
A DAG-Based Design Approach

for Recon�gurable VLIW Processors

Cesare Alippi William Fornaciari Laura Pozzi Mariagiovanna Sami

Dip. di Elettronica e Informazione, Politecnico di Milano, ITALY

falippi,fornacia,lpozzi,samig@elet.polimi.it

Abstract

This paper explores the possibility of enabling a partial

customisability of the Instruction Set of Very Long In-

struction Wold processors for embedded applications, by

exploiting Field Programmable Gate Arrays technology.

A formal methodology is presented leading to selection

of the application critical parts, whose RFUs (Recon-

�gurable Functional Units) implementation allows the

reduction of overall execution time. Experiments per-

formed on representative benchmarks show the applica-

bility of the proposed approach.

1 Introduction and Target Architecture

The typical tradeo� in designing an embedded sys-

tem is not only related to cost and performance, but

also includes an evaluation of the 
exibility in terms of

architecture and methodology. Present commercial so-

lutions allow the designer to customise a CPU by choos-

ing inside a library of "extended opcodes" and corre-

sponding functional units (the customised CPU is �nally

totally hardwired) . Possibility of integrating conven-

tional C-MOS circuitry and FPGA sections on the same

chip leads us to increase design 
exibility, by envision-

ing a Very Long Instruction World (VLIW) processor

whose native Functional Units (FUs) are augmented by

application-speci�c Recon�gurable FUs (RFUs) imple-

mented on the FPGA section.

The native Instruction Set (IS) of the core CPU re-

lies on hardwired FUs, and is extended via application-

speci�c opcodes implemented on the RFUs. RFUs are

run-time recon�gurable, but the choice of optimum ex-

tended opcodes for the various segments of the applica-

tion is statically made at compile time.

The novelty of our solution with respect to the pre-

vious proposals [1],[2] is that it relates to a general de-

sign methodology, rather than a speci�c application. We

identify the analysis framework to set-up a design 
ow

able to select the best candidate functions to be imple-

mented via the RFUs.

A skeleton of the proposed design 
ow is depicted

in Figure 1. A pro�ling activity identi�es the distribu-

tion of the computational workload among the di�erent

critical operations

set of applications

profiling

FPGA configuration:
µp with new IS

target architecture
characterization

architectural analysis

candidate functions

constraints & goals

proposed analysis for
sub-algorithms
identification

Figure 1. The proposed design flow

functions composing the application and provides the

guidelines for the following architectural analysis that

identi�es the set of functions to be implemented onto

the RFUs. During architectural analysis the following

aspects are evaluated:

� granularity of the candidate functions;
� expected speedup, balanced with recon�guration

overhead;
� analysis of the cross-relations between the compi-

lation strategy for the VLIW core and the modi-

�ed IS;
� identi�cation and optimisation of the con�gura-

tion scope, i.e. the part of the application where

the same RFU con�guration is used.

We focus here on the construction of a theoretical

model and identi�cation of the candidate solution to be

implemented via RFUs.

The target architecture is a VLIW processor organ-

ised in clusters, consisting each in a number of functional

units and a register �le that these FUs share. The IS

architecture provides instructions that copy values be-

tween register �les of di�erent clusters. The RFU repre-

sents an additional datapath of the processor executing

a specialised operation, which implements a segment of

computation extracted from the application algorithm

and mapped onto the FPGA. A corresponding opcode,

the fpga-opcode, is generated and it replaces the rele-

vant segment of computation in the translation from

high level code into machine code.



Assuming this target architecture, our problem be-

comes that of extracting from the application algorithm

the segments of computation that are best candidates

to be implemented as fpga-opcodes.

2 DAG Analysis and MISOs

Identi�cation of candidate functions to be mapped

onto the RFU is performed by analysing the DAG of the

application algorithm or, more properly, the DAGs of

the critical basic blocks identi�ed in the pro�ling phase.

Our aim is to identify sub-algorithms critical for appli-

cation performances, suitable for RFU mapping. The

DAG nodes have two inputs at most (they represent

assembler-like operations); fanout greater than one is

allowed, i.e. the output of a node can be input to mul-

tiple destination nodes.

We consider as candidate functions only connected

Multiple Input Single Output subgraphs (MISOs); for-

mally, a MISO M i is a subgraph < V i; Ei > where, for

each node vik 2 V
i excepting one, viO , all edges originat-

ing from vik end on other nodes belonging to V i; viO is

the output node of M i.

We further de�ne a MAXMISO MM i, as a MISO

that is not completely included in any other MISO. It is

proved (see [3], extended version of this paper) that:

Theorem 1 Two MAXMISOs MM i, MM j cannot

partially overlap.

The above property is the basis for a linear com-

plexity algorithm extracting MAXMISOs from critical

blocks in a DAG (described in [3]). Each MAXMISO is

then checked for feasibility, in terms of number of input

variables and complexity of resulting structure (roughly

evaluated by high level synthesis of the MAXMISO it-

self, thus achieving a preliminary area and latency esti-

mation). A search for feasible MISOs can also be per-

formed, restricted to unfeasible MAXMISOs; in fact:

Lemma 1 All MISOs in the DAG are either

MAXMISOs or contained in a MAXMISO.

Recon�guration overhead excludes the possibility of

FPGA mapping for more than one MAXMISO within a

single basic block; on the other hand, we choose to have

only one fpga-opcode active at any given time, to sim-

plify instruction decoding (semantics of the fpga-opcode

change with each recon�guration).

3 Experimental Results

Experimentation consisted in compiling C code by

SUIF [4] to generate an assembler-like intermediate rep-

resentation, extracting critical basic blocks by means of

a pro�ler, and generating the MAXMISOs. The fol-

lowing table summarises some features of the 3 main

MAXMISOs found in a DES cryptography algorithm.

For results on more applications refer to [3].

#N #I #occ

MM 1 7 6 16

MM 2 12 7 16

MM 3 11 5 32

We characterise each MM with its number of nodes

(#N), number of inputs (#I) and number of distinct

occurrences in the DAG (# occ). It is interesting to

note the signi�cant occurrence of MAXMISOs (up to 32

times in the same critical block) and the fact that the

number of inputs is always reasonably small; this makes

the MMs good candidates for RFU implementation.

ADD

ADD

OR

Const

I4

ANDAND

I1
I2

NOT

I1

I3

shift

ADD

ConstConst

I5

ADD

OR

I2

shift

Figure 2. MM 3 for the cryptography algorithm

MAXMISO 3 is thus particularly representative, its

DAG is shown in Figure 2. Implementing it by a sin-

gle specialised functional unit -optimised on the basis of

high-level synthesis techniques- allows to sensibly reduce

the number of cycles required by its execution; in fact,

intermediate results are then simply stored in latches (or

not even stored, when chaining is possible) and do not

require access to the register �le. The modi�ed DAG in

which each occurrence of MAXMISO 3 is collapsed into

one fpga node is then used for �nal scheduling; note that

the collapsing never decreases available parallelism.

4 Conclusions

Augmenting a processor with one or more Recon-

�gurable (and therefore customisable on the 
y) Func-

tional Units results in the possibility to better tailor re-

sources to each di�erent application served. A method-

ology for extraction, from a DAG, of segments of code

to be executed on the RFU has been presented and ex-

periments of its application are shown.

References

[1] R Razdan and M. D. Smith. A High-Performance

Microarchitecture with Hardware-Programmable Func-

tional Units. Proc. MICRO-27, pages 172{180, 1994.

[2] S. Hauck, T.W. Fry, M.M. Hosler, and J.P. Kao. The

Chimera Recon�gurable Functional Unit. IEEE Proc.

FCCM, 1997.

[3] C.Alippi, W.Fornaciari, L.Pozzi, and M.G.Sami. A DAG-

Based Design Approach for Recon�gurable VLIW Pro-

cessors. Technical Report 98-104, Politecnico di Milano.

[4] M.W.Hall et al. Maximizing Multiprocessor Performance

with the SUIF Compiler. IEEE Computer, Dec 1996.


	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index


