
Software Bit-Slicing: A Technique for Improving Simulation Performance*

Peter M. Maurer, William J. Schilp
Department of Computer Science & Engineering, University of South FloridaTampa, FL 33620

* This work was supported in part by the National Science
 Foundation under grant number MIP-9403414.

Abstract - For some types of simulation, it is difficult
or impossible to improve performance by packing several
vectors to be packed into a single word. One example of
such an algorithm is Inversion Algorithm, which does not
represent net values in the conventional way. This paper
presents a novel technique, called software bit-slicing,
for performing simultaneous simulation of several input
vectors on a conventional uniprocessor. As with
conventional vector-packing techniques, this technique is
able to assign a different input vector to each bit of a
word, permitting the simultaneous simulation of n
vectors, where n is the number of bits in a word. The
Inversion Algorithm is used to give an example of this
technique. For this example, a 6x speedup can be
realized by using software bit-slicing. The same
technique should be widely applicable to many different
types of simulation.

1. Introduction.

While the Inversion Algorithm[2] is extremely fast, it
simulates only a single input vector each iteration. Other
techniques, such as Levelized Compiled Code (LCC)
simulation, allow several vectors to be packed into a
single word, which greatly enhances performance. The
purpose of this work is to introduce the concept of
software bit-slicing, and show how the technique can be
used speed up simulation algorithms. This technique is
similar to conventional vector packing in that a single
word is used to represent multiple input vectors, each bit
of the word representing a different input vector. For a
32 bit machine, 32 input vectors are simulated
simultaneously. This technique gives a 6x speedup.

The Inversion Algorithm uses a counting method[1] to
perform simulation. For every gate in the circuit, a count
is kept of dominant inputs. Processing an event causes
the dominant counts of various gates to increment or
decrement. To perform simultaneous simulation of the
input vectors, these counts must be packed and processed
simultaneously.

Because the Inversion Algorithm is event-driven, the
packed dominant counts be tested simultaneously for an
event. Unfortunately, this will cause some gates to be
simulated even though there is no event for that particular
vector. This tends to be more of a problem when the
activity rate is high.

2. Counting.

To process multiple input vectors simultaneously, each
vector must have a separate count and it must be possible
to update all of the counts simultaneously. The natural
way to do this is to pack several counts into a single
word. This can accomplished either horizontally, with all
counts packed into a single word and each count
occupying several bits, or vertically, with one binary
digit of each count contained in a different word, and
several words used to hold the count.

Updating the counts simultaneously is done with a set
of masks and logic statements. Incrementing or
decrementing all counts simultaneously is accomplished
with a series of logic statements similar to those used by
a hardware ripple counter.

In the original algorithm, a separate subroutine was
used to increment or decrement the dominant count of
each gate. In this work, multiple input vectors are
processed in parallel. Each packed vector can require that
some counts be decremented and others be incremented.
Because of this, a single function is used to process all
events. A mask is used to determine which counts must
be incremented, which must be decremented, and which
are unchanged.

An event must propagated if any count changes from 0
to 1, or from 1 to 0. In the original algorithm, a simple
test could be used. In the current work, knowledge of
whether the count was incremented or decremented is
required. To supply this information, an increment-
decrement mask is kept for each fanout branch of a net.
Should an event occur for one of the counts of the fanout

branch, the increment/decrement mask is XOR’ed with
the event mask for the next event.

Incrementing or decrementing the dominant counts is
done in much the same manner as a hardware ripple carry
adder. Since any gate other than a NOT or BUFFER gate
has at least two inputs, the dominant count will require at
least two binary digits, a least significant and most
significant. The equations for processing an event are
executed in sequential manner beginning with the least
significant bit. The calculation uses an event mask kept
by the gate upstream of the current event. The new value
of the least significant bit is independent of whether the
count is decremented or incremented. In calculating the
value of the least significant bit, a carry/borrow bit is also
calculated. This bit is one if the count was incremented
and a carry occurred, or the count was decremented and a
borrow occurred. The carry/borrow bit will be propagated
through all digits of the count.

Should a Shadow require more than two bits,
intermediate bits are added between the least significant
and most significant bits. These bits are processed in
sequential order from least significant to most significant.
A carry/borrow bit will be computed and passed to the
next stage. Finally the most significant bit is processed.
No carry/borrow bit is calculated since there are no more
significant bits.

After the new set of dominant counts is calculated, an
event vector based upon the Shadow’s activity is
calculated. This event vector is then XOR’ed with the
output gate’s event vector. The event vector is computed
from several different gate inputs.

None of the equations used to compute the count
depend upon the length of the words holding the count.
Therefore, this algorithm can be ported to a platform with
a different word size without change. Furthermore, the
equations do not depend on the number of intermediate
bits. The compiler can determine the required number of
bits, based upon the number of inputs to a gate, and
generate the necessary equations.

3. Optimizations.

In the original Inversion Algorithm, significant
speedups were achieved through the elimination of NOT
gates and homogeneous connections as well as collapsing
heterogeneous connections. (See [2] for an explanation of
this terminology.) These same optimizations have been
applied, with little change, to the packed vector version.

4. Experimental Data.

We have implemented the packed vector Inversion
Algorithm and compared it to the original Inversion
Algorithm[2]. The original algorithm used all

optimizations. The algorithms were tested using the
ISCAS 85 combinational benchmarks[3]. All
experiments were run on the same dedicated machine, a
SUN 5 running at 85 MHz with 64 Megabytes of main
memory.

Sixty-four thousand randomly generated vectors were
used for each simulation. The input-activity rate
(percentage of primary inputs that change on each vector)
was approximately 50% for all vector sets. Each
experiment was performed five times and the results were
averaged.

Several observations can be made about the packed
vector algorithm from this data. First, the algorithm
achieves a speed-up of six while processing 32
simultaneous vectors. This is due to the event-driven
nature of the algorithm. Many events are being
simulated even though no event has occurred. This is
because while one vector may not propagate an event,
another in the packed set may. This is also due to the
random input vectors used. If the input vectors are
generated in some ordered fashion, to test one part of the
circuit, then move on to another, the algorithm will
improve significantly. To illustrate this, we sorted each
of the random input vector sets for each circuit in
increasing order. We then ran the fully optimized packed
vector algorithms on the sorted vector sets. Simply
sorting the vector sets showed at least a 5% increase in
the speed of the algorithm with a maximum of a 43%
increase in speed and an average increase of 20.8%. If
the vector sets were organized in a better manner,
possibly by function, an even greater increase in speed
might be achievable.

5. Conclusion.

As the results of the previous section show, software
bit-slicing is an effective technique that can be used to
speed up simulation algorithms, even those that do not
lend themselves to packed vector simulation. The
technique used in this paper can be used on other
unconventional algorithms, and is currently being
extended to other algorithms in the Inversion Algorithm
family.

6. References

1. D. Schuler “Simulation of NAND Logic,” Proceedings
of COMPCON 72, Sept 1972, 243-5.

2. P. M. Maurer, “The Inversion Algorithm for Digital
Simulation,” Proceedings of ICCAD-94, 259-61.

3. Brglez, F., P. Pownall, R. Hum, “Accelerated ATPG
and Fault Grading via Testability Analysis,”
Proceedings of the International Conference on
Circuits and Systems, 1985, 695-8.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

