framework.

The characterization information is organized in two
levels. At the lowest level are the component char-
acterization tables that give the relationship between
the component design and performance parameters.
This table is generated once for each component. At
the next higher level are the system level tables. The
system level tables capture the relationships between
the component performance parameters and the system
performance. These tables have to be generated
dynamically because the relationship between the
component’s performance parameters and system
performance 1s dependent on it’s interaction with the
other components in the system net-list. This kind
of a hierarchical organization of the characterization
information helps in providing a link between the
system performance and component design parameters.

The experimentation presented compares the hierarchi-
cal approach with the flat one. We also present experi-
mental results showing the impact of using the charac-
terization information in the search process. The rest

System Net - Li st

fffffffffffffffff L

Analog

Performance

System Constraints

Characterization Estimator
Module

Search

Engine

System Level
Characterization
Table
Generator

| PerfAlloc

aract eri zation I nformation

conp #1 e conp #n

Component Level

Characterization | Comp Syn Comp Syn
Table Characteri zati on | nf or mati of 1GA1 1GAN
Generator

l Desi gn Paraneter Ranges

¥
Conponent Topol ogi es

Figure 3. The Overall Approach

of the paper describes each of the constituents of our
approach.

2. The Approach

Figure 3 shows the proposed constraint transformation
approach. It consists of an analog performance esti-
mator, a component characterization mechanism and
a GA based search engine. The analog performance
estimator is organized hierarchically and at the highest
level is the user-application level that contains symbolic
equations relating component performances to system
performance for basic configurations like the cascaded,
split and join. To estimate the performance of an
arbitrary system level net-list, the components in the
net-list are grouped into some combination of the basic
configurations by the estimator.

The top-level performance allocation IGA in the search
engine computes component performances that satisfy
the system level constraints. The system level tables for
each of the component in the given system net-list are
used by this GA to guide it’s search. For each compo-
nent, the design parameter ranges satisfying the com-
ponent performance constraints are computed by the
lower level component synthesis IGAs executing in par-
allel. These IGAs use the component level characteri-
zation tables to guide their search. In the rest of the
section we describe each of the constituents of the ap-
proach.

2.1 The Analog Performance Estimator

The analog performance estimator [4, 5] accepts design
parameters (bias current etc) of an analog circuit along
with it’s topology and determines the performance pa-
rameters (area, UGF, slew rate, etc) of the circuit with
the anticipated sizes of the circuit elements. The APE is
structured hierarchically and contains symbolic perfor-
mance equations of analog circuits at various levels of
abstraction. APE uses technology process parameters,
SPICE models of the circuit elements, and performance

composition equations for determining the performance
of the circuit at different levels of abstraction. The es-
timation and sizing are performed bottom up starting
from the transistor level through to the system level.
The highest level is the user-application level, where the
APE estimates the performance of a system comprised of
blocks in one of the basic configurations (cascaded, split,
join), given the performances of the individual blocks in
the system. To estimate the performance of an arbi-
trary system level net—list, there is a wrapper above
the user—application level that partitions the net-list
into basic configurations and then uses the APE to esti-
mate the performance. The wrapper reduces the given
system-—level net-list to one of the basic configurations
that could be estimated using the user—application level
in the APE. This is done by formulating it as a hierarchi-
cal network covering problem. The idea is to start from
the system level net—list and apply recursively a network
covering algorithm to arrive at a final basic configura-
tion. The APE also has built into it some rules that
detect the cases where transistors in the design go into
saturation, or when some basic conditions governing the
functionality of the circuit have been violated. For more
details about the APE, we refer the reader to [5].

2.2 Characterization Method

The characterization method consists of component
level and system level table generators. Both of the
tables are based on the concept of directed intervals [4].
1.e each entry in the table has a direction as well as a pair
of interval values associated with it. The interval val-
ues give the range within which the direction of change
holds good. It 1s not enough if the direction alone is cap-
tured because the direction for each of the performance
parameter need not be monotonic for the entire range
of design parameter/component performance parame-
ter values. This kind of characterization information is
targeted towards assisting a move based search engine
such as the one presented in the current approach.

2.2.1 Component Level Characterization

Component level characterization is done only once for
each component to generate the component level tables,
whose rows are indexed by the design parameters and
whose columns are the performance parameters. The
direction in which the performance parameter (column)
changes with increase in the design parameter (row)
value is stored in every cell. The direction may be —
(increase), — (decrease), or a - (constant). Also stored
is the interval value for the performance parameter
and an interval value for the design parameter. Such
a characterization process gives us the idea of how
the design parameters should be varied to achieve a
particular change in the performance. The details of
component level characterization table generation can

be found in [4].

procedure SysTableGen(Comp C, SysNetList sysnet)
begin

for all other comp’s € sysnet

set perf params to thewr MIN values
end for
Instantiate a topology for component C
SysTabl — GenSysTable(C,SysTab1)
for all other comp’s € sysnet

set perf params to their MAX values
end for
SysTab2 — GenSysTable(C,SysTab2)
merge(SysTabl, SysTab2)

end

Figure 4. Overall System Table Generation
2.2.2 System Level Characterization

The system level table for each component is gener-
ated dynamically. The rows of this table represent
component performances and columns represent sys-
tem performance. FEach entry consists of a system
performance interval, component performance interval
and a direction attribute that gives the way in which
the system performance changes with the component
performance increasing in it’s range. The characteriza-
tion method can be seen as one of sampling the search
space (component performance space) at different
points to generate information about the space that
could be used by the search engine. The number of
points being sampled depends on the width of the
component performance intervals. The characteriza-
tion method takes only a small amount of time and
does not involve moving through the entire search space.

The overall system level table generation procedure is
shown in Figure 4. This routine is invoked for each com-
ponent in the system net-list. In this procedure, first
a random topology is instantiated for the component.
This is based on the observation that the topology of a
particular component does not affect the relationship
between the component performance parameters and
the system performance. The performance parameters
of all the other components are set to their minimum
values and the system table generation procedure
GenSysTable is invoked to generate SysTabl. In a
similar way SysTab2 is generated by setting all the
other component performance values to their maxi-
mum. Finally these two tables are merged together to
form the overall system level characterization table.
Merging involves performing a union of cells in each
of the tables. If the directions in both the cells are
the same then a union of the corresponding system
performance intervals is done. If the directions happen
to be different the cell in the merged table would have
a set of directed intervals. Each set corresponds to a
unique direction value. In this case each cell in the

merged characterization table captures the relationship
between the component performances and system
performance in different disjoint regions of the system
performance space.

In the GenSysTable procedure, the performance pa-
rameters of the component are obtained first. Now, for
each of these performance parameters, the set of design
parameters that affect them are obtained by looking
up the component level characterization table. These
design parameters are moved within their interval value
(obtained from the component level table) to increase
the current component performance parameter value.
The effect of increasing this component performance
parameter on system performance is observed by calling
the system performance estimator. The idea behind
moving the design parameter values to increase the
component performances in the system level table helps
maintain the link between the system performance and
the possible design parameter values of the component.
The system performance values returned by the system
performance estimator are checked for monotonicity.
As long as the system performance parameter values
remain monotonic, the component performance and
system performance intervals keep widening. Once
there is a discontinuity in the values of the performance
parameters, the interval is closed and an entry is made
in the table. The direction part is set based on whether
the system performance value was increasing or de-
creasing with increasing component performance values.

2.3 Search Engine

The constraint transformation search engine computes
component design parameter ranges that satisfy the
system level constraints. It uses genetic algorithms,
which are stochastic search techniques based on the
mechanism of natural selection and genetics [1]. The
reason for the success of the GAs is their ability to
exploit the information about an initially unknown
search space in order to bias subsequent searches into
useful subspaces [2]. This adaptation feature of the GA
is the key to it’s success, particularly in large, complex
and poorly understood search spaces, where classical
search techniques are inappropriate. Thus, the GA is
well suited to perform the task of constraint transfor-
mation that may be seen as the task of searching the
component parameter space for a solution that falls
within the constraint satisfying region of the system’s
performance space.

The search engine is organized in two levels. At the
highest level 1s the performance allocation GA, that ac-
cepts the system net-list, system constraints, and the
system characterization table and computes component
performance values that satisfy the system constraints.
The component synthesis GAs are executed in paral-

lel for each of the components in the system net-list.
The component synthesis GA computes component de-
sign parameter ranges that satisfy the performance con-
straints generated by the performance allocation GA.

2.3.1

The first step in the GA is to suitably encode the
solution representation. After initialization, the steps
of selection, crossover, mutation and replacement are
repeated till convergence is reached. The selection step
picks the two best solutions from this set. This step
makes use of a cost function to evaluate the solution
quality. The crossover and mutation operators perturb
the selected solutions to create new ones. Finally, the
newly generated solutions are merged into the set of so-
lutions, by replacing the two worst solutions with these
This is done by the replacement method.
Once the convergence condition has been reached the
solution with the best cost function value represents
a solution to constraint transformation problem.
Typical convergence conditions would include number
of iterations, or the cost function value for the best
solution remaining the same over a number of iterations.

Performance Allocation IGA

new ones.

The solution in the performance allocation GA 1is
represented as a set of interval values. FEach interval
represents the component performance parameter val-
ues. The performance estimator for the given net-list
(which is generated by the APE) is used to estimate the
system performance. The GA assigns values to these
component performance values that satisfy the user
imposed system level constraints.

Cost Function Evaluation: The cost function
evaluation technique is used to evaluate the solution
quality. The result of this is used by the GA in the
selection process. Each solution represents a set of
points, forming a region in the system performance
space. If all the points in the solution are constraint
satisfying, then the entire solution is a constraint
satisfying one having a cost function value of zero.
The evaluation of the solution quality is done using a
two-level cost function.

The Cost Function : The IGA uses a two-level cost
function which consists of a local part and a global one,
which are shown below.

- Local Cost function

. X
— % Wi . F;
v

where N represents the number of specifications, W;
is the weight associated with that system performance
specification and F; is defined as:

Zf Pi_est Satlsfles Pi_constraint
otherwise

fi = { Pi est—Pi constraint

t—constraint

Parents
Parent 2

Original Chromosome ‘ Dl‘ DZ‘ DS‘ DA‘ D5 ‘ ‘ dl‘ d2 ‘113 ‘dd ‘(15 ‘
(o o[ox] of o] [ree [ree

‘m‘az‘ os‘ PA‘ ps‘

Desi gn
paraneter s

B -

Perf or mance
paraneters

Characteri zati on Tabl e
PL P2 P3 P4 P5

PL P2 P3 P4 PS5

oL iy -

oL - | -

o -

- -

wl~|—]— -

o
/cmlurh
CElels EREEE

Child 1 Child 2

==

[ARIR

o — =

ol

Mutated Chromosome

Figure 5. Mutation Figure 6. Crossover
P;_.s¢ 1s the value for the system performance parameter
in the current solution, and P;_.onstraint 18 the user spec-
ified constraint. Such a cost function is typical of GAs
that handle multiple constraints. This cost function
gives the average factor by which each performance pa-
rameters deviates from the constraints. The GA works
towards minimizing the cost function.

- Global Cost function which is defined as follows:

N
1
v ZZ_; local_obj_fn(i)

where N, denotes the number of points in the region.
This global cost function returns a value of zero only if
all points in the region represented by the solution are
constraint satisfying.

Directed Interval based Operators:

During the early part of a search, we would like to have
many individuals explore different parts of the search
space. But once a promising region has been discovered,
we would like to focus the remaining search in that
The directed interval based operators defined
here to some extent act as local optimization methods
and help in focusing the search process. Therefore in
our GA we start out with the traditional operators of
non-uniform mutation and uniform crossover [1] and
after some evolution we switch to the directed interval
based operators.

area.

Mutation: Figure 5 shows the directed interval based
mutation operator. Initially, the solution to be mutated
is evaluated using the driver program for the current
system net-list. The resulting performance parameters
are compared with the user defined constraints to
identify those performance constraints that are being
violated in the current solution. These are shown
in the figure as the shaded parts in the performance
parameter array. Here, the constraints P3 and P4 are
being violated. Now the characterization table infor-
mation 1s used to select which component performance

Solution Representation:

Center | A1|A2|A3|B1 B2 |C1|C2 D1 |D2 |Atl|At2|B.tlB.t2/|C.tl Dtl

Delta | Ma Aag Mz | AsiDeo|ei|Ac2|lor|Dod —| —| - | - -] -

©-1 I

v v

Design Parameters Topology Information

Upper Bound of the Interval - [Center + Delta * Center]
Lower Bound of the Interval - [Center - Delta * Center]

Figure 7. Solution Representation for IGA
parameters are to be changed and in what direction.
The system-level characterization tables for all the
components are seen globally to find all the component
performance parameters that need to be changed to
improve the system performance parameter that is
being violated in the current solution. We see that
parameters D1 and D2 are the ones to be changed in
the new solution. The mutated solution has the values
D1 and D2 replaced by nD1 and nD2. Thus such a
mutation operator attempts to intelligently guide the
evolution of the GA towards constraint satisfying areas
in the search space through the use of characterization
information.

Crossover: Figure 6 shows the directed interval based
crossover operator. Similar to the mutation operator,
the two parents are individually evaluated using the
driver program, and the constraints that are violated
are identified on comparison with the user defined con-
straints. In the figure, in parent 1 the only constraints
that are being satisfied are P1 and P5. Similarly in par-
ent 2, constraints P3 and P4 are the only constraints
being satisfied. The characterization table is looked up
and the component performance parameters that corre-
spond to the satisfied performance constraints are com-
bined together to form one child. The remaining param-
eters are combined together to form the second child.
Therefore, child 1 is formed by combining the design
parameters d1, d2 from parent 2 and D3 and D4 from
parent 1. Child 2 is formed by combining the remaining
design parameters.

2.3.2 Component Synthesis IGA

Figure 7 shows the solution representation for the In-
terval Genetic Algorithm. This has two parts, the first
representing the component design parameter values,
and the second topology information. Each value in the
topology part of the representation indicates the type of
topology to be selected from library. Each component
may have more than one entry in the topology part
of the array if that component has sub-components
having different topologies. The representation is a
two dimensional array of real numbers. The first row
represents the center of the interval, and the second
row 1s a delta value, which lies between 0 and 1. The
upper and lower bound of the interval are calculated

as shown in Figure 7. These are calculated for every
design parameter in the solution. A set of point values
for the design parameters constitute a point in the
region defined by the design parameter intervals. Thus,
moving from one point to an other in this region of
points requires us to define a step size, with which the
design parameters would be incremented from their
lower bound to the upper bound. These step sizes are
calculated for each design parameter in the solution,
based on the width of the interval. The smaller the
step size, more would be the number of points in the
region represented by the design parameter intervals.
The step size in the IGA 1is set to about five percent of
the width of the interval.

Cost Function: The cost function is similar to the
one used in the performance allocation IGA, but for
component performance parameters being used instead
of system performance parameters.

Genetic Operators: A mix of the traditional non-
uniform mutation and uniform crossover operators were
used in conjunction with directed interval based opera-
tors. The directed interval based operators for the com-
ponent synthesis GA are similar to the ones defined for
the performance allocation GA. The only difference be-
ing the usage of the component characterization tables
instead of the system characterization tables.

3. Experimentation

The first example (cascaded amplifiers) is a system
of four cascaded amplifiers. The second exam-
ple(Acquisition System) 1is an acquisition system
front-end that consists of a series of seven amplifiers
connected to an analog-digital converter. The next
example (Neural Control-1) comprises of two banks
of amplifiers connected in a join configuration with a
comparator. The fourth example (Neural Control-2) is
a system of six blocks, which consists of an amplifier
driving two banks of cascaded amplifier pairs which are
connected in a join configuration with a comparator.
These examples are typical of control circuits used for
the activation of neurons in artificial neural networks
[14]. The system in the final example (Neural Trainer)
consists of ten blocks. Inputs from two sensors are
amplified by cascaded amplifiers and are compared.
The output of the comparator drives two cascaded
pairs of amplifiers whose outputs are summed using
a summing amplifier. This kind of a system is used
to implement weighing functions that are used in the
training of artificial neural networks.

The constraint transformation algorithm was imple-
mented using a publicly available GA package, GAlib
[13]. All the experiments used mutation and crossover
rates of 0.1 and 0.9 with a population size of 1000. We

ckt name Constraint set 1 Constraint set 2
cascaded area=1200squ, power=40mW, gain=2e4 area=800squ, power=40mW, gain=1e4
amplifiers bw=30KHz, sr=100000 bw=100KHz, sr=70000
Acquisition | area=1800squ, power=80mW, gain=10e3 | area=1800squ, power=90mW, gain=1e3
System bw=100KHz, sr=70000 bw=800KHz, sr=80000
Neural area=900squ, power=90mW, gain=1e3 area=1200squ, power=90mW, gain=2e3
Control-1 bw=100KHz, sr=80000 bw=90KHz, sr=80000
Neural area=1500squ,power=80mW, gain=2e3 area=1200squ, power=80mW, gain=2e3
Control-2 bw=300KHz, sr=70000 bw=90KHz, sr=80000
Neural area=9000sq 1, power=90mW, gain=1000 | area=1800squ, power=12mW, gain=500
Trainer bw=20KHz, sr=70000 bw=200KHz, sr=70000
Table 1. Example Circuits and Constraint Sets
Circuit Flat Hierarchical Flat Hierarchical savings savings avg imp
set 1 set 2 set 1 set 2 set 3 set 4 set 3 set 4 time(ser) | time(par) | obj func
cascaded 0 0 0.1 0 0.2 0.1 0 0
amplifiers 5083s 6219s 2180s 2386s 5567s 6434s 2273s 2178s 5.5% 61.5% 0.2
[6013s] | [6114s] [5464s] | [5633s]
Acquisition 0.34 0.24 0 0 0.2 0.41 0 0.4
System 21414s | 19033s 2344s 2831s 20414s | 16370s 2740s 2463s 31.9% 86.5% 0.26
[14620s] | [13990s] [11332s] | [123115]
Neural 0 0.08 0 0 0.3 0.2 0.2 0.17
Control-1 26283s 24443 2678s 2525s 23528s | 19847s 2684s 2933s 40.4% 88.3% 0.06
[13844s] | [13963s] [13587s] | [14088s]
Neural 1.6 1.3 0 0 0.52 0.51 0 0.2
Control-2 16869s | 14738s 2854s 3427s 18180s | 14849s 2781ss 2665s 36.5% 81.7% 1.24
[10632s] | [10344s] [10063s] | [9690s]
Neural 0.65 0.59 0 0 0.4 0.37 0 0.09
Trainer 20860s | 19400s 2980s 3112s 24695s | 16025s 2750 2960 28.7% 85.08% 0.41
[14160s] | [13980s] [14268s] | [14033s]
Table 2. Flat Vs Hierarchical approaches
Circuit GA without charac GA with charac GA without charac GA with charac savings savings
set 1 set 2 set 1 set 2 set 3 set 4 set 3 set 4 in time(ser) | in time(par)
cascaded 0.3 0.2 0.1 0 0.2 0.8 0 0
amplifiers 4268s 4441s 2180s 2218s 3218s 3597s 2273s 2178s 40.6% 41.9%
[10806s] | [9154s] | [6013s] | [5991s] | [9430s] | [9654s] | [5464s] | [5633s]
Acquisition 0.1 0 0 0 0.7 0.8 0 0.4
System 4594s 5188s 2344s 2831s 6554s 5277s 2740s 2463s 35.7% 51.5%
[20978s] | [21635s] | [14620s] | [13990s] | [19637s] | [18841s] | [11332s] | [12311s]
Neural 0 0 0 0 0.27 0.1 0.2 0.17
Control-1 3561s 3463s 2548s 2525s 4107s 4111s 2684s 2933s 37.4% 29.68%
[19483s] | [19981s] | [10844s] | [10963s] | [19793s] | [18113s] | [13587s] | [14088s]
Neural 0 0.1 0 0 0.1 0.2 0 0.2
Control-2 4300s 2883s 2854s 3427s 3731s 3648s 2781s 2665s 32.3% 24.4%
[14081s] | [14552s] | [10632s] | [10344s] | [16311s] | [15449s] | [10063s] | [9690s]
Neural 0 0 0 0 0.15 0.2 0 0.09
Trainer 3641s 3244s 2980s 3112s 3189s 3263s 2750s 2690s 36% 13.4%
[20741s] | [23695s] | [14160s] | [13980s] | [24729s] | [19808s] | [14268s] | [14033s]

Table 3. GA without characterization Vs with characterization info

Cascaded Amps Component 1 Component 2
perf alloc GA area=200squ, power=8mW, gain=88 area=300squ, power=12mW, gain=122
constraints bw=190KHz, sr=100000 bw=100KHz, sr=70000
Design Tbias=[2.6,2.9]e-07, Adm=[2157,3457] Ibias=[1.3,1.7]e-06, Adm=[10157,10415]
Parameter gainw 1=[45,149] gainw 1=[120,166]
Ranges zout=[101,107], DCgain=[80,93] zout=[3,67], DCgain=[119,126]
perf after area=[166,190]squ, power=[3,7|mW, gain=[90,133] | area=[158,186]squ, power=[5,8]mW, gain=[78,156]
comp syn bw=[640,1180]KHz, sr=[86033,107993] bw=[90,312]KHz, sr=[22245,287000]
Thble 4. Constraints and design parameter ranges for cascaded amplifier example

compare the flat approach to constraint transformation
with the hierarchical one presented here. Table 1
shows two of the constraint sets that were used.
Table 2 compares the hierarchical approach with the
flat one for four constraint sets. FEach entry for the
flat approach has the objective score and the time
taken. KEach entry for the hierarchical approach has
the objective score, time taken when the component
synthesis IGAs are run in parallel (total time = perf
alloc GA time 4+ max(comp syn IGA times)), and
the last row shows the time taken when the IGAs are
run serially. The objective score value shown for the
hierarchical approach is the sum of the objective scores
of the component synthesis IGAs, and the performance
allocation GA. The final columns show the average
savings in time and the average improvement in the
objective function value obtained using the hierarchical
approach. The results in the table clearly show that
the hierarchical approach better than the flat one in
terms of both the search quality and the time taken.
The time taken for system level table generation is very
small (less than 1.5 - 2 mins) and is included in the
hierarchical method’s time.

The hierarchical approach uses both the system level
and the component level characterization tables. The
ratio between the number of generations the traditional
operators was used and the number of generations for
which the directed interval based operators were used
was 40-60. The improvement obtained using the hi-
erarchical approach is clear from the table. Next, we
observed the impact of using the characterization ta-
bles in the constraint transformation process. For this
we compared the hierarchical approach using only the
traditional non-uniform mutation and uniform crossover
operators [2], to one that uses the traditional operators
in conjunction with the directed interval based opera-
tors. The results shown in Table 3 clearly indicate the
importance of the characterization tables in the con-
straint transformation process. UltraSparc 2s and 30s
running solaris were used to run the examples, and the
time was measured using the system time command.
Table 4 shows the design parameter ranges generated
by the constraint transformation process for two of the
components in the cascaded amplifier example. The
first row shows the constraints generated by the perfor-
mance allocation GA, the second row shows the design
parameter ranges generated by the component synthesis
GAs, and the final row is the performance after compo-
nent synthesis. The sizing solutions corresponding to
the generated design parameter ranges could be used to
prune the search space of an underlying circuit synthesis

tool [19].

4. Conclusion

A hierarchical approach to constraint transformation
was presented. The main constituents of this include
a hierarchically organized search engine, a component
characterization method and an analog performance
estimator. Some of the salient features of the ap-
proach include the dynamic generation of system level
characterization tables, computing intervals for the
component design parameters and using the directed
interval based characterization method to improve the
search process. FExperimental results comparing the
hierarchical approach with a flat one clearly establish
the superiority of the former approach. Also, the
impact of using the characterization information within
the constraint transformation process was observed.

References

[1] M. Gen and R. Cheng, “Genetic Algorithms and Engineering
Design”, John Wiley & Sons, 1997.

[2] F. Herrera, M.Lozano, J.L. Verdegay, “Tackling Real-Coded Ge-
netic Algorithms : Operators and Tools for Behavioural Analysis”,
Tech Report DECSAI-95107, Feb’95.

[3] B.G. Arsintescu et al, “General AC Constraint Transformation for
Analog ICs”, Proc of the 35th DAC,1998.

[4] N.R. Dhanwada, A. Nunez, R. Vemuri, “Component Characteri-
zation and Constraint Transformation based on Directed Intervals
for Analog Synthesis” Proc Intl Conf on VLSI Design’99.

[5] A.Nunez and R. Vemuri, “An Analog Performance Estimator for
Improving the Effectiveness of CMOS Analog Circuit Synthesis”,
Proceedings of DATE 1999.

[6] W. Kruiskamp and D. Leenaerts,” DARWIN : Analogue Circuit
Synthesis based on Genetic Algorithms”, International Journal of
Circuit Theory and Applications, Vol 23, 1995.

[7] P.C. Maulik, L.R. Carley, and R.A. Rutenbar, “A Mixed-Integer
Non-linear programming approach to analog circuit synthesis”,
Proc 29th DAC, 1992.

[8] R.Harjani, R.A. Rutenbar, and L.R.Carley, “OASYS : A Frame-
work for Analog Circuit Synthesis” IEEE Trans. on CAD of Inte-
grated Circuits and Systems, vol. 8 no. 12, Dec 1989.

[9] E.S.Ochotta, “Synthesis of High Performance Analog Cells in AS-
TRX/OBLX”, Ph.D Dissertation, Feb 1994, CMU.

[10] N.R. Dhanwada and R. Vemuri, ¢ Constraint Allocation in Ana-
log System Synthesis”, Intl Conf on VLSI Design’98.

[11] J.Eckmuller, M.Gropl, and H. Grab, “Hierarchical Characteri-
zation of Analog Integrated CMOS Circuits”, Proc of DATE’98.

[12] H. Chang et al, “A Top-down Constraint Driven Methodology
for Analog Integrated Circuits”, Kluwer Academic, 1997.

[13] M. Wall, “GAlib: A C++ Library of Genetic Algorithm Compo-
nents” .

[14] C. Mead, “Analog VLSI and Neural Systems”, Addison Wesley,
1989.

[15] R.Harjani and J. Shao, “Feasibility and Performance Region
Modeling of Analog and Digital Circuits” Analog Integrated Cir-
cuits and Signal Processing, Kluwer Academic Publishers, 1996.

[16] D.M.W. Leenaerts, “Application of Interval Analysis to Circuit
Design”, IEEE Trans. on Circuits and Systems, June 1990.

[17] R. Vemuri, N. Dhanwada, A. Nunez-Aldana and P. Camp-
is1,” VASE - VHDL-AMS Synthesis Environment: Tools for Syn-
thesis of Mixed-Signal Systems” Proceedings EETimes Conference
on Analog and Mized-Signal Applications, July 1997.

[18] A. Doboli and R. Vemuri, “A VHDL-AMS Compiler and Archi-
tecture Generator for Behavioral Synthesis of Analog Systems”,
Proc. DATE 1999.

[19] N.R. Dhanwada, A. Nunez-Aldana and R. Vemuri,” Automatic
Constraint Transformation with Integrated Parameter Space Ex-

ploration in Analog System Synthesis” Proc. ASP-DAC 1999.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

