
High-speed Software-based Platform for Embedded Software of a Single-chip
MPEG-2 Video Encoder LSI with HDTV Scalability

Katsuyuki OCHIAI, Hiroe IWASAKI, Jiro NAGANUMA, Makoto ENDO and Takeshi OGURA
NTT Human Interface Laboratories

1-1, Hikarinooka Yokosuka-shi, Kanagawa, 239-0847 Japan
E-Mail: fkach,hiroe,jiro,endo,ogurag@nttvdt.hil.ntt.co.jp

Abstract

This paper proposes a high-speed software-based plat-
form for embedded software and evaluates its benefits on a
commercial MPEG-2 video encoder LSI with HDTV scala-
bility. The platform is written in C/C++ languages without
any hardware description languages (HDLs) for high-speed
simulation. This platform is applicable before writing up
complete HDLs. The simulation speed is very fast and more
than 600 times faster than compiled HDL simulators using
RTL description. Fifty percent of the bugs in the final em-
bedded software were located efficiently and quickly, and
the design turn-around time was shortened by more than
25%. This platform provides sufficient performance and ca-
pability for validating practical embedded software.

1 Introduction

Recently, embedded system LSIs (system LSI) [1],
which consist of a core CPU and application-specific hard-
ware, have received considerable attention for their use in
implementing various multimedia applications [2, 3]. These
advanced applications require system LSIs that are larger
in scale, perform more complex functions, and have higher
performance than general LSIs. Due to the increasing com-
plexity, the design turn-around time(TAT) of system LSIs
have been on the increase, owing, in particular, to the longer
time required for the validating embedded software on a
core CPU as well as that of the hardware.

The following commercially available hardware descrip-
tion language (HDL) simulation tools for hardware and em-
bedded software of system LSIs are available: compiled
HDL simulators [4], hardware accelerators [5], field pro-
grammable gate array(FPGA)-based ASIC emulators [6],
and hardware/software co-simulators [7]. However, these
tools require HDLs, such as register transfer level (RTL) or
gate-level hardware description. As a result, the embedded

software of system LSIs is especially difficult or impossible
to validate before writing up complete HDLs of the hard-
ware.

On the other hand, general purpose programming lan-
guages such as C and C++ languages may provide a way to
simulate system LSIs independently of any HDLs. These
languages may also provide high-speed simulation capabil-
ity because they have simple and fast codes without event
scheduling which is an essential part of an HDL simulator.
However, there is no established way to specify hardware
behavior models with concurrency and synchronization.

To solve these problems, we propose a simple model to
specify the hardware of system LSIs as well as propose a
high-speed software-based platform for validating embed-
ded software. This model based on the communicating se-
quential process(CSP) [8] specifies hardware block concur-
rency and synchronization by exploiting the guard mecha-
nism. The platform based on this model, which consists of
an instruction-level and a function-level simulator for a core
CPU and application-specific hardware, respectively, is ap-
plicable before writing up complete HDLs. It is written in
C/C++ languages without any HDL for hardware/software
concurrent design and high-speed simulation.

We evaluated its benefits on a commercial MPEG-2
video encoder LSI with HDTV scalability [9, 10]. The sim-
ulation speed was very fast and more than 600 times faster
than compiled HDL simulators using RTL description, and
it had sufficient performance for simulating several to sev-
eral ten of millions cycles of practical embedded software
within one hour. Fifty percent of the bugs in the final em-
bedded software were located efficiently and quickly by us-
ing interactive debugger and visualization tools. The design
turn-around time was shortened by more than 25%. The
software-based platform provides sufficient performance
and capability for validating practical embedded software.

Structure of the paper. Section 2 shows the system
LSIs and their concurrent design. Section 3 describes the
new model and the software-based platform. Section 4 de-
scribes the evaluation results of applying the platform to a



I/O

Memory
Host IF

Block

Application-specific hardware

Block Block Block

Core CPU

Hardware

Software

Figure 1. A system LSI architecture

commercial MPEG-2 video encoder LSI.

2 Concurrent Design of System LSIs

2.1 System LSI Architecture

A typical system LSI architecture is shown in Figure 1.
It consists of a core CPU and application-specific hardware
that includes memory, host interface, and dedicated hard-
ware blocks. Interactions between the embedded software
and the hardware are accomplished by accessing memory-
mapped I/O. The embedded software on the core CPU
can control application-specific hardware via this memory-
mapped I/O. The embedded software on the core CPU pro-
vides the required flexibility and the dedicated application-
specific hardware supports the performance. A system LSI
satisfies the requirements of flexibility and performance for
implementing various applications.

2.2 Concurrent Design Flows

The advantages of our concurrent design is apparent
form Figure 2 in which our design is compared with a con-
ventional one. In any practical system LSI design, chip de-
signers must determine the hardware and software partition-
ing as a fundamental design (first stage of Figure 2). After
hardware/software partitioning, each hardware description
and software coding in the second stage is carried out con-
currently.

In the conventional concurrent design, the embedded
software can be written up concurrently with the HDL (sec-
ond stage of Figure 2). However, validation of embedded
software must wait until after validating the HDL (third
stage of Figure 2) because of necessity of completing the
HDLs for hardware interaction. Therefore, the third stage
of software design process quite lengthy.

In contrast, in our concurrent design, a software-based
platform for validating embedded software is developed
while the embedded software and hardware are being writ-
ten up in the second stage of Figure 2. As a result, the em-
bedded software can be early validated on the platform in

(a) conventional approach

(b) our approach

software

hardware

hardware

software
software
validation

system
validation

block
validation

RTL
description

software
coding

fundamental
design

fundamental
design

RTL
description

block
validation

software
coding

software
validation

platform
development

system
validation

stage 1 stage 2 stage 3 stage 4 stage 5

Figure 2. Concurrent design flows

the third stage. Thus, our concurrent design has following
major features:

� it eliminates the redundant spacing of conventional
method (third stage of Figure 2),

� it reduces the time it takes for final system validation
because of early embedded software validation with
hardware interaction (final stage of Figure 2),

� it accelerates HDL validation by using the expected-
value of hardware blocks, which can be extracted from
the platform (third stage of Figure 2).

2.3 Requirements of Software-Based Platform

The software-based platform has following function re-
quirements:

� validating embedded software requires mapped I/O ac-
cess level compatibility with HDLs,

� extracting expected-value of hardware blocks requires
a block’s top access level compatibility with HDLs.

Moreover, to shorten platform development time, the
platform is modeled as follows:

� a core CPU is specified at the instruction-level,
� application-specific hardware is specified at a higher

level of abstraction, i.e. a block’s top input/output ac-
tion level.

These models along with the system configuration and
function features of the software-based platform are de-
scribed in the next section in detail.

3 Software-Based Platform

3.1 Simulation Model

The software-based platform consists of a core CPU sim-
ulator and an application-specific hardware simulator.



Element Component

Hardware

Platform

Data

Address

Pointer

(a)

(b)

(c)

(a)

(b)

(c)

Function
Block

Function
Block

Function
Block

Function
Block

Function
Block

Memory

Function

Variable

Function Variable

Variable

Function ÊÑ¿ôVariable

Variable

Function Variable

Function

Figure 3. Hardware simulation model

3.1.1 Core CPU

The core CPU simulator is specified at an instruction-
level for validating embedded software on the core CPU.
Memory-mapped I/Os are general schemes for hard-
ware/software interactions of a system LSI. Memories
and hardware/software interface registers included in the
application-specific hardware are mapped on the core
CPU’s data memory address space. The embedded software
can access and control hardware blocks in the application-
specific hardware via memory-mapped I/Os in the manner
it does the data memory address space.

3.1.2 Application-Specific Hardware

An application-specific hardware is specified at a higher
level of abstraction, i.e. a block’s top input/output action
level by exploiting the following three elements.

The model shown in Figure 3 consists of three hardware
elements: (a) afunction blockelement, (b) adataelement
and (c) aaddresselement. Afunction blockelement is
a functional set of hardware block. Adataelement is a
read/write value of an I/O port. Anaddresselement is an
I/O port address. In the platform, each hardware element is
described as: (a) afunctionelement, (b) avariableelement,
or (c) apointerelement.

In this model, data flow between hardware blocks and/or
a core CPU is achieved by manipulating handshake flags
as shown in Figure 4. In the write-enable mode, the left
functioncan write a value to avariablebut the rightfunction
cannot read it. In the read-enable mode, the rightfunction
can read a value from avariablebut the leftfunctioncannot
write it.

In this way, the data flow from the leftfunction to the
right functionis accomplished by sharing thevariable. This

write-enable
mode

read-enable
mode

readwrite

Data

readwrite

Function

Function Variable

Variable Function

Function

Figure 4. Communication using handshake
flag

Data management module

Memory-mapped I/O
Register

Block

Data Interface

TCP/IP

Block

Viewer Log
Application-specific
hardware simulator

FunctionFunction

Software

Core CPU
simulator

MonitorUser
IF

Memory

Figure 5. Software-based platform overview

mechanism is based on the guard mechanism of the com-
municating sequential process (CSP) [8]. Eachfunction
element is only maintained locally of its handshake flags;
however, allfunction elements run concurrently with syn-
chronization of the sharedvariable.

The data flow based on the guard mechanism is com-
pletely independent of the scheduling order offunctionel-
ements. This enables a simulator to exploit a simple and
fast round-robin scheduling without expensive event-driven
scheduling, which is an essential part of a HDL simulator.

3.2 Software-Based Platform Overview

The overview of the software-based platform is shown in
Figure 5. It consists of a core CPU, an application-specific
hardware simulator with several function modules, a user
interface, a monitoring module, a data management module,
and a data interface.

The core CPU simulator written in C++ language is con-
nected to the application-specific simulator using TCP/IP.
The application specific-hardware simulator is written in C
language based on the above-mentioned modeling without
any HDL. The C function for the hardware block is de-
signed independently of hardware functions except for only
input/output actions. The platform runs on a UNIX ma-
chine.

Our approach using the C/C++ language for software-
based platform design is sufficiently general that it can be
applied to any system LSI simulation.



Application-specific hardware simulator

function-level

memory-mapped I/O

core CPU simulator

Embedded-software User interface

Instruction-level
Memory-mapped I/O viewer

A B C

B->C

C->B

data1
data2
...
data1

0x01
0x35
...
0x4E

B-C block I/O viewer

> print reg1
> reg1 : 0x1234
> run

User interface

A

B

R-a1
R-a2
R-b1
...

0x0001
0xFF00
0x0123
...

Block A Block B Block C

Figure 6. Functions of interactive debugger

Block A
input output

Application-specific hardware

Block B Block C

expected-value

Figure 7. Extraction of expected-value

3.3 Function Features

The function features for implementing this platform are
shown in Figure 6. They are a user interface and viewers
of memory-mapped I/O and block I/Os. In order to validate
embedded software, a designer handles the user interface to
control the core CPU commands interpretively and looks at
the viewer of memory-mapped I/O and block I/Os. Moni-
toring data, such as memory-mapped I/O and block I/Os, is
stored as a log file. Moreover, the data can be visualized and
displayed on viewers in real time using X-Window. These
visualization tools are particularly useful for validating em-
bedded software of multimedia system LSIs.

Moreover, this platform can extract expected-values of
input/output pairs on each hardware block as shown in Fig-
ure 7. By comparing these values with a HDL simulation
result, HDL block validation can be accelerated.

4 Evaluation and Discussion

4.1 Target System LSI

The target system LSI is an advanced commercially
available single-chip MPEG-2 MP@ML video encoder LSI
with HDTV scalability that is capable of being used in a
multiple-chip MP@HL video. Its block diagram is shown
in Figure 8. The features of this LSI are shown in Table 1.
This LSI is a key component for digital satellite broadcast
systems or digital storage systems such as DVD recorders.

It consists of a core CPU and application-specific hard-
ware dedicated to MPEG-2 video that includes a search en-
gine block and a SIMD processor block for motion com-

DCT/IDCT
Q/IQ

Video
I/F

SDRAM
I/F

Host
I/F

BS I/FVLC

BUS

BUS

Host Processor SDRAM

video
Search
Engine

SIMD
Processor

Core
CPU

MPEG-2
MP@ML Encoder

bit
stream

Figure 8. Block diagram of MPEG-2 video en-
coder LSI

Table 1. Features of LSI

Technology : 0:25�m 4-level metal CMOS
Gates : 5:0 million transistors
Area size : 9:8� 9:8mm2 die size
Clock : 81MHz

Power : 1:5W@2:5V=3:3V

Package : 208-pin QFP
Extension : multi-chip MP@HL encoder

pensation, and a variable length code (VLC) block. The
embedded software on the core CPU controls these hard-
ware blocks in real-time via one hundred and several dozen
memory-mapped I/Os. The embedded software is written
in the C language and its size is about 10k lines.

4.2 Validation of Embedded Software

The embedded-software of MPEG-2 video encoder LSI
was validated by using interactive debugger and the visual-
ization tools of the software-based platform. The debugging
was accomplished hierarchically from a small unit to a large
unit according to the MPEG-2 video coding unit shown in
Figure 9. The simulation time for each unit is shown in Ta-
ble 2. The designer was able to debug the small units of
the embedded software interpretively and efficiently using
memory-mapped I/O registers and block I/O values because
small units of a macroblock or a slice take only a few sec-
onds to simulate. Moreover, the designer was able to vali-
date the large units (such as a picture or a GOP) with rate
control by using a bit-stream analysis as a simulation log.

The validation using the platform in X-window on a
workstation is shown in Figure 10. The user interface which
operates the platform and some viewers of memory-mapped
I/O and block I/Os, are filled with some X-window utilities,
such as xeyes and login windows. Fifty percent of the to-
tal 230 bugs in the final embedded software were able to be
located efficiently and quickly by using interactive debug-
ger and visualization tools with simulating several to sev-



I PB B I B

M=3
GOP=15

macroblock
16x16 pixel

slice

720 pixel

480 pixel

picture

Video: NTSC

Figure 9. MPEG-2 video coding unit

Table 2. Simulation time

Coding unit CPU time NTSC video
macroblock 0.04 second (720�480 pixel)
slice 1.9 seconds M=3, GOP=15
picture 57 seconds Sun Ultra 60
GOP 14 minutes (300MHz�2CPU)

eral tens of millions of cycles of practical embedded soft-
ware. These implemented functions were sufficient to vali-
date practical embedded software.

4.3 Simulation Performance

Our platform’s simulation speed for 30 NTSC pictures
is compared with those commercially available simulation
tools in Table 3. The simulation speed of the platform was
very fast despite being only software. It was more than
600 times faster than compiled HDL simulators using RTL
description, and more than 40 times faster than hardware
accelerators using gate-level descriptions. The simulation
speed reached about 1/10th the speed of an FPGA-based
ASIC emulator which is the fastest except for a real chip.
This level of performance is sufficient to simulate several
tens of millions of cycles of practical embedded software.

4.4 Short Design Turn-Around Time

The concurrent design enables a designer to overlap the
embedded-software validation stage and the hardware block
validation stage. This platform eliminates the extra time
required for the redundant spacing that is characteristic of
the conventional way (third stage of Figure 2-(a)). More-
over, it reduces the time required in the final system vali-
dation step because of early embedded software validation
with hardware interaction (final stage of Figure 2-(b)). This
platform can also accelerate hardware block validation us-
ing expected-value of hardware blocks (third stage of Fig-
ure 2-(b)). In these ways, a design’s turn-around time can
be shortened by more than 25% by using this platform.

Table 3. Comparison with other simulation
tools

Simulator/Emulator time (30 pictures)
Real chip 1 second
ASIC emulator (QT) 3 minutes
Software-based platform 28 minutes
Hardware Accelerator (Zycad) 20 hours
Event simulator (VCS) 12 days

5 Conclusion

This paper has proposed a high-speed software-based
platform for validating embedded software and has evalu-
ated its benefits by applying to a commercial MPEG-2 video
encoder LSI. The platform is written in C/C++ languages
without any HDLs for hardware/software concurrent design
and high-speed simulation. This platform is applicable be-
fore writing up complete HDLs. The simulation speed is
very fast and more than 600 times faster than compiled HDL
simulators using RTL description.

Fifty percent of bugs in the final embedded software
were located efficiently and quickly by using interactive de-
bugger and visualization tools. The design turn-around time
was shortened by more than 25%. The platform has pro-
vided sufficient performance and capability for validating
practical embedded software of the commercial MPEG-2
video encoder LSI with HDTV scalability.

In the near future, we will study the performance limi-
tations of the software-based platform, and we will inves-
tigate ways to expand it to a multiprocessor environment
or network-based parallel and distributed environment for
high-speed simulation. The approach of the software-based
platform promises to be an important step towards embed-
ded software validation of future system LSIs.

Acknowledgments

The authors are grateful to Dr. Susumu Ichinose of the
NTT Human Interface Laboratories and Dr. Ryouta Kasai
of the NTT System Electronics Laboratories for supporting
this work. Furthermore, we would like to acknowledge of
the members of the Visual Communication Laboratory for
useful discussions during the development of this system.

References

[1] Daniel D. Gaiski, Frank Vahid, Sanjiv Narayan, and
Jie Gong, “Specification and Design of Embedded
Systems,”Prentice Hall, 1994.



(b) Viewer for Memory-mapped
I/O register values

(a) User interface
(Instruction-level simulator)

(c) Status of each
hardware block

(d) Viewer for block I/O values
between hardware blocks

Figure 10. Software-based platform on X-Window

[2] T. Kondo, K. Suguri, M. Ikeda, T. Abe, H. Matsuda,
T. Okubo, K. Ogura, T. Tashiro, N. Ono, T. Minami,
R. Kusaba, T. Ikenaga, N. Shibata, R. Kasai, K. Otsu,
F. Nakagawa, and Y. Sato, “Two-Chip MPEG2 Video
Encoder,”IEEE Micro, pp. 51-58, April 1996.

[3] M. Inamori, J. Naganuma, H. Wakabayashi, and M.
Endo, “A Memory-based Architecture for MPEG2
System Protocol LSIs,”The European Design and
Test Conference (ED&TC), March 1996.

[4] “Chronologic VCS Reference Manual (Release 4.1),”
Synopsys, Inc., March 1998.

[5] “LightSpeed Simulation Server Reference Manual
(Version 1.0),”Zycad Corporation, November 1996.

[6] “System Realizer Reference Manual (Version 5.1),”
Quickturn Design Systems, Inc., December 1997.

[7] “Seamless CVE Reference Manual (Release 2.4),”
Mentor Graphics Corporation, July 1998.

[8] C. A. R. Hoare, “Communicating Sequential Pro-
cesses,”Comm. ACM, Vol. 21, No. 8, pp. 666-677,
August 1978.

[9] T. Minami, T. Kondo, K. Nitta, S. Suguri, M. Ikeda,
T. Yoshitome, H. Watanabe, H. Iwasaki, K. Ochiai,
J. Naganuma, M. Endo, E. Yamagishi, T. Takahashi,
K. Tadaishi, Y. Tashiro, N. Kobayashi, T. Okubo,
T. Ogura, and R. Kasai, “A Single-Chip MPEG2

MP@ML Video Encoder LSI with Multi-chip Con-
figuration for a Single-board HP@ML Encoder,”Hot
Chips 10, August 1998.

[10] M. Ikeda, T. Kondo, K. Nitta, K. Suguri, T. Yoshitome,
T. Minami, J. Naganuma, and T. Ogura “An MPEG-2
Video Encoder LSI with Scalability for HDTV based
on Three-layer Cooperative Architecture,”Proc. of
the Design, Automation and Test in Europe (DATE),
March 1999.


	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index


