
Synthesis of Controllers for Full Testability of Integrated Datapath-Controller Pairs

Joan Carletta Mehrdad Nourani Christos Papachristou
Department of Electrical Engineering and Computer Science

Case Western Reserve University
Cleveland, OH 44106

Abstract
This work facilitates the testing of datapath-controller pairs in an

integrated fashion, with datapath and controller tested together in a
single test session. Such an approach requires less test overhead
than an approach that isolates datapath and controller from each other
during test. The ability to do an integrated test is especially important
when testing core-based embedded systems. The key to the approach
is a careful examination of the relationship between techniques for
controller synthesis and the types of gate level controller faults that
can occur. A method for controller synthesis is outlined that results in
a fully testable controller, so that full fault coverage of the controller
can be achieved without any need for isolation during test.

1 Introduction
This work addresses the problem of testing systems that consist of
interacting datapaths and controllers. Typically, datapaths and con-
trollers are synthesized and tested independently. The majority of
synthesis systems work by first designing the datapath based on the
desired behavior, and then implementing the controller independently
based on control flow information. Similarly, testing of datapaths and
controllers is often done independently. However, even if the datapath
and controller are designed such that they are 100% testable taken
separately, when the two are taken in combination the testability may
be severely degraded [6]. Few, if any, synthesis tools address the issue
of how to test datapath and controller in an integrated way. Our work
is motivated by two main issues: (a) the need to test an entire sys-
tem, composed of an interacting datapath and controller, realistically
and at speed, without neglecting the interface used for communicating
between the two; and (b) the area overhead advantage obtained by
observing controller faults through the datapath registers, rather than
adding test hardware at the interface so as to be able to observe the
controller outputs directly.

In this work, we build on previous work on testing datapaths in
the context of a datapath-controller pair [14], and on techniques for
observing controller faults through the datapath registers, so that the
controller can also be tested in the context of the pair [13]. Here, we
attack the problem of controller testing in an integrated system envi-
ronment by looking at controller synthesis issues, so that the controller
can be designed in such a way that it is easily tested in the context
of a datapath-controller pair. This will require a careful considera-
tion of the meaning of “don’t care” specifications for the controller.
Careful treatment of “don’t cares” in logic optimization has been con-
sidered by many researchers for different purposes, including testing
[5], control optimization [1], BDD optimization [12] and formalism
[2]. References [11] and [4] discuss methods for high performance
controller synthesis.

2 Background
Behaviorally, the datapath is represented by a data flow graph (DFG),
in which nodes represent operations such as addition and multiplica-
tion, and edges represent the transfer of data. Structurally, the datapath

......

ALU

Register "R"

Multiplexer/Bus

RL

MS2
MS1

...

...

Controller Datapath

Figure 1: One datapath register and the control signals that affect it.

consists of arithmetic logic units (ALUs), multiplexers, registers, and
busses, and is responsible for all data computations. Figure 1 shows
the active components in a typical control step and their corresponding
control signals. We note that the approach presented in this paper is
not restricted to the exact form shown in this figure; for example, the
work also applies to datapaths with more than one multiplexer along
the path of a single register-to-register transfer.

Behaviorally, the controller is viewed as a state diagram that speci-
fies the control steps in which the various operations in the data flow
graph are done. For this work, controllers are implemented structurally
as finite state machines using random logic. The controller guides the
datapath in making computations by supplying it with control signals
governing which path is selected through each multiplexer and which
registers are loaded at each control step.

We classify stuck-at faults internal to the controller into several
groups [13]. Faults that never affect the input-output behavior of
the synthesized controller in normal mode are controller-functionally
redundant(CFR), while faults that affect the output of the controller in
at least one control step when the controller is running in normal mode
are controller-functionally irredundant (CFI). The work in [7] shows
that controller resynthesis can be used to remove CFR faults if they are
a concern. CFI faults are further divided into two subgroups. System-
functionally irredundant(SFI) faults change the input-output behavior
of the controller-datapath pair as a system. One example of an SFI
fault is a stuck-at zero on a register load line in a control step when
the register is supposed to receive the result of a computation; this
will cause a noticeable problem, since the result of the computation
will never be written and will therefore be lost. System-functionally
redundant (SFR) faults do not change the input-output behavior of
the system as a whole, even though they do affect the input-output
behavior of the controller. One example of a system-functionally
redundant fault is a fault that affects a multiplexer select line only in
those control steps when the multiplexer is idle; in these idle control
steps, the multiplexer select line has a “don’t care” specification.

It is the SFR faults that cause difficulty when attempting to test
a controller without isolating it from the environment of the system.
These faults can not be observed indirectly, through the registers of

the datapath; their effects can be seen only directly at the controller
output. We found that for traditionally synthesized controllers, it can
easily be the case that 20% of the faults in the controller are SFR. The
focus of this paper is to show how controller synthesis can be done in
such a way that no faults in the controller will be SFR.

3 Synthesis and the Location of Fault Sites
The key to the method outlined in this paper is an understanding of the
relationship between how the controller is synthesizedand the stuck-at
fault sites in the resulting hardware. Our goal is to avoid having fault
sites that correspond to system-functionally redundant faults. As a pre-
liminary step, we explore the effect of various faults on a single piece
of output logic from a finite state machine synthesized using a stan-
dard sum-of-products minimization technique. In Figure 2, we show
an example piece of gate level logic, F = S3 S1 + S2 S1 S0 + S3 S2 S1,
along with the corresponding Karnaugh map.

Under the single stuck-at fault model, faults in a sum-of-products
can occur in one of three categories of places:

Category 1. At the output of the OR gate.

Category 2. At an input to the OR gate (the output of an AND gate).

Category 3. At an input to an AND gate.

Considering that a stuck-at fault can be either stuck-at one or stuck-
at zero, we have six different types of faults to consider. Some types
are equivalent. The types are:

Category 1 stuck-at zero. This type, representedby fault A in Figure
2, causes the output to always be zero,so that all prime implicants
drop out of the K-map. This is shown in Figure 3(a).

Category 1 stuck-at one. Equivalent to Category 2 stuck-at one. This
type, represented by fault B in Figure 2, causes the output to al-
ways be one, so that in effect the prime implicants grow to cover
all of the K-map. This is shown in Figure 3(b).

Category 2 stuck-at zero. Equivalent to Category 3 stuck-at zero.
This type causes a single prime implicant (the one computed by
the AND gate whose output is stuck-at zero) to drop out of the
sum-of-products, in effect being removed from the K-map. For
example, a category 2 stuck-at-zero fault shown as fault C in
Figure 2 causes the S3 S1 product to drop completely out of the
sum-of-products, as shown in Figure 3(c).

Category 3 stuck-at one. This type causes a single variable to drop
out of a product term in the sum-of-products. In effect, one prime
implicant (the one computed by the AND gate whose input is
stuck) grows in size by one dimension. For example, a category
3 stuck-at one fault shown as fault D in Figure 2 causes the
S2 S1 S0 product to change to S2 S1. The effect on the K-map,
shown in Figure 3(d), is for the prime implicant to grow to cover
four cells instead of the intended two.

A stuck-at zero fault of any category causes at leat one prime implicant
to drop out of the sum, while a stuck-atone fault of any category causes
at least one prime implicant to grow in at least one dimension.

Because the only place where we can have fanout in a sum-of-
products structure is directly at the inputs, the only other kind of
faults that we have to worry about are the faults at the fanout sources
themselves. These faults will act as multiple category 1 faults. For
example, a stuck-at one fault shown as fault E on Figure 2 will cause
two prime implicants to each grow in the S1 dimension, as shown in
Figure 3(e). The stuck-at 0 fault shown as fault F on Figure 2 will
cause one prime implicant to drop out of the sum, and one to grow in
the S2 dimension, as shown in Figure 3(f).

An understanding of the relationship between logic level synthesis,
the types of single stuck-at faults that can occur, and the effect of those

S3 S2 S1 S0

. ..

. C

A B

0 1

E

D

F0

1

0
1

(a) gate level circuit with fault sites marked.

S1 S0

1 0 0

1 1 0

0 0 1

100

1

1

0

0

00 01

00

01

11

10

11 10
S3 S2

F = S3 S1 + S2 S1 S0 + S3 S2 S1

(b) fault-free K-map

Figure 2: An example sum-of-products with designated stuck-at faults.

0 0

0

0 0

00

0

0

00 01

00

01

S1 S0

0 0

0 0 0

0

0

11

10

11 10
S3 S2

F = 0
(a) for fault A

1

1 1

1

1

1

1

00 01

00

01

S1 S0

1 1

1

111

111

11

10

11 10
S3 S2

F = 1
(b) for fault B

S1 S0

1 0 0

1 0

0 0 1

100

1

1

0

0

00 01

00

01 0

11

10

11 10
S3 S2

F = S3 S1 + S3 S2 S1

(c) for fault C

S1 S0

1 0

1 1 0

0 0 1

100

1

1

0

0

00 01

00

01

1

11

10

11 10
S3 S2

F = S3 S1 + S2 S1 + S3 S2 S1

(d) for fault D

1 0 0

1 1 0

0

1

1

00 01

00

01

S1 S0

1 1

11

111

10

11 10

1

1

S1 S0
S3 S2

F = S3 + S2 S0 + S3 S2 S1

(e) for fault E

S1 S0

1 0 0

1 0

0 1

10

1

1

0

0

00 01

00

01

1

1

0

11

10

11 10
S3 S2

F = S3 S1 + S3 S1

(f) for fault F

Figure 3: K-maps for the example in the presence of the designated
faults.

faults on the functionality of the controller is crucial to developing a
synthesis-for-testability approach. When a controller is tested in an
isolated environment, with its outputs directly observed, any change in
its functionality can be readily observed. However, when the controller
is tested as an integral part of a datapath-controller pair, any change
in functionality must be observed indirectly by observing the effect of
the change on the way that the datapath functions.

4 Effect of Don’t Care Specifications
Figure 1 shows a datapath fragment with two multiplexers, an arith-
metic logic unit, and a register, along with the control lines for which
logic must be synthesized.

4.1 Don’t Cares in Multiplexer Select Lines
In the general case, a register in the datapath will be loaded in only
some of the control steps. In any control steps in which the register
is not loaded, we don’t care about the values of the multiplexer select
lines. We also do not care about the values of the multiplexer select
lines in any control states that are not ordinarily used, i.e., that are not
reachable from the reset state. Such control states are present when
the number of control steps required for the datapath is not an exact
power of two.

A change in any “care” value on a multiplexer select line will be
observable not only directly at that line, but also at the output of the
datapath. That is because the change will cause the datapath to do a
computation with incorrect data. Unless the datapath itself is designed
to do redundant computations (a case that is beyond the scope of this
paper, and will cause a great deal of testability problems), supplying
incorrect data for even an intermediate computation will affect the
final computation made by the datapath, provided that computations
are done for a reasonably large range and number of input test patterns.

A change in a “don’t care” value on a multiplexer select line, while
observable directly at the select line, will not be observable at the
datapath output. While such a change will cause a change in signal
values local to the area around the multiplexer and arithmetic logic unit,
those changes will never be saved to the register and propagated further.
This means that in order to ensure that the controller output logic
computing the multiplexer select lines is fully testable in an integrated
datapath-controller environment, we must be sure that no single stuck-
at fault in that logic affects only don’t care values. Fortunately, to do so
requires only that we follow the same minimization technique that we
would follow to minimize the area of the output logic for a single line:
we choose prime implicants in the K-map to be as large as possible
without covering any zeroes. Then, removing any prime implicant (as
any stuck-at zero fault of category 1, 2, or 3 would do) will certainly
change a “care” specification; the prime implicant would not have
been included in the minimal sum if the only unique cells that it had to
contribute to the sum were don’t care cells. In addition, growing any
prime implicant (as any stuck-at one fault of category 1, 2, or 3 would
do), will also certainly change a “care” specification; by definition, a
prime implicant can not be expandedin any dimension without circling
a “care” 0-cell.

What this means is that if we synthesize separate output logic
for each one of the multiplexer select lines so as to minimize the
area of that separate logic, taking don’t cares until full account, we
will end up with multiplexer select logic that is fully testable in a
integrated datapath-controller environment; any fault will affect not
only controller functionality, but also functionality of the system as a
whole.

4.2 Don’t Cares in Register Load Lines

We now explore the meaning of don’t care specifications on the register
load lines of the datapath. We again use the example fragment of a
datapath in Figure 1. In some control steps, the schedule specifies

that the register should be loaded to record the result of a computation
in the arithmetic logic unit. Such a load is termed necessary. Each
necessary load becomes a “care” 1-cell in the K-map specification for
the register load line logic.

For control steps in which no load is specified by the schedule,
loading is not necessary. If, by looking at the register transfer that
takes place when a load is done, we discover that the load overwrites
some needed data with garbage, thereby disrupting the functionality of
the datapath, we term the load malignant. If, however, the load, while
unnecessary, is harmless in the sense that the load does not change
the functionality of the datapath, we term the load benign. A load
that overwrites a live variable with other data is clearly malignant.
However, a load that changes the contents of a register in a time step
when that register holds no live variable essentially writes garbage over
garbage, and is benign. Further, it is possible for a load to overwrite
a live variable, but with another copy of the same data. This happens
when the multiplexer select lines still point to the same data that was
used when originally writing the data. Such loads are also benign.

For control steps in which a register load is malignant, the corre-
sponding cell of the K-map for the register load line must be a “care”
0-cell, to ensure that the load is not done. For control states in which
a register load is benign, the corresponding cell of the K-map for the
register load line is a “don’t care” d-cell.

We can now synthesize separate output logic for each one of the
register load lines, taking the don’t cares into full account in the same
manner that we did for the multiplexer select lines. Because any
fault in the resulting sum-of-products implementation will cause a
prime implicant to either drop out completely or grow by one or more
dimensions, this technique ensures that any fault will affect a “care”
specification for the register load line. A fault that causes a prime
implicant to drop out will cause some necessary load to not be done,
which will be observable even at the datapath outputs, because the
results of some computation important to the datapath functionality
will not ever be written. A fault that causes a prime implicant to
grow will cause a malignant load to be done, which will disrupt the
datapath functionality and therefore also be easily observed at the
datapath outputs. We remark here that the algorithm synthesizes the
multiplexer select lines separately from the register load lines, and
therefore may miss the opportunity for multi-output minimization.

5 The Basic Synthesis Approach
The overall process for synthesizing controller output logic so that
it can be fully tested within an integrated datapath-controller pair is
described next. We are given a scheduled data flow graph, a RTL
datapath, and a state encoding for the controller. The algorithm first
uses the pattern of register loads in the schedule to determine where
the 0-cells, 1-cells, and d-cells are in the K-maps for the multiplexer
select lines, and then synthesize the multiplexer select lines, using
separate logic for each line. The synthesis uses the traditional approach
for minimizing area by taking full advantage of the don’t care cells.
Note that this approach ensures that any single stuck-at fault in the
multiplexer select line logic will cause a change in a “care” condition,
and therefore be detectable.

Next, the algorithm synthesizes the register load lines. The major
work here is to decide for each control step and each register whether
a load is necessary, malignant, or benign. Note that this can not be
done until the multiplexer select lines have been synthesized, since
the result depends on exactly what register transfer would be done
were a load to take place. If the schedule shows a register loading at
the control step, the load is necessary. If the register is not holding
a live variable during the control step, the load is benign. If the
register is holding a live variable, and either the multiplexer select
values or the variables in the source registers have changed, the load
is malignant. If the register is holding a live variable, and another load

will serve simply to re-load the same value a second time, the load is
benign. Necessary,malignant, and benign loads correspond to 1-cells,
0-cells, and d-cells in the K-map for the register load line, respectively.
The last step of the algorithm is to synthesize the register load lines,
using separate logic for each line. This synthesis uses the traditional
approach for minimizing area by taking full advantage of the don’t
care cells. Again, this approach ensures that any single stuck-at fault
in the register load line logic will cause a change in a care condition,
either not loading a register when it should be, or doing an extra load
that writes garbage over important data. In either case, data important
to the calculation performed by the datapath is lost, so the datapath’s
functionality is disrupted, and the fault is testable.

We now illustrate the idea behind the synthesis technique using a
fragment of the datapath for an example that implements a differential
equation solver. Figure 4(a) shows one arithmetic logic unit (a sub-
tractor) from the datapath, along with the surrounding multiplexers
and registers. Figure 4(c) shows the lifespans of the variables bound
to the registers, along with the part of the schedule that pertains to
the arithmetic logic unit. The arithmetic logic unit performs sched-
uled computations in two control steps; in control step 4, it computes
t6 uin - t4 using register transfer R2 R5 - R3, and in control step
5, it computes uvar t6 - t5 using register transfer R2 R2 - R3.

From the schedule and binding information, we know that MS, the
multiplexer select signal for the datapath fragment, must be a “1” in
control step 4, and a “0” in control step 5. In all other control steps, we
do not care what the value is, because register R2 will not be loaded.
For this example, we have chosen the arbitrary state encoding shown
in Figure 4(b), where the number in the K-map cell tells which control
step is mapped to that cell. As a result, the K-map for MS is as shown
in Figure 5(a). After minimizing the logic, we arrive at the expression
MS =S1. Note that were we to choose another expression for MS, we
would be adding some redundant logic to the circuit; we would require
extra gates that created “0” or “1” values in control steps where we do
not care what the created value is. This is very likely to happen if we
do multiple output minimization to minimize logic over a number of
multiplexer select lines.

Once we know the exact synthesized expression for the multiplexer
select lines, we can determine whether register loads will be necessary,
malignant, or benign. It is necessary to the functionality of the datapath
to load register R2 in control steps 4 and 5. In control step 6, loading
register R2 is malignant. We know this by first looking at the K-map
for for the MS line, and noting that the synthesized value for MS is a 1.
This means that were a load done in control step 6, it would implement
the register transfer R2 R5 - R3. Referring to the chart of variable
lifespans, we see that at control step 6, R5 holds the live variable uin,
and the last variable written to R3 was t5, so (in the absenceof multiple
faults) R3 will still hold t5, even though the variable is no longer live.
This means that an extra load of R2 in control step 6 would store
uin - t5 in R2, overwriting the live variable uvar (= t6 - t5) with an
erroneous value. This erroneous value will be used instead of uvar in
subsequent computations, disrupting the datapath’s functionality.

We now use the analysis of the effect of register loads to fill a K-map
for the register load line with an appropriate specification. Necessary
register loads correspond to care 1-cells. Malignant register loads
correspond to care 0-cells. Benign register loads correspond to don’t
care cells. The K-map for the register load line RL of our example is
shown in Figure 5(b). In order to synthesize a fully testable controller,
we again use the traditional synthesis method for minimizing area,
taking the don’t cares into full account. As a result, we choose RL = S0.

For all control steps other than steps 4, 5, and 6, there is no live
variable stored in R2. This means that any extra loads done in these
control steps are benign; they do not disrupt the computation being
performed by the datapath. We remark that it is also possible to have a
benign load that simply re-writes the value of a computation an extra
time, although that case does not show up in this example.

t6

uin

10

R5

R2

R3
MS

RL

-
t4, t5

(a) datapath fragment.

H: hold
R: reset
x: unused

00 01

00

01

S1 S0

H

R

x

x

x

x

x

8

6

4

1

3

2

x

5

7

11

10

11 10
S3 S2

(b) state encoding.

steps
control

Hold output

-

-

uvar

t6

t4

t5

uin

R2 R3 R5
registers

1

2

3

4

5

6

7

8

Reset

t6

uvar

t5

t4uin

(c) variable lifespans and schedule fragment.

Figure 4: A fragment of an example that implements a differential
equation solver.

S1 S0

1

00 01

00

01

d d d d

ddd

0ddd

dddd

11 10

11

10

S3 S2

(a) K-map for MS line.

1

00 01

00

01

S1 S0

d d d

ddd

ddd

dddd

1

0

11

10

11 10
S3 S2

(b) K-map for RL line.

Figure 5: Synthesis for the example.

6 Results
In this section, we show results using two example circuits. Our first
example implements a differential equation solver and is a standard
high level synthesis benchmark, and our second example is another
high level benchmark known as the FACET example [8]. The cir-
cuits have been synthesized from high level descriptions using the
SYNTEST synthesis system [10]. The output of SYNTEST is a reg-
ister transfer level datapath and state diagram controller. Logic level
synthesis for the traditional approach is done using the ASIC Syn-
thesizer from the COMPASS Design Automation suite of tools [3],
using a finite state machine implementation for the controller and
based on a 0.8-micron CMOS library. Logic level synthesis for the
proposed approach, which eliminates system-functionally redundant
faults within the controller, is done using the algorithm of Section 5.
The test pattern generation registers (TPGRs) necessary for built-in
self-test (BIST) are synthesized using COMPASS’s Test Compiler.
Fault coverage curves are found for the resulting logic level circuits
using AT&T’s GENTEST fault simulator [9]. GENTEST uses a single

traditional SFR-free
synthesis synthesis

Diffeq 671 336 (a) in transistors.
FACET 607 230
Diffeq 962x632 713x444 (b) in �2.

FACET 938x544 513x444

Table 1: Size of controllers for the two examples.

50

75

100

0 150 300F
a
u
l
t

C
o
v
e
r
a
g
e

(
%
)

Time in clocks

(a) differential equation solver.

40

50

60

70

80

90

100

0 100 200F
a
u
l
t

C
o
v
e
r
a
g
e

(
%
)

Time in clocks

(b) FACET example.

Figure 6: Fault coverage curves for the controllers using traditional
synthesis (solid line) and SFR fault-free synthesis (dashed line).

stuck-at fault model. The probability of aliasing within the MISRs
is neglected, as are faults within the TPGRs and other test circuitry.
Although the datapath and controller are tested together, we have sep-
arated out fault coverage curves and area figures for the controller to
clarify the results.

As the basis of comparison, we show fault coverage and area re-
sults for controllers synthesized both in the traditional way and us-
ing our proposed technique. Table 1 shows the relative sizes of the
traditionally-synthesized and SFR-free controllers. It is not surprising
that the SFR-free controllers are significantly smaller than the ones
synthesized with a traditional approach and a gated clock scheme.
The gated clock scheme demands that all unnecessary loads, both ma-
lignant and benign, be synthesized to be zeroes. This scheme saves
power, since it loads registers (and changes the signals at the inputs
to the logic driven by the registers) only when necessary for the func-
tionality of the datapath. However, additional logic must be used to
ensure that the loads are not done; there are no “don’t cares” in the reg-
ister load specifications. By the same token, the power consumed by
the systems using the SFR-free controllers will be significantly higher
than those using the traditionally synthesized, gated clock controllers,
not because of the power consumed in the controllers themselves, but
because of power consumed in the datapath as a result of unnecessary
loading. Thus, the main tradeoff is between testability and power
consumption.

Fault coverage results for the examples are shown in Figure 6. Fault
coverage is for the controller only. On the fault coverage graphs, the
vertical axes show fault coverage as the percentage of controller faults
detected, and the horizontal axes show time as a function of clock
cycles. During each of the tests, the controller is run in normal mode,
and the only points used for observation are those normally available
as outputs of the system, i.e., the data outputs of the datapath, and the
"done" signal created by the controller to signal that a computation is
complete. Thus, the controller is tested as a truly integrated part of the
datapath-controller pair; it is not isolated from the system in any way
during the test.

Clearly, the use of gated clocks can cause testability problems that
make it impossible to achieve 100% testability of the controller without
separating the controller from the datapath during test. Synthesizing
logic to force the load lines to be zeroes in all unnecessary control
steps, even those in which the actual value of the load line does not

matter, results in more logic. The additional logic is redundant when
the controller and datapath are viewed as a single, integrated system.

7 Conclusions
This work presented an approach for the synthesis of finite state ma-
chine controllers that results in controllers that are fully testable even
without separating the controller from its environment (i.e., from the
datapath that it controls) during the test. One key to the approach is an
understanding of the nature of system-functionally redundant (SFR)
faults, which can not be caught with an integrated testing technique.
The second key is a study of the effect of logic synthesis on whether or
not synthesized logic contains SFR fault sites. By providing a way to
test a datapath-controller pair without intervening test hardware, this
work also comes one step closer to the successful test of core-based
embedded systems; for these systems, it is simply not possible to add
test hardware after the fact.

References
[1] R. Bergamaschi, D. Lobo and A. Kuehlmann, “Control Op-

timization in High-Level Synthesis Using Behavioral Don’t
Cares,” in Proc. Design Auto. Conf., June 1992, pp. 657-661.

[2] D. Brand, R. Bergamaschi and L. Stok, “Don’t Cares in Synthe-
sis: Theoretical Pitfalls and Practical Solutions,” IEEE Trans. on
CAD, April 1998, pp. 285-304.

[3] Compass Design Automation, “User Manuals for COMPASS
VLSI V8R4.4,” Compass Design Automation, Inc., 1993.

[4] A. Crews and F. Brewer, “Controller Optimization for Protocol
Intensive Applications,” Proc. EURO-DAC Conf., 1996.

[5] S. Devadas, H. Ma and A. Newton, “Redundancies and Don’t
Cares in Sequential Logic Synthesis,” Journal of Electronic Test-
ing: Theory and Applications, Jan. 1990.

[6] S. Dey, V. Gangaram and M. Potkonjak, “A Controller-Based
Design-for-Testability Technique for Controller-Datapath Cir-
cuits,” Proc. Int’l. Test Conf., October 1995.

[7] F. Fummi, D. Sciuto, and M. Serra, “Synthesis for Testability of
Large Complexity Controllers,” Proc. Int’l. Conf. on Computer
Design, pp. 180–185, October 1995.

[8] D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthe-
sis: Introduction to Chip and System Design, Kluwer Academic
Publishers: Boston, MA, 1992.

[9] AT&T, “User Manuals for GENTEST S 2.0,” AT&T Bell Labo-
ratories, 1993.

[10] H. Harmanani, C. Papachristou, S. Chiu and M. Nourani, “SYN-
TEST: An Environment for System-LevelDesign for Test,” Proc.
EURO-DAC 92, Sept. 1992.

[11] A. Hertwig and H. Wunderlich, “Fast Controllers for Data Dom-
inated Applications,” Proc. Int’l. Test Conf., 1997.

[12] Y. Hong, P. Beerel, J. Burch and K. McMillan, “Safe BDD
Minimization Using Don’t Cares,” Proc. Design Auto. Conf.,
June 1997.

[13] M. Nourani, J. Carletta and C. Papachristou, “A Scheme for In-
tegrated Controller-Datapath Fault Testing,” Proc. Design Auto.
Conf., pp. 546–551, June 1997.

[14] C. Papachristou and J. Carletta, “Test Synthesis in the Behavioral
Domain,” Proc. Int’l. Test Conf., pp. 693–702, October 1995.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

