
u-
an

w
on
ous
In the
ion
ures

ed
ing
is

y
i-
n
ent

ro-

Integrated Resource Assignment and Scheduling of Task Graphs
Using Finite Domain Constraints

Krzysztof Kuchcinski

Dept. of Computer and Information Science, Linköping University
Linköping, Sweden

kku@ida.liu.se
Abstract
This paper presents an approach to modeling of task

graphs using finite domain constraints. The synthesis of
such models into an architecture consisting of microproces-
sors, ASICs and communication devices, is then defined as
an optimization problem and it is solved using constraint
solving techniques. The presented approach offers an ele-
gant and powerful modeling technique for different
architecture features as well as heterogeneous constraints.
The extensive experimental results prove the feasibility of
this approach.

1. Introduction
The specification of embedded systems is usually pro-

vided in a form of communicating tasks. The goal of the
synthesis is to find an assignment of subtasks to processors
and ASICs, and communication subtasks to communication
devices (e.g., buses or links) as well as their related static
schedule. The schedule, in this case, is defined as an assign-
ment of starting times to every subtask and communication
activity. Different heuristics and Mixed Integer Linear Pro-
graming (MILP) formulations have been proposed for this
problem. Constraint Logic Programing (CLP) formulation
has been originally suggested by the author [6, 7].

This paper further examines the use finite domain con-
straints to model and synthesize heterogeneous embedded
systems. Constraint solving techniques combined with opti-
mization methods are then proposed to provide a solution to
the synthesis problem.

2. Finite Domain Constraints System Model
A system is defined by an acyclic task data-flow graph

with nodes denoting subtasks and arcs data precedence rela-
tions (communications) between them. When the last
subtasks finish their execution the first subtasks are started
again. The target architecture consists of computational
components (CPU’s and ASIC’s) connected by buses. Each
subtask has a specified execution time on a selected compu-
tational component.

The subtask of a task data-flow graph is modeled as a 3-

tuple offinite domain variables:

T=(τ, δ, ρ) (1)

whereτ denotes the start time of the subtask,δ its duration
andρ the resource number which is assigned for its exec
tion. The data flow precedence relation, represented as
arc in the task data-flow graph, is expressed as aninequality
constraint. For example, if the subtaskTi precedes subtask
Tj, the following constraint is imposed:

τi +δi ≤ τj (2)

To synthesize the previously specified task data-flo
graph, it is necessary to introduce additional constraints
resources sharing. These constraints forbid simultane
use of shared resources, such as processors and buses.
prototype system we makes use of a rectangle interpretat
of a subtask. The rectangle based resource constraint ass
that the 2-dimensional rectanglesRi=[τi, ρi, δi, 1] andRj=[τj,
ρj, δj, 1] representing the subtasksTi andTj do not overlap.
It is defined by thediffn/1 constraint. The graphical rep-
resentation of this constraint is depicted in Fig. 1.

A subtask execution time depends on a select
resource, such as microprocessors or ASICs. The mapp
which binds a given execution time to a given resource
defined by theelement/3 constraint.

Pipelining a task data-flow graph can be modeled b
introducingn copies of existing rectangles, starting at pos
tions k, 2⋅k, 3⋅k, etc. This prevents to place subtasks i
forbidden locations, which are to be used by subsequ
pipeline computations.

3. System Synthesis
System synthesis is defined, in our approach, as a p

Supported by the Wallenberg Foundation project “Information Techno-
logy for Autonomous Aircraft” Figure 1. A graphical representation of the rectangle constraint.

time
τi τj

Ti

Tj

ρi

ρj

δi

δj

1

resource

er-
s.

yn-
nite
he

can
ery

ial

-

,
sis

-

cess of finding an assignment to all domain variables which
satisfies all constraints and minimizes a given cost function
defined as a domain variable. The cost function can be
defined, for example, as a maximum value among allτi +δi .
Minimizing this domain variable yields the fastest imple-
mentation satisfying all constraints.

The optimal solutions can be obtained using branch-and-
bound algorithm (B&B). CLP systems offer built-in mini-
mization and enumeration (labeling) procedures.
Additional labeling strategies, such asdomain splitting
strategy [8] anddomain intervals,have also been imple-
mented and tested. The advantage of CLP is possibility to
use heuristic search algorithms. In this paper, we have
examined two meta-heuristics,limited discrepancy search
(LDS) [5] andcredit search[1], which can be used together
with B&B algorithm and selected labeling strategy.

4. Experimental Results
For experiments we have used random task graphs [4]

and an example from [2]. The experiments have been car-
ried out using a prototype implementation of the synthesis
system implemented in CHIP 5 [3] on the Pentium 200MHz
computer. If not explicitly indicated, the runtimes presented
in this paper are the total optimization execution times for
finding a solution and proving that it is the optimal one.

We have used 125 random task graphs divided into 5
groups of 25 task graphs. Each group has at least 20, 40, 75,
130 and 200 computational and communication subtasks. In
each group, there are 15 task graphs with uniform distribu-
tion and 10 with exponential distribution of the subtask
execution time. The implementation architecture consist of a
number of processors interconnected by busses.

Table 1 presents results obtained with optimal methods
with the execution time-out of 10 minutes. In the Table 2, we
present results obtained with heuristic optimization algo-
rithms (LDS, credit search and a simple heuristic) and
compare them with the best obtained results presented in the
summary of the Table 1.

The last example is the video coding algorithm H.261
derived from [2]. The task graph contains 12 subtasks and 14

interconnections between them. We have made three exp
iments using non-pipelined and pipelined implementation

5. Conclusions
We have presented a new approach to modeling and s

thesis of heterogeneous embedded systems using fi
domain constraints and constraints solving techniques. T
experimental results indicate that the presented method
be used for synthesis of heterogeneous systems offering v
good performance.

References
[1] N. Beldiceanu, E. Bourreau, H. Simonis and P. Chan, Part

search strategy in CHIP,Presented at 2nd Metaheuristic
International Conference MIC97, Sophia Antipolis, France,
21-24 July 1997.

[2] A. Bender, Design an Optimal Loosely Coupled Heteroge
neous Multiprocessor System, InProc. of the European
Design and Test Conference, March 11-14, 1996, Paris,
France.

[3] CHIP, System Documentation, COSYTEC, 1996.
[4] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli and P. Pop

Scheduling of Conditional Process Graphs for the Synthe
of Embedded Systems,Proc. Design, Automation and Test in
Europe Conference, Feb. 23-26, 1998, Paris, France.

[5] W. D. Harvey and M. L. Ginsberg, Limited Discrepancy
Search,Proc. IJCAI 1995.

[6] K. Kuchcinski, Embedded System Synthesis by Timing Con
straints Solving, InProc. of the 10th Int. Symposium on
System Synthesis, Sep. 17-19, 1997, Antwerp, Belgium.

[7] K. Kuchcinski, An Approach to High-Level Synthesis Using
Constraint Logic Programming,Proc. 24th Euromicro Con-
ference, Workshop on Digital System Design, Västerås,
Sweden, August 25-27, 1998.

[8] K. Mariot and P. J. Stuckey,Programming with Constraints:
An Introduction, The MIT Press 1998.

Labeling
method

tasks/processors/buses

20/3/1 40/4/2 75/4/2 130/6/3 200/6/3

Input
order

solutions/optimal 25/25 25/22 25/12 24/8 25/11

worse than LB - 17.74% 2.80% 3.44% 2.80%

Runtime (s) 8.91 21.14 15.11 17.25 37.78

Domain
split

solutions/optimal 25/25 23/21 25/12 23/7 24/11

worse than LB - 4.38% 2.86% 3.54% 2.12%

Runtime (s) 7.79 5.50 49.89 14.93 31.20

Domain
intervals

solutions/optimal 25/25 25/19 25/6 25/4 25/4

worse than LB - 4.83% 4.03% 6.51% 2.79%

Runtime (s) 0.57 17.43 1.78 26.95 9.13

Summary
solutions/optimal 25/25 25/24 25/15 25/9 25/13

worse than LB - 4.00% 2.96% 3.16% 1.84%

Runtime (s) 0.38 11.23 39.78 11.19 23.4

Table 1: Synthesis results for random task graphs using
algorithms providing optimal solutions.

Heuristic
tasks/processors/buses

20/3/1 40/4/2 75/4/2 130/6/3 200/6/3

LDS ∆ from best 6.36% 3.09% -0.60% -1.33% 0.18%

Runtime (s) 0.49 2.03 8.10 50.65 142.77

Credit
(L/2)

∆ from best 6.49% 2.74% -0.80% -2.66% 1.23%

Runtime (s) 0.63 1.29 6.92 37.23 204.62

Credit
(sqrt(L))

∆ from best 6.59% 3.23% 1.27% 2.31% 1.94%

Runtime (s) 0.57 1.13 3.64 12.62 43.06

Simple
heuristic

∆ from best 11.18% 12.59% 6.70% 7.75% 4.65%

Runtime (s) 0.05 0.13 0.42 1.31 2.90

Table 2: Synthesis results for random task graphs using
heuristic optimization algorithms.

Design
Performance
(time units)

Stage latency
(time units)

Runtime
(s)

B&B
nodes

non-pipeline, 2 buses 2963 — 0.3 26

3 stage pipeline, 1 bus 3996 2351 19.34 27

3 stage pipeline, 2 buses 3373 1154 12.07 261

3 stage pipeline, 3 buses 3329 1110 5.91 261

Table 3: Synthesis results for H.261 example.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

