
Abstract
Methods for performing component matching by

expressing an arithmetic specification and a bit-level
description of an implementation as word-level
polynomials have been demonstrated for combinational
circuits. This representation allows the functionality of a
specification and existing implementation to be compared.
We present extensions to this basic method that allow
polynomial models to be constructed for circuits that
employ sequential elements as well as feedback.
Furthermore, we derive a means of approximating the
functionality of non polynomial functions and determining
a bound on the error of this approximation. These methods
are used to synthesize an Infinite Impulse Response filter
from a library of potential implementations.

1.  Introduction
Comparing the functionality of a specification and

implementation is a critical step in synthesis with complex
components and design verification. This comparison often
must be performed between arithmetic and bit-level
abstractions of the functionality. Polynomial methods
provide a means for generating word-level polynomial
representations, given bit-level descriptions of an
implementation. In generating a mathematical structure
common to both levels of abstraction, allocation and
verification of complex components can be performed,
closing the semantic gap between specifications, such as
those generated in MATLAB, and implementations, such as
those modeled with Hardware Design Languages (HDLs).

Polynomial methods ([SmDe98]) have been
proposed as an efficient technique for representing both
arithmetic specifications and bit-level descriptions of
existing implementations. These techniques have been
applied to combinational circuits in synthesizing a JPEG
encode block from existing subblocks. This paper extends
those methods, presenting a mechanism for constructing
word-level polynomial models for circuits that employ
sequential elements, given a bit-level description of the
circuit (Section 3). In addition, we present an algorithm for
constructing an arithmetic model for those circuits that
employ feedback (Section 4). The second part of the paper
focuses approximating the functionality of circuits that
implement non polynomial functions and bounding the
error of this approximation (Section 5).

To illustrate the application of the algorithms
developed in this paper, we compare the specification of a
filter suitable for controlling the velocity of a tape through a
tape drive to an existing filter, using polynomial methods
(Section 6). The arithmetic specification for this filter is
derived from MATLAB, while the existing implementation
is described by Boolean equations or HDLs.

2.  Related Work
Reusable blocks have traditionally been

characterized imprecisely by verbal descriptions, such as
“ethernet core” or “rasterizer”, and waveforms. Precise
descriptions are usually restricted to small blocks such as
adders and multipliers or combinational logic gates.
Structures such as BDDs ([Br86]) provide a compact,
canonical structure for representing such blocks. Binary
Moment Diagrams ([BrCh95], [ChBr96]), Hybrid Decision
Diagrams ([ClFu95]), and Multi Terminal BDDs
([ClFu93]) have provided extensions for dealing with more
complex blocks, like adders and multipliers, but, like
BDDs, can be exponentially large for blocks that
implement non-linear functions. PHDDs ([ChBr97]) are
well suited for representing the non linearities associated
with floating point arithmetic, but are not readily extensible
to other domains. [Mi96] introduced a method for modeling
and manipulating circuits that implement polynomial
functions using Zero-suppressed BDDs. This structure
provides an efficient representation for those circuits for
which a polynomial description is specified, but becomes
exponentially large if discontinuities exist in the function.

The methods presented in [SmDe98] provided a
mechanism for deriving a word-level polynomial
representation for a complex design given a Boolean circuit
description. This was achieved by determining the
minimum order of a polynomial that was required to
implement the same functionality as the circuit. Once this
order was determined, coefficients were computed that
caused polynomial output values in the integer domain to
match circuit output values in the Boolean domain. These
representations were shown to exist for all combinational
blocks and were proven to be canonical with respect to
circuit functionality. Furthermore, these algorithms were
shown to be of polynomial complexity with respect to input
word length.

The application domain of the methods presented in
[SmDe98] excluded designs that contained synchronous
elements or feedback paths. This paper will extend the
application domain of polynomial methods by presenting
algorithms for determining theorder of the polynomial
representation for synchronous circuits. As in [SmDe98],
polynomial coefficients are computed by fitting the
minimum order polynomial to the (x, y) coordinates
derived from circuit input/output pairs. For example, a
circuit with 4 bit input word x and 4 bit output word y, that
is of order 2 and generates the input/output pairs {(0000,
0000), (0001, 0001), (0010, 0100)}, can be represented by
the second order polynomial with coefficients [1, 0, 0]: y =
1x2 + 0x + 0 = x2. Coefficient computation is described in
[SmDe98] and not revisited in this paper.

Polynomial Methods for Allocating Complex Components
James Smith

Stanford University
Computer Systems Laboratory

Stanford, CA 94305

Giovanni De Micheli
Stanford University

Computer Systems Laboratory
Stanford, CA 94305



Algorithms for reducing the size of circuit
representations by approximating circuit functionality have
focused on minimizing the size of the representation and
the number of input assignments for which the
approximation and the actual circuit differ [RaMc98]. In
generating approximations with word-level polynomial
representations, our work focuses on minimizing
polynomial size and the numerical distance between the
implementation and the actual circuit.

3.  Sequential Acyclic Circuits
In [SmDe98], it was established that polynomial

representations, y = F(x), exist for all combinational
circuits. This is due to the fact that combinational circuits
specify a finite number of input/output pairs (x, y) that can
be treated as coordinates to which a polynomial can be fit.
Sequential circuits pose an additional problem because
circuit outputs are not only a function of the current inputs
but also previous inputs. Thus, a polynomial representation
of a sequential circuit must contain terms that are
dependent on previous input values: y = F(x, x@1, x@2, ...,
x@m). The terminology x@i indicates a version of x that is
delayed byi cycles.

3.1  Determining Combinational Equivalents
Generating a polynomial representation for

sequential acyclic circuits can be achieved by determining
an equivalent combinational circuit. A sequential circuit

F(x), with an input , can be represented by a set of
properly composed intermediate, combinational functions
fi(x, f0, f1, ..., fi-1) between which registers (denoted by
REG()) may exist. For example, the sequential circuit
described by the following Verilog code, and shown in
Figure 1, with input x and output y:

always @ (posedge clk) begin
x_q <= x;
y <= x + x_q;

end

can be similarly described by the following functions
(where y = F(x)):

f0(x) = x;
f1(x, f0) = x + REG(f0(x));
F(x) = f1(x, f0).
The existence of a register on the output of an

intermediate function fi(x, f0, f1, ..., fi-1) causes the inputs of
REG(fi) to be independent of the inputs of the unregistered
version of the intermediate function fi. That is, the values of
{x, f 0, f1, ..., fi-1} are independent of one another on
successive cycles. As a result, ifm intermediate functions
have registered outputs, the sequential function F(x) has an
equivalent combinational function F(x, x@1, x@2, ...,
x@m), where x@j, for , is the value of x after j
cycles. Note that m is finite due to the restriction that the
circuit does not have feedback. The equivalent
combinational function can be determined by recursively
creating a set of additional intermediate functions fij (x@1,
f0j, f1j, ..., fi-1j) for each intermediate function with a

x Bn
∈

0 j m≤ ≤

registered output. REG(fi(x, f0, f1, ..., fi-1)) is then replaced
by fij (x@1, f0j, f1j, ..., f(i-1)j), fi-1(x, f0, f1, ..., fi-2) by f(i-
1)j(x@1, f0j, f1j, ..., f(i-2)j), etc., in each intermediate
function. In the example above, this would result in the
following set of intermediate functions that described the
combinational implementation of F(x):

f0(x) = x;
f01(x@1) = x@1;
f1(x, f0) = x + f01(x@1);
F(x) = f1(x, f0).

A diagram of this transformation is shown in Figure 1.

The output of intermediate functions fi for which
additional intermediate functions fij  are created may go
unused in the equivalent combinational circuit. For
example, f0(x) is unused in the above representation of F(x,
x@1) and can be pruned from the set of intermediate
functions. Pruning is performed after all registers have been
removed from intermediate equations. Note that the
existence of the registered intermediate function REG(fi(x,
f0, f1, ..., fi-1)) will not cause fi(x, f0, f1, ..., fi-1) to be pruned
from F(x, x@1, x@2, ..., x@m) if an unregistered version
of f(x, f0, f1, ..., fi-1) is used elsewhere.

A polynomial representation for F(x) can now be
determined from F(x, x@1, x@2, ..., x@m). The order of
F(x, x@1, x@2, ..., x@m) is determined with respect to
each x@j, for , as independent variables, and the
coefficients of the polynomial representation are
determined. In the previous example, this would result in
F(x) = x + x@1.

4.  Sequential Cyclic Circuits
The method for determining polynomial

representations for sequential acyclic circuits relied on the
acyclic nature of the circuit to guarantee that a finite
number of time-shifted inputs were required. However, by
breaking the feedback path of a cyclic circuit F(x) , the
previous techniques can be used to derive the order of the
cyclic circuit. This is achieved by introducing an input
Ffeedback(x), and determining the order of F(x, Ffeedback)
with respect to x and Ffeedback.

4.1  Order Computation with Feedback
Assume a function F(x) contains two branches, one

branch with feedback and one initialization branch without
feedback (Figure 2):

initial F(x) = f1(x);
always F(x) = f2(x, Ffeedback(x));

0 j m≤ ≤

+ +

x

x@1x

=> yy

Fig. 1Transformation of a sequential adder into a
combinational circuit.



The order of f1(x) with respect to x, referred to as n1, can be
determined using the techniques presented in Section 3.
Furthermore, if y = Ffeedback(x) is treated as an input within
the second branch, then the order of f2(x, y) with respect to
x, referred to as n2, and with respect to y, referred to as m,
can also be determined. After initialization, the order of
F(x) is n1, and after the first iteration of the feedback
branch, the order of F(x) is less than (mn1 + n2) and greater
than mn1. In general, the order of F(x) is less than

m.O(Ffeedback(x)) + n2 and greater than m.O(Ffeedback(x)).
Thus, the upper bound on the order after k iterations of the
feedback branch, is:

To determine the order of F(x) there are three cases that
need to be considered:

(1) k is a constant,
(2) k is not a constant, m = 1, and there is no x.y
term in the polynomial f2(x, y),
(3) k is not a constant, and (  or there is no

x.y term in the polynomial f2(x, y)).

In case (1), the order of F(x) can be bounded according to
the equation above. Incase (2), the order of F(x) is the
greater of n1 and n2. For both of these cases, since the order
of F(x) is independent of k, a polynomial representation
exists for F(x). Incase (3), the order of F(x) is dependent
on k and is therefore unbounded.

To analyze case (3), assume that the specification
S(x) is modeled similar to Figure 2, as:

initial S(x) = s1(x);
always S(x) = s2(x, Sfeedback(x));

If S(x) has bounded order ns then the equation:

can be solved for k, using numerical methods, to determine
bounds on k within which F(x) can have the same order as
S(x), and therefore possibly implement S(x). If S(x) has
unbounded order, then S(x) is implemented by F(x) if and
only if s1(x) = f1(x) and s2(x, Sfeedback(x)) = f2(x,
Ffeedback(x)). Thus, even if a function F(x) does not have a
bounded order, and therefore no polynomial representation,
it can still be compared to a specification S(x) by

m
k

n1⋅ m
i

n2⋅
i 0=

k 1–

∑+

m 1≠

m
k

n1⋅ ns m
k

n1⋅ m
i

n2⋅
i 0=

k 1–

∑+≤ ≤

comparing the initialization and feedback polynomials of
S(x) and F(x).

Example 4.1.1 Consider a Boolean circuit F(x, y) with
inputs x, y, output z, and a base case polynomial and
recursive polynomial as follows:

initial begin always begin
z = x; z = z + x;
d = y; d = d - 1;

end end
Breaking the feedback loops introduces variables
zfeeback and dfeedback and results in computation of the
following set of polynomials:

Since the feedback polynomial is of order one with
respect to zfeedback (m = 1) and contains no xzfeedback
term, case 2 is satisfied, and the order of F(x, y) with
respect to x is the greater of n1 and n2, both of which
are 1.

5.  Approximations
Polynomial representations are an efficient way to

encapsulate the functionality of arithmetic circuits. Circuits
that do not implement polynomial functions can be
modeled by determining subdomains over which the circuit
does implement polynomial functionality, as outlined in
[SmDe98]. However, this becomes very expensive when
the number of subdomains becomes large. Circuits that
approximate continuous functions frequently generate
many subdomains. For example, a circuit that implements
F(x) = , where x is an n bit word, requires 2n-1

subdomains (Figure 3). Rather than represent F(x) as a list
of subdomains of x and corresponding polynomials that
describe F(x) exactly over those subdomains, it is much
more efficient to represent F(x) as the polynomial x/2 and
specify the maximum error between the continuous
function x/2 and F(x).

5.1  Computing Approximations
As proven in [SmDe98], the order of a function is

reduced by one by computing the difference F(x+1) - F(x).
If the order of F(x) is n, then recursively performing this
difference n+1 times will reduce the function to 0. For
example, consider F(x) = x:

Step 1: F(x+1) - F(x) = (x+1) - x = 1
Step 2: (F(x+2) - F(x+1)) - (F(x+1) - F(x)) = 1 - 1 = 0.

However, if performing this difference n times results in a
function that is not zero, but has a small range of output
values, then the function can be approximated well by a
polynomial of degree n.

The above fact can be translated to approximating a
set of Boolean equations with a polynomial. If an output bit
vector y is m bits long and the upper k bits of y are 1 then y
> -2m-k. Similarly, if the upper k bits of y - 2m-k (performed
using two complement arithmetic) are 1, then y < 2m-k. As,
a result, if F- is defined to be F(x+1) - F(x) and F+ is defined

initialize = 1 initialize = 0
z = x z = zfeedback + x

d = y d = dfeedback - 1

x 2⁄

initialize

1

0

F(x)

f1

f2

x

Ffeedback

Fig. 2Sequential cyclic circuit model



to be F(x+1) - F(x) - 2m-k, then the following statement
holds: if the upper k bits of (F- or F+) are 1, then -2m-k <
F(x+1) - F(x) < 2m-k. The bound on F(x+1) - F(x) (termed
G(x)), allows us to derive an approximation of F(x):

Given F(x+1) - F(x) = G(x)
Given F(0)
=> F(1) = G(0) + F(0)
=> F(2) = G(1) + F(1) = G(1) + G(0) + F(0)
...

=>

Assuming G(i) is small, F(x) can be approximated by:

5.2  Computing Approximation Error
The difference between F(x) and Fapprox(x), termed

∆(x), is:

Since -2m-k < G(i) < 2m-k, it requires only m-k bits to
represent G(i). Assuming  for a good approximation,
computation of  need only be
performed only over a short word length (m-k bits).
Definingδ(i) =  yields:

Expressingδ(i) as a sum of its bitsδj(i) yields:

A positive bound on∆(x) can then be determined from each
bit δ+

j(i) of the positive values ofδ(i):

Similarly, a negative bound can be determined from each

F x( ) G i( )
i 0=

x 1–

∑ 
 
 

F 0( )+=

Fapprox x( ) x F 2
n

1–( ) F 0( )– 
 

2
n⁄ 

 
⋅ F 0( )+≈

∆ x( ) G i( ) F 2
n

1–( ) F 0( )– 
 

2
n⁄– 

 

i 0=

x 1–

∑=

m k≈
G i( ) 2

n⋅ F 2
n

1–( ) F 0( )––

∆ x( ) 2
n⋅ G i( ) 2

n⋅ F 2
n

1–( ) F 0( )–– 
 

i 0=

x 1–

∑ δ i( )
i 0=

x 1–

∑= =

G i( ) 2
n⋅ F 2

n
1–( ) F 0( )––

∆ x( ) 2
j n– δj i( )⋅

j 0=

n m k– 1–+

∑ 
 
 

i 0=

x 1–

∑=

∆+
x( ) 2

j n– δ+
j i( ) 0≠ 

 
⋅

j 0=

n m k– 1–+

∑ 
 
 

i 0=

x 1–

∑<

bit δ-
j(i) of the negative values ofδ(i):

δ+
j(i) and δ-

j(i) are determined by computing the positive
and negative cofactor ofδj(i) with respect toδn+m-k(i)
(because ifδn+m-k(i) is zero,δ(i) is positive and if it is one,
δ(i) is negative).

Computing ∆(x) for all 2n values of x is
prohibitively complex due to the size of the domain and the
fact that∆(x) is a summation of x values. To circumvent
this summation and determine a bound on∆(x), the
maximum values for the following are determined:

∆(x+1) - ∆(x) where bit x0 = 0
∆(x+2) - ∆(x) where bits x0, x1 = 0
...
∆(x+2n-1) - ∆(x) where bits x0, x1, ..., xn-1 = 0

The sum of the maximum values of each of the above
equations provides a bound on the error of the
approximation, since any value of∆(x) can be reached by
summing a subset of the above equations. For example:

∆(7) = [∆(6+1) -∆(6)] + [∆(4+2) -∆(4)] + [∆(0+4) -∆(0)].

If a suitable bound is found for the nth computation
of F(x+1) - F(x), termed n(x), rather than the first
computation of F(x+1), then an approximation for F(x) can
be computed within∆ from Newton’s forward difference
interpolating formula:

Example 5.2.1 Consider the eight-bit function y = F(x)

where  and :

y0 = x1; y4 = x5;
y1 = x2; y5 = x6;
y2 = x3; y6 = x7;
y3 = x4;  y7 = 0;

This circuit could be partitioned into 64 subdomains
and represented exactly with 64 order 0 polynomials
(similar to Fig. 3). However, the first order iteration
yields the bound -1 < F(x+1) - F(x) < 1. Therefore,
F(x) can be approximated by the first order polynomial
Fapprox(x) = x(F(28-1) - F(0))/28 = .498x. The resulting

(∆(x+1)-∆(x))28 is:

δ0 = 1; δ5 = 0;
δ1 = 0; δ6 = 0;
δ2 = 0; δ7 = 1;
δ3 = 0; δ8 = x0’;
δ4 = 0; δ9 = x0’;

Evaluating at x0 = 0, the negative error contributed by

∆(x+1)-∆(x) is -127(2-8) = -.5 units. The positive error

contributed is zero units since (∆(x+1)-∆(x))28 = -127
when x0 = 0. Other differences∆(x+2i)-∆(x) contribute

∆-
x( ) 2

j n– δ-
j i( ) 1≠ 

 
⋅

j 0=

n m k– 1–+

∑ 
 
 

i 0=

x 1–

∑>

F x( ) F 0( ) x
1 

  F̂ 0( ) x
2 

  F̂
2

0( ) ...+ + +=

x
n 

 + F̂
n

0( ) x
n 1+ 

  F̂
n

2
n

1–( ) F̂
n

0( )–

2
n

-------------------------------------------+

x B
8∈ y B

8∈

Fig. 3Subdomains generated by the function F(x) = x/2.

Domain Polynomial
F(x) = 0
F(x) = 1
F(x) = 2
F(x) = 3
F(x) = 4

[0, 1]
[2, 3]
[4, 5]
[6, 7]
[8, 9]

0
0

5

12x

F(x)

... ...



no negative error and a total of .5 units of positive
error, resulting in the error bound: -.5 <∆ < .5. Thus,
the circuit implements the polynomial F(x) = .498x
within .5 units and could be used to match the
specification S(x) = x/2. This approximate
representation is far less complex than the 64
polynomials that would be required to represent the
circuit exactly.

6.  Application
Many embedded applications require digital filters

to control mechanical operations. Common examples
include altitude control systems for satellites, yaw dampers
in airplanes, and fuel injection controllers in automobiles.
We will apply polynomial methods to determine an existing
filter, from a library of filters, suitable for reuse in a tape
drive controller (Figure 4). The velocity of the tape with the
tape drive is controlled by a voltage applied to the reel
motor. This voltage is a function of past velocities, and
therefore past voltages, as well as the displacement
required to position the tape properly. An existing circuit
implementation within the library of filters is shown in
Figure 5, with combinational blocks already described by
polynomials. The challenge is to determine if the circuit
can be allocated to implement the following specification,
generated from MATLAB:

S(x) = 5S(x@1) - 10S(x@2) +
10S(x@3) - 5S(x@4) + S(x@5) +
.09375x - .28125(x@1) + .1875(x@2) +
.1875(x@3) - .28125(x@4) + .09375(x@5)

The first step in generating a polynomial
representation for the circuit described in Figure 5 is to
break the feedback paths. This results in Ffeedback replacing
F in the list of equations and being added to the list of
inputs. The next step in generating a polynomial
representation requires removal of all registers. After one
iteration of register removal, x@1 replaces REG(x) and is
added to the input list. Subsequently, x_q@1 replaces
REG(x_q) and the equation x_q@1 = x@2 is added to the
list of equations, and x@2 is added to the input list.
Register removal results in a circuit with the following
inputs: {x, x@1, ..., x@5, Ffeedback, Ffeedback@1, ...,
Ffeedback@5}. The equations for each of {x_q, ..., x_qqqqq,
F_q, ...., F_qqqqq} are pruned from the list of equations as

those variables are no longer used to compute F (the have
been replaced by {x@1, ..., x@5, Ffeedback@1, ...,
Ffeedback@5}). The complete set of resulting equations is:

H1 = 160Ffeedback@1 - 320Ffeedback@2 + 320Ffeedback@3
H2 = - 160Ffeedback@4 + 32Ffeedback@5
H3 = x - 3x@1 + 2x@2 + 2x@3
H4 = 3x@4 + x@5
H = H1 + H2 + H3 + H4
F = H>>5

At this point, the circuit description has no feedback paths
and no registers.

Order computation with respect to each of
{Ffeedback, Ffeedback@1, ..., Ffeedback@5} results in an order
of one for each input. However, the order of the circuit with
respect to each of {x, x@1, ..., x@5} is very large,
indicating that a representation of an approximation of this
circuit will be more efficient. Computation of F(x+1, x@1,
...) - F(x, x@1, ... ) reveals that -1 < F(x+1, x@1, ...) - F(x,
x@1, ...) < 1. A similar result is determined for x@1, ...,
x@5. Thus, the term that each of {x, x@1, ..., x@5}
contributes to the polynomial representation of the circuit
can be represented by an approximation of order 1, of the
form x(F(2n-1) - F(0))/(2n-1). Following the error
quantification steps outlined in Section 5, the bound on the
error contributed by approximating each term of the
polynomial that contains one of {x, x@1, ..., x@5} is -.968
< ∆ < .968. After performing coefficient computation, the
following polynomial representation for the circuit is
determined:

F(x) = 5Ffeedback(x@1) - 10Ffeedback(x@2) +
10Ffeedback(x@3) - 5Ffeedback(x@4) +
Ffeedback(x@5) + .093749x - .281246(x@1) +
.18749(x@2) + .18749(x@3) - .281246(x@4) +
.093749(x@5)

After closing the loop by setting Ffeedback = F, the
specification S(x) and implementation F(x) can be
compared by comparing their representative polynomials.
The coefficients of S(x) and F(x) do not match exactly, due
to the approximation of F(x), but are the same within 10-4.
Thus, the existing circuit can be allocated to implement the
specification if the circuit tolerance of 10-4 is acceptable.

input: x

x_q = REG(x)
x_qq = REG(x_q)
x_qqq = REG(x_qq)
x_qqqq = REG(x_qqq)
x_qqqqq = REG(x_qqqq)

H1 = 160F_q - 320F _qq + 320F_qqq
H2 = - 160F_qqqq + 32F_qqqqq
H3 = x - 3x_q + 2x_qq + 2x_qqq
H4 = 3x_qqqq + x_qqqqq
H = H1 + H2 + H3 + H4
F = H>>5

Fig. 5Circuit description for library element to
be compared to tape controller specification

output: F

F_q = REG(F)
F_qq = REG(F_q)
F_qqq = REG(F_qq)
F_qqqq = REG(F_qqq)
F_qqqqq = REG(F_qqqq)

Fig. 4Digital filter used as a compensator for controlling
the move of a tape through a tape drive

Transfer Function:
.094 - .28z-1 + .19z-2 + .19z-3 - .28z-4 + .094 z-5

1 - 5z-1 + 10z-2 - 10z-3 + 5z-4 - z-5
H(z) =

Compensator

Tape
Drive



7.  Experimental Results
Experiments in [SmDe98] verified that polynomial

methods, for combinational circuits, were of polynomial
complexity with respect to input bit width. To quantify the
performance of polynomial methods for synchronous
circuits, experiments were conducted, on a 200MHz Indy
with 256MB of memory, to gauge the relationship between
the execution time required to generate equivalent
combinational circuits and the number of registers (Figure
6(a)). The circuits on which this was performed were 16 bit
accumulators with between one and 5 register stages (i.e.
F(x) = x + x@1, F(x) = x + x@1 + x@2, ..., F(x) = x + x@1
+ ... + x@5). Execution time varied quadratically with the
number of registers. Note that the register removal tool is
written in Perl and the execution times in Figure 6(a) can be
reduced greatly using compiled code.

Further experiments were conducted to determine
the execution time of circuit approximation relative to input
bit width. Polynomial approximations were computed for
the circuit that implements the function y = x/2 for input bit
widths ranging from 4 to 128 bits (Figure 6(b)). While of
high order complexity, approximations completed quickly,
even for the widest datapaths. The accuracy of circuit
approximation was determined for several circuits of bit
width 16 (Figure 6(c)), all of which resulted in an error of
less than 2 units over the range [0, 216-1]. These
experiments were performed with compiled code.

8.  Conclusion
In performing high level synthesis and reusing

existing designs, automating allocation requires a means
for quickly determining whether an existing block performs
the function outlined in the specification. Current methods
for completing this task become prohibitively memory
intensive or time consuming for circuits that implement
complex functions. Previous work demonstrated an
algorithm for performing component matching efficiently
by constructing polynomial representations for
combinational circuits.

In this paper, we have developed extensions to
polynomial methods that allow polynomial representations
to be constructed for synchronous circuits, including those
with feedback paths. Furthermore, we have developed an
algorithm for determining an approximate polynomial
representation for those circuits that contain many
discontinuities and a means for quantifying the error of that

approximation. Finally, we demonstrated an application of
polynomial methods in which an existing filter design was
matched to the specification of a tape drive controller.

Future work will focus on developing partitioning
algorithms that allow polynomial representations to be
computed for less complex circuit partitions. The ease of
composition of polynomial representations will then allow
the order of the overall circuit to be computed with reduced
complexity with respect to input lengths.

Acknowledgments
This work is funded in part by MARCO and ARPA.

References

[SmDe98] J. Smith and G. De Micheli, “Polynomial Methods for
Component Matching and Verification”, Proceedings of the ACM/
IEEE International Conference on Computer Aided Design, 1998.
Prior to ICCAD 98, this paper can be found on the web: http://
aglaia.stanford.edu/SmDe98.html.

[Br86] R. Bryant “Graph Based Algorithms for Boolean Function
Manipulation”, IEEE Transactions on Computers, C-35(8), 1986.

[BrCh95] R. Bryant and Y.A. Chen, “Verification of Arithmetic Circuits
with Binary Moment Diagrams”, Proceedings of the 32nd ACM/
IEEE Design Automation Conference, p. 535 - 541, 1995.

[ChBr96] Y.A. Chen and R. Bryant, “ACV: An Arithmetic Circuit
Verifier”, Proceedings of the ACM/IEEE International Conference
on Computer Aided Design, p. 361-365, 1996.

[ClFu95] E.M. Clarke, M. Fujita, and X. Zhao, “Hybrid Decision
Diagrams”, Proceedings of the ACM/IEEE International
Conference on Computer Aided Design, p. 159 - 163, 1995.

[ClFu93] E.M. Clarke, K. McMillan, X. Zhao, M. Fujita, and J. Yang,
“Spectral transformations for Large Boolean Functions with
Applications to Technology Mapping”, Proceedings of the 30th
ACM/IEEE Design Automation Conference, IEEE Computer
Society Press, 1993.

[ChBr96] Y.A. Chen and R. Bryant, “*PHDD: An Efficient Graph
Representation for Floating Point Circuit Verification”, Proceedings
of the ACM/IEEE International Conference on Computer Aided
Design, p. 2-7, 1997.

[Mi96] S. Minato, “Implicit manipulation of Polynomials Using Zero-
Suppressed BDDs”, 1996.

[RaMc98] K. Ravi, K. McMillan, T. Shiple, F. Somenzi, “Approximation
and Decomposition of Binary Decision Diagrams”, Proceedings of
the 35th ACM/IEEE Design Automation Conference, IEEE
Computer Society Press, 1998.

Fig. 6(a) Execution time required for register removal
on 16 bit accumulators.

Accumulator
Stages

Number of
Registers

Exec. Time

1 16 7.76s

2 32 25.84

3 48 79.47

4 64 177.50

5 80 326.19

Fig. 6(b)Execution time for determining an approximation
to the function x/2(c) Accuracy of approximation for

Word Sizes Exec. Time

4 0.01s

8 0.05

16 0.19

32 1.11

64 9.14

128 76.80

Circuit
Function

Approx.
Error

x/8 0.87

x/4 0.75

x/2 0.50

3x/4 1.75

7x/8 1.87

several 16 bit functions.


	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index


