
Accounting for Various Register Allocation Schemes During Post-Synthesis
Verification of RTL Designs�

Nazanin Mansouri and Ranga Vemuri
fnmansour,rangag@ececs.uc.edu

Department of Electrical and Computer Engineering and Computer Science
University of Cincinnati

Cincinnati, OH 45221-0030, USA

Abstract

This paper reports a formal methodology for verify-
ing a broad class of synthesized register-transfer-level
(RTL) designs by accommodating various register allo-
cation/optimization schemes commonly found in high-
level synthesis tools. Performing register optimization
as part of synthesis process implies that the mapping
between the specification variables and RTL registers
is not bijective. We propose a formalization of dy-
namic variable-register mapping, and techniques based
on symbolic analysis and higher-order logic theorem
proving for verifying synthesized RTL designs. The pro-
posed verification methodology has been successfully
implemented using the PVS theorem prover.

1 Introduction

High-level synthesis systems generate register-
transfer level (RTL) designs from algorithmic behavioral
specifications. TheRTL design consists of a data path
and a controller. During the high level synthesis process,
the behavioral specification goes through many transfor-
mations, until theRTL design is produced. The synthesis
system generates a control-data flow graph (CDFG) from
the behavioral specification and goes through the steps
of scheduling, functional unit allocation, register alloca-
tion, interconnect allocation and controller generation.

Formal verification systems in general, can usually
verify only a small subset of synthesized designs. This
is mainly due to the fact that forRTL designs to be ver-
ifiable, they should be generated using certain subsets
of the synthesis algorithms or transformations. To ex-
pand the class of ’verifiable’ designs, the verification

�This work is sponsored in part by DARPA and monitored by US
Army Ft. Huachuca under contract number DABT63-96-C-0051.

systems should cater for a larger range of these algo-
rithms. In particular, most verification methods often
consider the synthesized designs which have gone un-
der any degree of register optimization, ’unverifiable’.
This is for the reason that in the absence of the regis-
ter optimization, the relation between the variables of
the specification and the corresponding data-path reg-
isters is bijective. After register allocation phase, this
relation is no longer bijective and the transformedRTL

design bears no obvious relation to its original specifica-
tion. However, most industrial high-level synthesis tools
use sophisticated register allocation and optimization al-
gorithms during the synthesis. If the use of such algo-
rithms are prohibited to ease the verification task, the
synthesizedRTL designs will be unrealistically simple.
A detailed study of the algorithms used in register allo-
cation phase persuaded us that even though the relation
between the elements of the design (variables, control
flow of the operations, etc.) before and after register op-
timization is not obvious, it can be precisely defined and
used during the verification exercise.

Research in formal verification of synthesized de-
signs, can be classified as transformation-based synthe-
sis (formal synthesis) and post-synthesis verification. In
formal synthesis, the transformations which may be car-
ried out during the synthesis process, are mathemati-
cally proven correct [1–7]. Unfortunately, even though
it guarantees designs that are correct by construction,
transformation synthesis is largely interactive. In post-
synthesis verification the correctness of a synthesized
design, with respect to its specification, is mathemat-
ically established [8–12]. This approach is attractive
since verification process is more susceptible to automa-
tion, but it has a few drawbacks: it is severely limited
by design size, and often, demand computing resources
that increase exponentially with design size.

In this paper, we present a post-synthesis methodol-

ogy based on theorem proving for formally verifying the
correctness of theRTL designs generated through high-
level synthesis. This methodology is developed by con-
sidering three desired characteristics in a verification ap-
proach: (1) automation, (2) effectiveness with regard
to the size of verifiable designs, and, (3) effectiveness
with respect to the complexity of verifiable designs; so,
it achieves the advantages of both classes of verifica-
tion methods, while avoiding their drawbacks. We show
that in the verification of automatically synthesized de-
signs, functions and constant symbols can be left un-
interpreted. This leads to efficient verification, based
mostly on rewriting strategies, and as a consequence,
designs of larger size can be verified. Moreover, the
necessary rewriting steps can be automatically generated
by making use of the variable and state binding infor-
mation. We proposed a similar approach for verifica-
tion of register level designs in [13], where verification
can be integrated with synthesis systems which perform
little or no register optimization. We extend the class
of verifiable designs by accommodating various register
allocation-optimization schemes. We focus on transfor-
mations which may be performed at register allocation
phase of synthesis and develop our verification strate-
gies in parallel to them. These strategies can therefore
be applied to synthesized designs that have undergone
any amount of register optimization. A completely auto-
mated Correctness Condition Generator,CCG, based on
the methodology outlined above, has been developed.
CCG generates the proof of the correctness of the im-
plementation design, which may then be verified by the
proof checker of thePVS theorem proving system [14].

2 Formal Models of Specification and Im-
plementation

The nature of abstract specification - which is a de-
scription of the behavior - and the structural implemen-
tation - which is an architecture realizing that behavior
- are inherently different. A common ground for com-
parison of these very different designs should be found.
We made the observation that the flow of the operations
described by specification can be captured by a finite
state machine. The controller of anRTL design (which
controls the flow of the register transfer operations) is
usually represented by a finite state machine also. Mod-
eling the specification and implementation as state ma-
chines provides the required common ground for com-
paring them.

A behavior automatonmodels the behavioral speci-
fication (Figure 1). This automaton is an extended fi-
nite state machine which is represented as a five tu-
ple, (Sb; S0b; Rb; �b; �b). In this modelSb is the set

variables a, b, neq, grt;

a := read input() ;
b := read input() ;
neq := (a6= b);

while neqdo
grt := (a> b);
if grt then

a := a - b;
else

b := b - a;
endif;
neq := (a6= b);

enddo;

write output(a);

(a)Algorithmic
Specification

bs8

bs0

bs3

bs4

bs2

bs1

bs9

bs5

bs7bs6

!neq

neq

grt !grt

(b) Behavioral
Automaton

Figure 1. A Behavior Specification

of states andS0b is the initial state of the automaton.
A state may be anassignmentstate or aconditional
state. An assignment state is annotated with one or
more assignment statements and has exactly one out-
going transition to anextstate. A conditional state is
not annotated with any assignment statements and has
exactly two outgoing transitions, one of which is la-
beled with the conditionv and the other is labeled with
the condition:v, wherev is a specification variable.
Rb = frb1 ; rb2 ; � � � ; rbmg is the set of behavior regis-
ters or specification variables. The domainDrb defines
the set of all possible values that any behavior register

can assume.�b : Sb �

m
z }| {

Drb �Drb � � � � �Drb 7! Sb
is the next state or state transition function, which de-
fines the set of possible state transitions based on the
value of behavior registers at the current state.�b :
Sb � Sb � Rb 7! Drb is a symbolic function which
defines the value of behavior registers after each state
transition. In the example shown Figure 1,Sb =
fbs0; bs1; bs2; bs3; bs4; bs5; bs6; bs7; bs8; bs9g, S0b =
bs0, andRb = fa; b; neq; grtg.

An RTL implementation consists of a controller and
a data-path. The controller is a finite state machine
which interacts with the data path throughcontrol sig-
nalsandflags. The controller extended finite state ma-
chine models the implementation. This automaton is
represented with a five tuple(Sd; S0d; Rd; �d; �d). Sd,
S0d, Rd, �d and�d are defined similar to their coun-
terparts in specification model. The states of the con-
troller also, are of two types:assignmentand condi-
tional. Conditional transitions of the controller are la-
beled with data-path flags and no registers will be loaded
in conditional states. Figure 2 shows theRTL implemen-
tation of the behavior specification shown in Figure 1.

In this exampleSd = fds0; ds1; � � � ; ds14g, S0d = ds0,
Rd = fA;B;NEQ; GRTg.

flag(1)

!flag(0)

ds0

ds1

ds2

ds3

ds4 ds14

ds5

ds6

ds7

ds8 ds10

ds9 ds11

ds12

ds13

!flag(1)

B -> B1,

A -> B1,
T1_cs

B -> B1,
OU1_cs = neq,
OU1 -> B2,
NEQ_cs

B -> B1,

A -> B1,

flag(0)

A -> B1,

INPUT -> B2,

A_cs
INPUT -> B2,

B_cs

T1_cs

OU1 -> B2,
OU1_cs = neq,
B -> B1,

NEQ_cs

A -> B1

T1_cs

OU1 -> B2,
OU1_cs = grt,

GRT_cs

A -> B1,
T2_cs

OU2 -> B2,
B -> B1,
A_cs

OU2 -> B2,
A -> B1,
B_cs

T2_cs

(a)Controller Automaton

A B

T1

NEQ GRT INPUT

OUTPUT

OU1 OU2

B1

B2
B2_cs

A_cs

GRT_csNEQ_cs

B_cs OU1_cs

T2_csT1_cs

B1_cs

flag(0) flag(1)

T2

(b) Data Path

Figure 2. Example of a register level design gener-
ated by a high-level synthesis system

3 Outline of the Verification Method

A correct implementation performs the operations
that its specification describes. Assuming that equiva-
lent results are generated by equivalent operations, and
considering the fact that specification variables hold the
results of the specification operations andRTL regis-
ters hold the results of the implementation operations,
by comparing the values of certain critical specification
variables (registers) in certain critical behavior states
with those of certain criticalRTL registers in certain crit-
ical controller states, the correctness of the implementa-
tion can be verified.

The critical states are the points of comparison or the

check points of the designs. We should identify the
states of the behavior automaton which act as border
points (where no code motion across these points is al-
lowed), as critical states. These states introduce control
flow dependencies into theCDFG. These check-points
are selected so that sufficient comparisons are made to
decide about the equivalence of a specification and its
implementation. The decision on what states should be
considered critical is the result of a detailed study of the
scheduling algorithms and the transformations which
may be performed during the scheduling process, and
is not discussed in this paper.

The critical variables are the objects of comparison
and the success of our verification approach relies on
proper identification of these variables. A thorough
study of the register allocation phase, and the transfor-
mations which may be performed at this stage (for reg-
ister allocation or optimization) is necessary to decide
which variables are critical for verification. The identi-
fication of critical variables is the subject of Section 5.

After defining the sets of critical specification vari-
ables and critical behavior states, their counterparts in
the implementation model are defined as the sets of crit-
ical design registers and critical controller states. De-
termining the right pairing of variables and registers or
behavior or controller states depends on the particular
algorithms used in the synthesis process and requires
help from the synthesis tool. By maintaining links with
the elements of the behavior specification throughout the
synthesis process, the high-level synthesis tool can gen-
erate detailed binding information, in the form of auxil-
iary information as a byproduct of the synthesis process.
Many authors, Thomas et al. [15] for example, have de-
scribed detailed methods to maintain the binding infor-
mation during the synthesis process. In particular, we
assume that the high-level synthesis tool can generate
the mapping between critical variables in the specifica-
tion and registers in theRTL data path and the mapping
between the critical states in the behavior automaton and
states in theRTL controller.

Critical variables, critical states and critical state
binding information play a key role in our verification
method. In the following section, we will revisit these
elements and discuss our verification algorithm in a
more formal setting.

4 Formalization of the Verification
Method

Let CRb � Rb be the set ofcritical variablesin the
behavioral specification. LetCSb � Sb be the set of
critical states of the behavioral automaton. We assume
that every critical state is reachable from the start state

S0b. LetCPb be the set of critical paths1 among these
critical states. For any critical pathp 2 CPb, Fb(p)
andLb(p) denote the originating and terminating states
of p. The counterparts of these sets and functions (CRd,
CSd,CPd, � � �) in the implementation model are defined
similarly.

Following the previous discussion, we postulate that
the high-level synthesis tool can produce, as a byprod-
uct of the synthesis process, the following two map-
pings (called bindings in the synthesis terminology):
Br : CRb � CPb ! CRd, is the critical register
binding, and,Bs : CSb ! CSd is the critical state
binding. The start state of the behaviorFSM is always
mapped to the start state of the controllerFSM, that is,
Bs(S0b) = S0d.

The above definition ofBr is dynamic- the regis-
ter binding may change across the critical paths and the
same behavior register may be mapped to different de-
sign registers along different paths. In contrast we might
havestatic register bindingBrs : CRb ! CRd. This
function maps each specification variable to the same
design register along all the critical paths. Static register
binding will be discussed in detail in Section 5. In addi-
tion to these two bindings, we define a particular bind-
ingBr0 called theinitial register binding. This function
defines the mapping between the behavior and design
registers, at the initial states of the twoFSMs (S0b and
S0d) and is different from the previously defined func-
tions in that the binding is defined at particular states,
rather than along the critical paths. Static register bind-
ing can be defined in terms of initial register binding:
8rb 2 CRb : Brs(rb) = Br0(rb).

FromBs we can easily derive another mappingBp :
CPb ! CPd which is thecritical path binding. A criti-
cal pathpb 2 CPb is mapped to critical pathpd 2 CPd
if and only if their originating and terminating states
are mapped byBs and the transition conditions, if any,
on the outgoing transitions of their originating states
match. More formally,Bp(pb) = pd if and only if
Bs(Fb(pb)) = Fd(pd), Bs(Lb(pb)) = Ld(pd), and if
v (:v) is the condition variable annotation on the orig-
inating transition ofpb thenBr(v; pb) (:Br(v; pb)) is
the condition register annotation on the originating tran-
sition of pd. This ensures that ifpb is traversed in the
behaviorFSM, pd will be traversed in theRTL controller.

An execution pathof the behavior is a finite sequence
of critical states[sb1 ; sb2 ; � � � ; sbi ; sbi+1 ; � � �] such that
the first state in the sequence is the start stateS0b
and any two successive states in the sequence form a
critical path, that is,8i > 1; 9p 2 CPb : bsi =
Fb(p) and bsi+1 = Lb(p). Execution path of the

1We define acritical path as a directed path from a critical state to
another critical state without traversing through any other critical state.

RTL controller is similarly defined. LetEPb denote
the set of all possible behavioral execution paths and
EPd denote the set of all possibleRTL execution paths.
We can construct an execution path binding,Be :
EPb ! EPd using the critical state binding as fol-
lows: If e = fsb1 ; sb2 ; � � � ; sbi ; sbi+1 ; � � �g is an exe-
cution path in the behavior automaton, thenBe(e) =
fBs(sb1); Bs(sb2); � � � ; Bs(sbi); Bs(sbi+1); � � �g. The
last state in an execution pathe is called thetermination
stateof e and denoted byTb(e) for the behavior automa-
ton and byTd(e) for the RTL controller. The final two
states of an execution pathe define the terminating crit-
ical path or thetail of execution path, which is denoted
by Tailb(e) for the behavior automaton andTaild(e)
for theRTL controller.

For the purposes of defining co-execution equiva-
lence, we postulate an uninterpreted domain ofvalues,
V. These values can be ‘stored’ in behavioral variables
as well asRTL registers. We postulate two functions for
assigning values to critical variables and critical regis-
ters: Vb : EPb � CRb ! V determines the value of a
critical variablerb when the behavioral automaton tra-
versed the execution pathe and reached the stateTb(e).
Vd : EPd � CRd ! V is similarly defined. In the next
section we show axiomatic definitions ofVb andVd suit-
able for symbolic manipulation, automatically generated
from behavioral specifications andRTL descriptions re-
spectively.

We are now ready to define various equivalence rela-
tionships between the behavior and theRTL design. We
say that the initial stateS0b in behavior automaton is
equivalentto the initial stateS0d in the controller pro-
vided8r 2 CRb : Vb([S0b]; r) = Vd([S0d]; Br0(r)).
We denote initial state equivalence byS0b � S0d.

We say that a critical statesb in the behavior and the
RTL critical stateBs(sb) are equivalentto each other
providedS0b � S0d) 8e 2 EPb : sb = Tb(e);8r 2
CRb : Vb(e; r) = Vd(Be(e); Br(r; Tailb(e))). We de-
note state equivalence bysb � Bs(sb).

We say that a behavioral execution pathe is equiv-
alent to theRTL execution pathBe(e) providedS0b �
S0d) 8sb 2 e; sb � Bs(sb). We denote execution
path equivalence bye � Be(e).

We say that theRTL design isequivalentto the be-
havior specification provided8e 2 EPb; e � Be(e).

We say a behavioral critical pathp is equivalent
to the RTL critical path Bp(p) provided Fb(p) �

Fd(Bp(p))) Lb(p) � Lb(Bp(p)). We denote criti-
cal path equivalence byp � Bp(p).

We claim that critical path equivalence implies exe-
cution path equivalence per the following theorem, of-
fered here without proof:

Theorem: If every critical path in the behavior is

equivalent to theRTL critical path to which it is bound
during the synthesis process, then theRTL design is
equivalent to the behavior specification. Formally,8p 2

CPb; p � Bp(p)) 8e 2 EPb; e � Be(e).
The proof of this statement is straight forward and

follows from the fact that, in both behavioral automaton
and theRTL controller, the critical states are reachable
from the respective start states. The proof is based on
induction on the length of the execution paths.

5 Verification with Various Critical Regis-
ter Binding Schemes

A predominant concern in real high-level synthe-
sis systems is resource sharing. The goal of high-
level synthesis is to determine constraint-satisfying shar-
ing of ALUs, registers and interconnections. To fa-
cilitate resource-sharing, high-level synthesis tool per-
forms scheduling which permits time sharing of re-
sources whose life times do not overlap across the sched-
uled time-scale. Operator, register and interconnect al-
location algorithms, which follow the scheduling step,
are typically based on clique partitioning or graph col-
oring following life-cycle analysis of the scheduled flow
graph.

The goal of register optimization is to share regis-
ters whose lifetimes do not overlap across the scheduled
time-scales. This is done by life cycle analysis of the
design registers.

Two types of register allocation-optimization
schemes are commonly found in high-level synthesis
tools: value basedandcarrier based. When transfor-
mations based on these schemes are performed during
the synthesis process, the binding relation between
the specification variables andRTL registers is no
longer bijective. Since the definition of equivalence
directly depends on critical register binding informa-
tion, appropriate register binding functions need to
be defined precisely and the verification strategies
should be adjusted accordingly. We will show that
the register binding information under various register
allocation and optimization schemes can be obtained
and consequently the verification method is extendable
to RTL designs which have undergone any degree of
register optimization.

5.1 Register Allocation with No Optimization

In a simplistic synthesis process, with no register op-
timization, all critical variables are preserved by theHLS

tool and manifest in theRTL design in the form of crit-
ical registers. In this case, there is a one to one map-
ping between the specification variables and design reg-

isters (Figure 3). As the upper limit, all the specification
variables can be marked as critical. The comparisons
between all the critical variables and their correspond-
ing RTL registers are ’sufficient’ to validate the correct-
ness of the implementation, even though they may not
be ’necessary’. As the lower limit all the output vari-
ables (variables which directly write to output) can be
marked as critical. A static register binding function
Brs : CRb 7! CRd is defined since the register binding
function does not vary along different critical paths of
the designs.

.

.

.

.

.

.

.

.

.

Br

Critical Specification
Variables

Critical RTL
Registers

var1

var2

varm

reg1

reg2

regm

Figure 3. Register Allocation with No Optimiza-
tion

5.2 Carrier Based Register Allocation

The carrier based register allocation scheme yields
a mapping from the variables to the registers. FACET
[16], HAL [17], and CHARM [18] use carrier-based
techniques for register optimization. Register optimiza-
tion is only possible when two (or more) variables, have
non-overlapping lifetimes, in which case they are bound
to the same register. Therefore the mapping from the
specification variables toRTL registers is a many to one
relation (Figure 4). For example if carrier based register
allocation was performed in generating our example de-
sign of Figure 2, in the resulting data-path the two vari-
ablesneq andgrt would have bound to the same register
NEQ�GRT instead of two registersNEQ andGRT .

Since the register allocation algorithm guarantees
that only variables with non-overlapping life-times can
be mapped to the same register, at any state at most one
variable (the one that is live) may be mapped to its cor-
responding register. A static register binding function in
this scenario is not appropriate, since the binding holds
at points where a variable is live, and does not hold at
the others.

A variable can be critical only at those states that it is
alive. This means that a variable may be critical along
certain critical paths and not critical along the others.
Therefore, the binding function depends on the critical
paths as well as the variables, i.e.Br : CRb � CPb 7!

CRd. This binding function is referred to as adynamic
register binding function. It uniquely maps each criti-

.

.

.

Critical Specification
Variables rB

.

.

.

Critical RTL
Registers

regm

reg2

reg1
, cp4 ,. . . ,cpncp

n-1cp2
, . . . ,cp

.

.

.
cp

, . .
., c

p

3

n-2

m

1var

var2

var

1

Figure 4. Carrier Based Register Allocation

cal variable to anRTL register along a critical path. The
synthesis tool can generate this binding information as a
byproduct of synthesis. Since some of the critical regis-
ters are not live across all critical states when this reg-
ister allocation scheme is used as part of the synthesis
process, verification is performed bycriticality masking
technique. Assuming that a dynamic register binding
function is defined and that criticality masking is per-
formed during the verification process, the formaliza-
tions presented in Section 4 will be valid.

5.3 Value Based Register Allocation

In value-based approach, register optimization is
modeled as the problem of mapping data values pro-
duced and used by operations in a data flow graph rep-
resentation of the specification into registers. Register
optimization is only possible when two (or more) oper-
ations use the same data values. Considering the par-
tial specification of Figure 5, a value based register al-
location scheme may assign registerR1, R2, R3 and
R4 to the valuesB + 1, A + 1, B + 2 andA + 2 re-
spectively. So, if we assume that all the variables of
this partial specification are critical, then along the crit-
ical path[� � � ; S3; S4; � � �], the specification variableA
is mapped to the registerR1 and along the critical path
[� � � ; S7; S8; � � �] it is mapped toR3. Many high-level
synthesis systems such as REAL [19], EMUCS [20] and
EASY [21] are the systems which use value-based regis-
ter optimization techniques. Register optimization prob-
lem can be modeled as a channel routing problem; the
life span of each value is modeled as a net interval. The
minimum number of tracks corresponds to the number
of registers needed.

.

.

.

.

.

.

.

.

.

(S8) C := A + 2;
(S7) A := B + 2;

(S4) C := A + 1;
(S3) A := B + 1;

S8

S7

S4

S3

.

.

.

.

.

.

.

.

.

Figure 5. Example of a partial specification

It is obvious that a variable during its lifetime, or
even at different states of the same critical path, may as-
sume different values. Also, it is possible that the same
value is assigned to different variables. The mapping
from specification variables toRTL registers is a ’many
to many’ relation (Figure 6). In this case also, a static
register binding function is not appropriate for specify-
ing this relation. In order to define the critical binding
function, we investigated how the elements of verifica-
tion are affected under this scheme. Unlike the carrier-
based register allocation scheme, the critical variables
do not uniquely correspond to theRTL registers along
each critical path. But we made the observation that
each variable at the final state of a critical path, holds the
last value assigned to it, and it is this value which will be
compared to the value of a corresponding register during
the verification process. Therefore, each variable can be
uniquely mapped to the register corresponding to the last
value assigned to it, along a critical path, and the bind-
ing function can be defined according to this rule. Also
we noted, the fact that multiple variables may be bound
to the same register along a critical path, does not affect
the register binding function. A dynamic critical regis-
ter binding functionBr : CRb � CPb 7! CRd like the
case of carrier-based register allocation can specify the
binding between the variables and the registers. Consid-
ering this dynamic binding function, the formalizations
of section 4 are still valid in this case.

.

.

.

Critical Specification
Variables Br

.

.

.

Critical RTL
Registers

ncp,. . .cp ,cp ,4

.

.

.

cp,
. . .

cp
,cp

,
2

3

n-1

m

var1

var 2

var

reg1

reg2

regm

1

Figure 6. Value Based Register Allocation

6 Correctness Condition Generator

In this section, we discuss how the proof of correct-
ness of the designs is automatically generated by our
correctness condition generator,CCG. We assume that
the operating environment of the designs ensures that
S0b � S0d. Typically, the environment ensures that all
the data and control registers are reset at the start states.
The goal of our proof effort is to show that each critical
path in the behavior is equivalent to its corresponding
critical path in the structure. We determine this by using
symbolic term rewriting in a higher-order logic theorem
prover.

Our proof effort is carried out in thePVS theorem
prover environment [14]. We modified the high-level

Data Path Axiom
 Generation

Controller Axiom
 Generation

equivalence lemas
 critical path
 Generation of

High-Level

 Synthesis

 System

Generation of
 Proof scripts

Behavior Axiom
 Generation

Controller

Data Path

 Checker
PVS Proof

RTL Design

Behavioral Specification Correctness Condition Generator

Binding Br,Bs,Bp

Figure 7. Stages of Correctness Condition Gener-
ation

synthesis system DSS [22] to generate the three bind-
ingsBr, Bs andBp. These bindings along with the be-
havior specification and theRTL design are the inputs
to the Correctness Condition Generator (CCG) shown in
Figure 7. TheCCG has five steps during which the fol-
lowing theories are generated: (1) behavior axioms; (2)
data path axioms; (3) controller axioms; (4) critical path
correctness lemmas; and, (5) proof scripts for each cor-
rectness lemma. Each of these steps will be discussed in
this section. Due to lack space, thePVSmodel could not
be included here.

A set of general definitions exist inCCGs axiom li-
brary, based on that,CCG generates a set of declara-
tions specific to the design under investigation. This set
of declarations and axioms define information about the
behavior specification andRTL design. This information
includes specification variables and theRTL component
declaration, critical path specification for both behavior
and RTL automata, and binding functionsBr, Bs and
Bp.

Behavior Axiom Generation - This step examines
the behavior specification, written in a simple subset of
VHDL in our case, and converts it into a series of axioms
that collectively specify the value transfers in the behav-
ior. For each state transition in the behavior design one
axiom is generated. This axiom specifies the value of
each specification variable, at the destination state of the
transition, in terms of the values of specification vari-
ables prior to transition.

Data Path Axiom Generation - A pre-existing li-
brary of axioms defines the behavior of each type ofRTL

component. The input of a component can be the output
of some other component or a primary input. Each li-
brary axiom specifies the operation of each component
by defining its input-output relation, at each state. The
value at the output of a component at a particular state
is defined in terms of the data and control inputs of the
component at that state, or its output at a previous state
in the case of sequential components.

At the second stage of correctness condition gener-

ation, the data-path of the synthesizedRTL design is
modeled as aPVS theory [23]. For each component of
the data-path, an axiom is generated, which specifies its
type, and its interface with the rest of the components.
The data-path axioms together with the axioms in the
component library define the behavior and interface of
each individual component. Also, the interconnection
of the control inputs of theRTL components with the
controller, and the interconnection of the flags from the
data-path to the controller are specified in this theory.

Controller Axiom Generation - A constructive
model of theRTL controller is now generated. The func-
tions �d, andControl Signal are extracted from the
controller description and converted toPVS functions.
In functionControl Signal, the value of control sig-
nals from the controller to data-path at each state of the
controller is defined.

Generation of Critical Path Equivalence Lemmas
- For each pair of the behavior-RTL critical paths which
are bound by the functionBp, a set of lemmas are gen-
erated. A general lemma states that if the initial states
of the pair of the critical paths areequivalent, their fi-
nal states should beequivalent. A set of sub-lemmas
(one sub-lemma for each live specification variablev)
state that if the initial states of the pair of critical paths
are equivalent, then the values stored in the live speci-
fication variablev and itsRTL counterpartBr(v) at the
final states of the critical paths are the same. The proof
of these sub-lemmas together complete the proof of the
main lemma for the critical paths.

Generation of Proof Scripts - Generation of proof
scripts is the most elaborate stage inCCG. In this stage
all the information about the designs is processed and
the rules for proving each lemma are produced. Proof
scripts are generated by performing symbolic analysis
on the behavior operations andRTL register transfers
along critical paths. These proofs are then subjected
to verification by thePVS proof checker. These proofs
make extensive use of symbolic rewriting, involving in-
stantiation of definitions, axioms and other proven lem-
mas.

7 Implementation and Results

The method discussed in the previous sections has
been implemented in a correctness condition generator
module integrated with the DSS [22] high level syn-
thesis system. DSS has been in development for about
ten years and is relatively mature. DSS accepts behav-
ioral specifications inVHDL and generatesRTL designs
also inVHDL. Using parallel synthesis algorithms,DSS

searches through vast regions of design space. DSS uses
enhancements of force-directed list scheduling and a hi-

erarchical clique partitioning algorithm for register al-
location. DSS has been used to generate numerous de-
signs both in the university and industry and has been
throughly tested using systematic benchmark develop-
ment, test generation and simulation.

Figure 7 shows the integration of the correctness con-
dition generator (CCG) with theDSSsystem as explained
in the previous section. TheCCG component ofDSS

is experimental to help us determine how much of the
verification effort can be automated and further develop
the techniques discussed in this paper. A major limita-
tion of the verification condition generator currently is
that it can handle a smaller subset ofVHDL than that
can be synthesized byDSS. The modifiedDSS sys-
tem with this generator produces aPVS file containing
declarative specifications of the behavior and data path
and constructive specifications of the controller. In addi-
tion, it produces all of the critical path equivalence lem-
mas and proof scripts to prove these lemmas. ThePVS

theories generated are not necessarily very elegant, but
are amenable to completely automated verification.PVS

system is used to execute these scripts automatically. No
manual interaction is necessary to conduct the proof and
inspection is necessary only in the event of a failure.

References

[1] Srinivas Devadas, Hi-Keung Tony Ma, Richard Newton,
”On Verification of Sequential Machines at Differing Lev-
els of Abstraction”, IEEE Transactions on Computer-
Aided Design, June 1988.

[2] Michael McFarland, “An Abstract Model of Behavior for
Hardware Descriptions”, IEEE Transactions on Comput-
ers, July 1983.

[3] Steven Johnson, “Synthesis of Digital Designs from Re-
cursion Equations”, MIT Press, Cambridge, 1984.

[4] Ranga Vemuri, “On the Notion of Normal Form Register-
Level Structures and Its Applications in Design-Space
Exploration ”, European Design Automation Conference,
March 1990.

[5] Sreeranga Rajan, “Correctness Transformations in High
Level Synthesis: Formal Verification”, Proceedings of
the International Conference on Computer Hardware De-
scription Languages, Japan, August 1995.

[6] N. Narasimhan, R. Vemuri, ”On the Effectiveness of The-
orem Proving Guided Discovery of Formal Assertions for
a Register Allocator in a High-Level Synthesis System”,
to appear in The 11th Conference on Theorem Proving in
Higher Order Logics (TPHOL’98), September 1998.

[7] N. Narasimhan et al, ”Theorem Proving Guided Devel-
opment of Formal Assertions in a Resource-Constrained
Scheduler for High-Level Synthesis”, ICCD’98, October
1998.

[8] Luc Claesen, Mark Genoe, Eric Verlind, Frank Proes-
mans, Hugo De Man, “SFG-Tracing: A Methodology of

Design for Verifiability”, Proceedings of Advanced Work-
shop on Correct Hardware Design Methodologies, North-
Holland, 1991.

[9] Francisco Corella, “Automated High-Level Verification
Against Clocked Algorithmic Specifications,” Proc. Com-
puter Hardware Description Languages and Their Appli-
cations, April 1993.

[10] M. K. Srivas and S. P. Miller, “Formal Verification of the
AAMP5 Microprocessor,” Chapter 7 in Industrial Appli-
cations of Formal Verification.

[11] E.M. Clarke, E.A. Emerson, A.P. Sistla, “Automatic Veri-
fication of Finite-State Concurrent Systems using Tempo-
ral Logic Specifications”, ACM Trans. Prog. Lang. Syst.,
pp. 244-263, 1986.

[12] Kenneth L. McMillan, “Symbolic Model Checking: An
Approach to the State Explosion Problem” Carnegie Mel-
lon University, 1992.

[13] Nazanin Mansouri, Ranga Vemuri, “A Methodology for
Completely Automated Verification of Synthesized RTL
Designs and Its Integration with a High-Level Synthe-
sis Tool”, to appear in International Conference on For-
mal Methods in Computer-Aided Design, Palo Alto, CA,
1998.

[14] N. Shankar, S. Owre and J. M. Rushby, ”The PVS Proof
Checker: A Reference Manual (Beta Release)”, March
1993.

[15] D. E. Thomas, R. L. Blackburn, and J. V. Rajan, “Linking
the Behavioral and Structural Domains of Representation
for Digital System Design”, IEEE Trans. CAD, vol. CAD-
6, pp. 103-110, January 1987.

[16] C.Tseng, D.P. Siewiorek, ”Facet: A Procedure for the Au-
tomated Synthesis of Digital Systems”, 20th ACM/IEEE
Design Automation Conference, pp. 490-496, 1983.

[17] P.G. Pualin, J.P. Knight, E.F. Girczyc, ”HAL: A Multi-
Paradigm Approach to Automatic Data Path Synthesis”,
24th ACM/IEEE Desgin Automation Conference, pp 263-
270, June 1986.

[18] Nam-sung Woo, ”A Global, Dymanic Register Allocation
and Binding for Data Path Synthesis System”, 27th De-
sign Automation Conference, pp. 505-510, 1990.

[19] F. Kurdahi, A. Parker, ”REAL: A Program for REgister
ALlocation”, 24th Design Automation Conference, pp.
210-215, 1987.

[20] D.E. Thomas C. Y. Hitchcock III, T.J. Kowalski, J.V. Ra-
jan, A. Walker, ”Automatic Data Path Synthesis”, IEEE
Computers, pp. 59-70, Dec. 1983.

[21] L. Stok, R. Van Den Born, ”EASY: Multiprocessor Ar-
chitecture Optimiztion”, Proceedings International Work-
shop on Logic and Architecture Synthesis for Silicon
Compilers, pp. 313-328, 1998.

[22] J. Roy, N. Kumar, R. Dutta, R. Vemuri, “DSS: A Dis-
tributed High-Level Synthesis System”, IEEE Design and
Test of Computers, June 1992.

[23] S. Owre, N. Shankar, J. M. Rushby, “The PVS Specifica-
tion Language (Beta Release)”, June 1993.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

