
Temporal Partitioning combined with Design Space Exploration for Latency
Minimization of Run-Time Reconfigured Designs �

Meenakshi Kaul Ranga Vemuri
mkaul@ececs.uc.edu Ranga.Vemuri@UC.EDU

Laboratory for Digital Design Environments, Department of ECECS
University of Cincinnati, Cincinnati, OH 45221–0030

Abstract
We present combined temporal partitioning and design

space exploration techniques for synthesizing behavioral
specifications for run-time reconfigurable processors. De-
sign space exploration involves selecting a design point for
each task from a set of design points for that task to achieve
latency minimization of partitioned solutions. We present
an iterative search procedure that uses a core ILP (Integer
Linear Programming) technique, to obtain constraint sat-
isfying solutions. The search procedure explores different
regions of the design space while accomplishing combined
partitioning and design space exploration. A case study
of the DCT (Discrete Cosine Transform) demonstrates the
effectiveness of our approach.

1 Introduction
Run-time reconfigurable processors [12, 22] are becom-

ing increasingly viable with the advent of modern field-
programmable devices. Run-time reconfiguration allows
large circuits to be implemented by multiple configurations
of the same processor. This necessitates temporal parti-
tioning of the specification. Temporal partitioning involves
dividing the specification into multiple segments, that ex-
ecute one after the other on the reconfigurable processor.
The effectiveness of temporal partitioning of applications
has been presented in [1, 2]; the partitioning, however, is
accomplished manually. Therefore, techniques to automat-
ically partition designs temporally are needed.

The design space of a design consists of many alternative
design implementations which vary in area and latency. In
order to explore the design space, it is important to integrate
partitioning and synthesis techniques. An optimally syn-
thesized design for constrained architectures, should meet
the area constraint while achieving the design whose exe-
cution time is the least over all the possible design alterna-
tives. Therefore in this work we focus on methods to reduce
the latency of the partitioned design, while meeting the ar-
chitectural constraints. We present an iterative refinement
procedure that iteratively explores different regions of the
design space to yield latency-reduction of the partitioned

�This work is supported in part by the US Air Force, Wright Laboratory,
WPAFB, under contract number F33615-97-C-1043.

design. An Integer Linear Programming (ILP) based inte-
grated temporal partitioning and design space exploration
technique forms a core solution method which is used to ex-
plore different regions in a latency directed search heuristic.
We demonstrate the effectiveness of our technique with ex-
perimental results.

Currently, tools for temporal partitioning rely on the man-
ual specification of the partitioning points [4]. Others have
have extended existing scheduling and clustering techniques
of high-level synthesis [3, 5, 11]. In [5, 11] the temporal
partitioning technique involves partitioning gate-level de-
signs. Since the design to be partitioned is already synthe-
sized, different synthesis options for achieving lesser latency
partitioned solutions cannot be explored. Our technique
can simultaneously handle multiple design constraints, eg.,
FPGA resources, on-board memories, and perform design
exploration that cannot be handled by current techniques in
[3, 5, 11]. In an earlier work [8], we presented a mathemati-
cal model for combined temporal partitioning and operation
level synthesis. The number of alternative solutions ex-
plored becomes very large and the technique can be used to
synthesize small-scale behavior specifications.

[14] presents an extended bi-partitioning problem for co-
design where partitioning and design point selection is per-
formed sequentially, unlike our combined approach. Simul-
taneous spatial partitioning and synthesis is formulated as
an ILP in [9]. [13] presents an ILP-based methodology for
hardware software partitioning of co-design systems. Re-
source constrained scheduling and binding at operation level
for ASICs has been formulated as an ILP in [10]. Here, the
latency of a design is the number of control steps in the
solution. A control step would correspond to a temporal
partition in the temporal partition formulation if the latency
of each partition is a constant. However, since the latency of
each temporal partition will be different based on the tasks
mapped to the partition, we need to generate formulation to
determine the latency of the critical path mapped to a parti-
tion. And unlike in scheduling since memory is a constraint,
our model formulates memory constraint equations.

There exist no automated temporal partitioning tech-
niques that explore different design-space points for the

design. In this paper we demonstrate how such integrated
temporal partitioning and design space exploration tech-
niques can be used successfully to obtain near-minimal la-
tency designs.

2 Motivation
Temporal partitioning can be performed at various stages

in the design process. It can be performed at RT-level or
gate-level after the design has been synthesized [11]. The
effect of partitioning should influence the exploration of
the synthesis design space, but this information would be
unavailable while the design is being synthesized. Alter-
natively, behavioral temporal partitioning can be performed
first, and the resulting partitions can be synthesized. How-
ever, the synthesis cost of a design on the given architecture
will determine the partitioning of the design; therefore it is
very important to explore the design space while performing
synthesis and partitioning together.

Growing design complexity has lead designers to gen-
erate designs at higher levels of abstraction, such as, the
behavior level. In this paper, we concentrate on behavior
level design descriptions to be temporally partitioned. We
assume the input specification to be a task graph, where each
task consists of a set of operations. Task boundaries can be
given by the designer, or tasks can be automatically derived
from the behavior specification by clustering or template
extraction techniques [15].
Design Alternatives for Tasks : Depending on the re-
source/area constraint for the design different implementa-
tions of the same task, which represent different area-time
tradeoff points, can be contemplated. These different im-
plementations are design points/Pareto points [19] in the
design space of a task. If a task is implemented with less
resources, then the operations in the task will be executed
serially, thus increasing the latency of the task. On the other
hand, an implementation with more resources reduces the
latency but increases the area. Therefore, choosing the best
design point for each task may not necessarily result in the
best overall design for the specification. The most optimal
design point for a task will depend on the architectural con-
straints and the dependency constraints among the tasks. We
make use of a high-level synthesis estimation tool [17] for
obtaining various design points for a task. In the subsequent
discussion, we will express the latency of a design point in
terms of total execution time and not in number of clock
cycles.

If the number of design alternatives for a task are too
many, then exploring the large design space can become
too computationally expensive. In such cases, ’candidate’
design points must be obtained by effective design space
pruning techniques [15]. Since there is a gap between the
behavior description and the final synthesized design, it is
important that we have accurate synthesis estimates for the
tasks. We can use more sophisticated High-Level Syn-

thesis estimators which incorporate layout estimation tech-
niques. Such partitioned designs, can then be predictably
taken down to the actual FPGA layout [16].
Area-Latency Tradeoff : The design alternatives or so-
lutions for a specification to be temporally partitioned will
vary in the number of temporal partitions and the latency of
the partitioned design. For the spatial partitioning problem,
increasing the number of partitions has the effect of increas-
ing the overall area for the design, and directly affects the
latency of the design. Increasing the area generally increases
the number of operations that can execute in parallel (if no
dependency constraints exist) and thus decreases the latency
of the design. However, for a temporal partitioning system
increasing the number of partitions increases the area avail-
able for the design, but this increase is ‘over time’ and not
‘over space’. This increase in number of partitions may or
may not result in the reduction of the latency of the design.
To understand this effect, we need to consider the kind of re-
configuration time overhead of the different reconfigurable
architectures -
� The reconfiguration time is orders of magnitude greater
than the task graph latency. The Wildforce reconfigurable
board [22] with reconfiguration time in milli-seconds is is
an example.
� The reconfiguration time is comparable to the latency of
task graphs. An example is the Time-Multiplexed FPGA in
[12] with reconfiguration time in nano-seconds.

When the reconfiguration overhead is very large com-
pared to the execution time of the task, it is clear that min-
imizing the number of temporal partitions will achieve the
smallest latency in the overall design. However when the
reconfiguration overhead is small, minimizing the number
of partitions may not minimize the overall latency for the
design. As we have less partitions, lesser FPGA resources
are available. Therefore to minimize the number of parti-
tions the temporal partitioning system will pick among the
available design space, those design points which have least
area. These design points will, however, have more latency.
For example, consider that the difference in latency between
two design points for a task is 100 ns, and the reconfigura-
tion time is 30 ns. The optimal solution may be found by
increasing the number of partitions over which the design is
partitioned, so that the design point with larger area is able
to fit, with a reduction of 70 ns over the overall latency of
the design.

Usually partitioning tools focus on finding a solution for a
given partition size (k-way partitioning, where k is an input
to the system). Our temporal partitioning tool performs
three functions (1) maps tasks to partitions, (2) maps each
task to appropriate design point, and (3) explores multiple
partitioning solutions, so that an appropriate partition size
is achieved, and the latency of the partitioned solution is
reduced.

3 Temporal Partitioning System
The inputs to our temporal partitioning and design space

exploration system are - (1) Behavior specifications (2) Tar-
get Architecture Parameters. In formal notation, the inputs
are stated as -

T set of tasks in the task graph.
ti ! tj a directed edge between tasks, ti; tj 2 T ,

exists in the task graph.
B(ti; tj) number of data units to be communicated

between tasks ti and tj .
B(env; tj) number of data units to be read by

task tj from the environment.
B(ti; env) number of data units to be written

from task ti to the environment.
Rmax resource capacity of the reconfigurable processor.
Mmax temporary on-board memory size.
CT reconfiguration time of the reconfigurable processor.

The behavior specifications are in the form of a directed
graph called the Task Graph. The vertices in the graph
denote tasks, and the edges denote the dependency among
tasks. Data communicated between two tasks,B(ti; tj), will
have to be stored in the on-board memory of the processor,
if the two tasks connected by an edge are placed in different
temporal partitions. Data being communicated to the tasks,
B(env; tj), or from the tasks, B(ti; env) to the host also
needs to be stored. The target architecture parameters spec-
ify the underlying resources and the reconfiguration time,
CT , for the device. Typically, resource capacity, Rmax, is
the combinational logic blocks/function generators on the
FPGAs of the reconfigurable device. Mmax, is the memory
for storage of intermediate data available on the reconfig-
urable processor.

3.1 Preprocessing

Design Point Generation: Each task in the task graph is
synthesized by a high level synthesis estimation tool. The
high level synthesis tool generates a set of design points
for each task. Each design point has an associated module
set[18]. A module set, m, consists of the set of, possi-
bly multiple, functional units used to implement the design
point. Each design point is characterized by its area and
latency. Each task t, will have a set of module sets, Mt,
corresponding to the set of synthesized design points. We
state this formally as -

Mt set of module sets for a task t 2 T .
R(m) area for a design point using module set m 2Mt.
D(m) latency of a design point using module set m 2Mt.

Partition bounds Estimation: To find the number of par-
titions over which the temporal partitioning solution should
be explored we calculate two bounds -
1. MinAreaPartitions(): For calculating the lower bound on
number of partitions N l

min we sum the minimum area mod-
ule set, m, for each task. This value divided by the FPGA
area will be the minimum number of partitions required to
obtain a solution.

N l
min

=
P

t2T
R(m)=Rmax; fm j 8m 2Mt;min(R(m))g

2. MaxAreaPartitions(): Ideally, we should be able to es-
tablish an upper bound on the number of partitions needed to
be explored by the partitioner, if the maximum area design
point for each task is chosen. However, we cannot establish
an upper bound on the maximum number of partitions. If
a task is too large to fit in some temporal partition, it must
go to a later partition. Then all the descendents of this task
also cannot occupy the earlier temporal partition. This will
leave some area on temporal partitions unoccupied due to
dependency constraints, and the task graph will not fit even
though there is enough area left unoccupied on the parti-
tions. We could have established an upper bound on the
maximum number of partitions to be equal to the number of
tasks in the task graph. However, this is a very pessimistic
bound and usually so many partitions need not be explored.
We define, the minimum number of partitions, Nu

min, that
need to be explored if the maximum area design point for
each task is mapped by the partitioner, to be -
N
u
min

=
P

t2T
R(m)=Rmax; fm j 8m 2Mt;max(R(m))g

Latency bounds Calculation: The latency of a synthe-
sized design will involve two components - (1) latency due
to the actual execution of the tasks in the task graph, (2)
latency due to the reconfiguration overhead. For a given
number of temporal partitions, N , we can calculate the up-
per and lower bounds on the latency of the design.
1. MaxLatency(N): The worst latency Dmax, will occur
when all tasks are serially executed. For latency calcula-
tion, we will use the design point with maximum latency for
each task. This latency added to the reconfiguration over-
head will be the upper bound latency for N partitions.
Dmax =

P
t2T

D(m) +N � CT

2. MinLatency(N): For obtaining the lower bound we con-
sider for each task the fastest (minimum latency) design
point. We obtain the latency for all the paths in the task
graph, by summing up the minimum latency of the tasks
along each path. The maximum latency value over all such
path latencies in the task graph, gives us the lower bound on
the latency. This added to the reconfiguration overhead will
be the lower bound latency for N partitions.
Dmin = max f all least latency paths in T g +N � CT

3.2 Algorithm
Informally, the algorithm has the following steps -

1. Obtain a constraint satisfying solution for the starting
partition size N l

min, and latency constraints Dmax; Dmin

for this partition bound.
2. Find lower latency solutions by progressively exploring
different regions of the search space, by tightening the la-
tency constraints, for the current partition bound.
3. Increase the partition size bound and go to step 2.

Algorithm Reduce Latency(N;Dmax; Dmin)
begin
Da 0
FormModel()
if SolveModel() = Infeasible

return(Da)
Da CalculateSolnLatency() /* Achieved latency of solution */
while (Dmax �Dmin � �) and (Da �Dmin � �)

D
0
max = Dmax

/* Binary subdivision of achievable latency range */
Dmax = (Dmax +Dmin)=2
while (Dmax � Da)
/* we have already achieved a latency Da less than Dmax */

Dmax = (Dmax +Dmin)=2
end while
FormModel()
if SolveModel() = Infeasible

/* tighten lower bound to remove infeasibility */
Dmin = Dmax

Dmax = D0max

else
Da CalculateSolnLatency()

end if
end while
return(Da)

end Algorithm Reduce Latency

Figure 1. Latency Refinement Procedure

3.2.1 Exploration by latency constraint reduction

Figure 1, describes formally the latency reduction algo-
rithm. It is an iterative procedure that obtains near-optimal
latency solutions for a given partition bound, N , and la-
tency bounds Dmax and Dmin. It finds a constraint sat-
isfying solution between Dmax and Dmin. Once a solu-
tion is obtained, the upper bound on latency is reduced to
(Dmax+Dmin)=2, and a new solution for these constraints
is found. If a feasible solution is obtained, then the ob-
tained latency of the solution becomes the upper bound for
a new search. If no feasible solution is obtained, then this
latency becomes the new lower bound. It continues this
binary subdivision on the latency bounds, till the difference
between the upper and lower bounds becomes very small, or
no more feasible solutions are found. The tolerable differ-
ence between the lower and upper latency bounds is a user
defined parameter, �, called the latency tolerance. Latency
tolerance defines how much of the design space can be left
unexplored in one run of the algorithm. If the tolerance is
small, more iterations will be spent in obtaining a solution,
thus increasing the run time. If a large run time is not accept-
able then latency tolerance can be increased. In practice, we
can set the latency tolerance to a small percentage of the
MaxLatency(N) of the task graph.

We have formulated the temporal partitioning and design
space exploration problem as an ILP (presented in Section
3.2.3). We do not use the ILP for finding optimal solutions,
but instead use it to obtain a feasible solution for a problem.
Our latency reduction procedure then makes the constraints
tighter, reformulates the ILP and solves it for the new prob-
lem. We could have also used the same ILP to solve the

Algorithm Refine Partition Bound()
begin
N
u
min
 MaxAreaPartitions()

N
l
min
 MinAreaPartitions()

N N
l
min

+ � /* starting partition number */
Dmax MaxLatency(N)
Dmin MinLatency(N)
Da Reduce Latency(N;Dmax; Dmin)
while (Da = 0) /* Partition bound was infeasible */

N N + 1 /* next partition number */
Dmax MaxLatency(N)
Dmin MinLatency(N)
Da Reduce Latency(N;Dmax; Dmin)

end while
while N < N

u
min

+
 and not TimeExpired()
N N + 1 /* Relax N */
Dmin MinLatency(N)
if Dmin � Da

return(Da) /* This is the best solution */
else
/* find a better solution by taking Da as upper bound */
D
0
a Reduce Latency(N;Da;Dmin)

if D0a 6= 0 /* Feasible */
Da D0a

end if
end if

while
return(Da) /* return with the last known best solution */

end Algorithm Refine Partition Bound

Figure 2. Partition Refinement Procedure

problem to optimality, but we found that this is feasible only
for small problem sizes of up to 10 tasks. For larger designs,
therefore we have developed this directed search procedure,
which reduces the search space for each run of the ILP
solver, while still exploring the whole design space over all
iterations. This claim has been substantiated in Section 4 by
demonstrating that for small designs the solution obtained
by this procedure and an ILP solved to optimality is the
same. In the algorithm, procedure FormModel() forms
the ILP model, SolveModel() then solves the model and
returns with the first feasible constraint satisfying solution.

3.2.2 Partition Space Exploration
To explore better solutions for the temporal partitioning

problem, we need to explore more than one partition bound.
Finding the ideal partition size,N , is also an iterative proce-
dure, shown in Figure 2. We calculate the minimum number
of partitions, N l

min, as described earlier. We can start from
this partition number or from a slight relaxation, defined by
�, called the Starting Partition Relaxation. We start the
search at N l

min + � and obtain a near optimal solution, by
using the Algorithm Reduce Latency as explained earlier.
The resultant latency is the achieved latency Da for N par-
titions. To explore better solutions, we now relax N by 1,
and call Reduce Latency again. This time however, since
we are looking for a better solution than the one we have
already achieved, Da is the latency upper bound for the
new search by Reduce Latency. We continue to relax N
and look for better solutions until the value of N reaches

Nu
min +
. Here
 is a user controlled parameter, called

the Ending Partition Relaxation, which defines the num-
ber of partitions beyond Nu

min that must be explored while
searching for better solutions.

The partitions ranging fromN l
min+� toNu

min+
 need
to be explored for searching the whole design space. We
have introduced these parameters, so that a user can direct
the partition space search if the user has more knowledge of
the solution to the problem. We give an example of how this
can be done. Using a heuristic, if we map the least area de-
sign points for each task we arrive at a solution with partition
size N

0

. If N
0

is greater than N l
min then � = N

0

�N l
min.

(However this is not a true lower bound as the heuristic may
have missed a solution with lesser number of partitions than
N

0

.) Similarly, using a heuristic and mapping the maximum
area design point for each task, we arrive at a solution with
N

00

partitions. This is an upper bound on the partition size.
If N

00

> Nu
min, then
 = N

00

� Nu
min. We are currently

studying how to achieve tighter upper and lower bounds
for partition size, and incorporating them automatically in
our algorithm. However the facility of giving � and
 will
still be provided to the user. Intuitively, for reconfigurable
architectures with large reconfiguration overhead, since the
minimum latency solution will be obtained in the least num-
ber of partitions, � &
 = 0.

3.2.3 ILP formulation

We build the temporal partitioning model for the given
inputs and the values of N , Dmax and Dmin derived from
the algorithms describe earlier. After linearization of the
non-linear constraints, we solve it using a linear program-
ming solver. To state formally the mathematical model we
use the following definitions

Tl set of tasks ti 2 T , where
8tj 2 T;:(ti ! tj), (leaf tasks of T).

Tr set of tasks tj 2 T ,
where 8ti 2 T;:(ti ! tj), (root tasks of T).

ti
p
! tj a directed path from ti 2 T to tj 2 T .

P
l
p
!r

f ti
p
! tj j (ti 2 Tr) ^ (tj 2 Tl)g, (set of paths

from root tasks to leaf tasks).
Variables and Constraints : Variable ytpm, models parti-
tioning and design point selection for a task. wpt1t2 , models
data transfer requirement across partition boundaries. �, is
the actual number of partitions finally used in the solution
and will be less than or equal toN . dp, models the execution
time of a temporal partition.

ytpm =

(
1 if task t 2 T is placed in partition p,

1 � p � N, using module set m 2Mt

0 otherwise

wpt1t2 =

8>><
>>:

1 if task t1 is placed in any partition 1 � � � p� 1 and
t2 is placed in any of p � � �N and t1 ! t2

1 if task t1 is placed in partition p and t2 is
placed in any of p+ 1 � � �N and t1 ! t2

0 otherwise
� = Number of partitions actually used in solution.

1

2

3

1

2

3

Temporal
Partitions

Tasks MODELLING EQUATIONS:

212
W *B(1,2) + W * B(1,3) + W * B(2,3) <= M213 223

RESULT EQUATIONS:

212

W *B(1,2) + W * B(1,3) + W * B(2,3) <= M312

W *B(1,2) + W * B(1,3) + W * B(2,3) <= M213 223

313 323W * B(1,3) + W * B(2,3) <= M

313 323 max

max

max

max

Figure 3. The constraints to be satisfied if tasks
are mapped to partitions as shown

dp = latency of partition p.

Variables ytpm, wpt1t2 are 0-1 variables, � is an integer vari-
able and dp can be integer or real depending on whether the
latency values are integer or real.
Uniqueness Constraint: Each task should be placed in ex-
actly one partition among the N temporal partitions, while
selecting one among the various module sets for the task.
8t 2 T :

P
m2Mt

PN

p=1
ytpm = 1 (1)

Temporal order Constraint: Because we are partitioning
over time, a task t1 on which another task t2 is dependent
cannot be placed in a later partition than the partition in
which task t2 is placed. It has to be placed either in the same
partition as t2 or in an earlier one.
8t2; 8t1 ! t2; 8p2; 1 � p2 � N � 1 :P
m12Mt1

P
p2<p1�N

yt1p1m1 +
P

m22Mt2
yt2p2m2 � 1 (2)

Memory Constraint: Data transfer across partition bound-
aries will occur due to two dependent tasks being placed in
different temporal partitions. This intermediate data needs
to be stored between partitions and should be less than the
memory, Mmax, of the reconfigurable processor. The vari-
able wpt1t2 , if 1, signifies that t1 and t2 have a data de-
pendency and are being placed across temporal partition
p. Therefore the data being communicated between them,
B(t1; t2), will have to be stored in the memory of partition
p. The sum of all the data being communicated across a
partition should be less than the memory constraint of the
partition.
8p; 1 � p � N :

P
t2T

P
p�p2�N

(ytp2 � B(env; t))+P
t2T

P
1�p3�p

(ytp3 � B(t; env))+P
t22T

P
t1!t2

(wpt1t2 � B(t1; t2)) �Mmax (3)

Note that the variable wpt1t2 has to model communication

among tasks which are both on adjacent and non-adjacent
temporal partitions. In Figure 3, we show how this variable
models data transfer. We show in the figure the original
equations used to model the constraints in the example for
Temporal Partitions 2 and 3. The result equations show the
variables which will be 1 in the mapping of tasks to parti-
tions shown in the example and the constraint which has to
be satisfied. wpt1t2 are 0-1 non-linear terms constrained as -

50 ns

100 ns

Temporal partition 1
Delay = 400 ns

Temporal partition 2
Delay = 300 ns

Total delay = 400 + 300 + 2 *CT

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

300 ns 50 ns

150 ns

200 ns

100 ns

50 ns

200 ns

Figure 4. Latency Estimation

8p; 1 � p � N; 8t2 2 T; 8t1 ! t2; :

wpt1t2 �
P

1�p1<p
yt1p1 �

P
p�p2�N

yt2p2 (4)

8p; 1 � p � N; 8t2 2 T; 8t1 ! t2; :

wpt1t2 � yt1p �
P

p+1�p2�N
yt2p2 (5)

Equations (4) and (5) are non-linear. We can use lineariza-
tion techniques to transform the non-linear equations into
linear ones, so that the model can be solved by a Linear
Program solver. Linearization techniques have been used
successfully before in [8] to solve the combined temporal
partitioning and synthesis problem.
Resource Constraint: The sum of area costs of all the tasks
mapped to a temporal partition must be less than the overall
resource constraint of the reconfigurable processor. Typical
FPGA resources include function generators, configurable
logic blocks etc. Similar equations can be added if multiple
resource types exist in the FPGA.
8p; 1 � p � N :P

m2Mt

P
t2T

(ytpm � R(m)) � Rmax (6)

Latency Constraint: The latency of design execution on a
partition will be the maximum latency among all the paths
of the task graph mapped to that partition. In Figure 4, we
show how the latency for a partition is determined. The fi-
nal mapping of tasks to partitions, with the latency value for
each task, is shown. In partition 1, three paths are mapped.
The latency of this partition is the greatest latency along a
path mapped to the partition, i.e., maximum among 350ns,
400ns, 150ns. The maximum latency in partition 2 is 300ns.
Formally the latency of design execution on a temporal par-
tition is given as -

8p; 1 � p � N; 8(ti
p
! tj) 2 P

l
p
!r

:P
m2Mt

P
t2ti

p
!tj

(ytpm �D(m)) � dp (7)

All temporal partitions 1 � � �N used in the formulation,
may not be used in the final solution, if the tasks can
fit in lesser number of partitions. To calculate the ac-
tual number of partitions used in the solution, we de-
termine the highest numbered partition used by any leaf
level task in the task graph by the following equation -

 T1

 T5

T1 = { * [8]; * [8]; * [8]; * [8]; + [16]; + [16] } type TASK A

T2 = { + [17]; + [17] } type TASK B

T3 = { * [18]; * [8]; * [18]; * [8]; + [26]; + [26] } type TASK A

T4 = { * [27]; * [8]; * [27]; * [8]; + [35]; + [35] } type TASK A

T5 = { + [36]; + [36] } type TASK B

 TASK B

+ +

+

* **

+

*

 TASK A

 T1

 T3

 T4

 T2

Figure 5. Task Graph for the AR Filter

Result(Iterative) Result(Optimal)
N I Dmax Dmin Da Da

3 1 2,745 1,385 Inf. Inf.
4 1 2,775 1,415 2,150

2 2,095 1,415 1,865
3 1,755 1,415 Inf.
4 1,840 1,755 Inf. 1,865

5 1 1,865 1,445 1,770
2 1,650 1,445 Inf.
3 1,752 1,650 Inf. 1,770

Table 1. Temporal Partitioning of the AR filter,
Rmax = 196, CT = 30ns, � = 0,
 = 0, � = 30

8t 2 Tl :
P

m2Mt

PN

p=1
(p � ytpm) � � (8)

Now the latency constraints can be stated in terms of equa-
tions (7) and (8) as -

� � CT +
PN

p=1
dp � Dmax (9)

� � CT +
P

N

p=1
dp � Dmin (10)

4 Experimental Results
Case Study of AR filter : We present a case study of

the Auto Regressive (AR) filter [21]. The size of the task
graph is small, but we demonstrate the closeness of the solu-
tion obtained by our algorithm and the optimal solution. The
task graph for the specification consists of 6 tasks shown in
Figure 5. Tasks A and B show the internal structures of the
filter tasks. Tasks T1, T3, & T4 have a structure like Task A,
but differ in the bit-widths of their operations. Tasks T2 and
T5 are like Task B, but again differ in their bit-widths. The
bit widths of each operation in each task is also shown in
the figure. Due to space limitation, the design points are not
shown. Task T1 has three design points, tasks T3 & T4 have
two design points each, and tasks T2 and T5 have one design
point each. The result of the experimentation is shown in
Table 1. N denotes the number of temporal partitions ex-
plored. The columns under Result(Iterative) state the result
of running our algorithm. I is the iteration of the algorithm,
Dmax and Dmin are the latency bounds for that iteration.
Da gives the latency of the solution. Result(Optimal)
is the result achieved by solving the problem to optimality
using the ILP solver. We use CPLEX to solve the ILP
problems both for constraint satisfaction and optimal solu-
tion. We see that the result of our algorithm matches the
optimal solution for this task graph. We have performed
a lot of experiments on small task graphs and the solution

++

+

* * **

Const. Const. Const. Const.

Vector Product
(Task)

T1 T1 T1 T1

T2 T2 T2T2

T1 = { * [9]; + [15 }; + [16] } T2 = { * [16]; + [23]; + [24] }

Figure 6. Task graph for DCT, 8 of the 32 tasks
are shown

Characteristics
Task D. Area Latency �9 +16 �16 +24

T1 1 180 375 4 2
2 138 500 2 2
3 121 750 1 2

T2 1 216 420 4 2
2 188 560 2 2
3 162 840 1 2

Table 2. Design Points for DCT tasks

for our iterative procedure and an optimally solved ILP has
been the same.
Case Study of DCT : For task graphs with larger num-
ber of tasks, our iterative constraint satisfaction approach
is able to explore in reasonable time more solution space
than by solving the problem to optimality. To demonstrate
our approach, we undertook a case study of the 4x4 DCT,
the most computationally intensive subtask of the JPEG
image compression algorithm [20]. In this study DCT was
modeled in the form of 32 vector products. The entire DCT
is a collection of 32 tasks, where each task is a vector product
as shown in Figure 6. There are two kinds of tasks in the task
graph, T1 and T2, whose structure is similar to the vector
product, but whose bit-widths differ. A collection of eight
tasks, forms a row of the 4x4 output matrix, as shown in the
figure. The entire task graph consists of four such collec-
tions of tasks. Each task had three design points. These were
carefully estimated using an estimation tool based on [18].
The functional units, area and latency for each is shown in
Table 2. The result of the iterative refinement procedure for
minimizing the latency of DCT for various FPGA resource
bound, Rmax, and reconfiguration overhead, CT , values is
shown in Tables 3 through 8. Run times for our temporal par-
titioning tool, in seconds, are shown for each iteration of the
algorithm separately in the column T(s). The total run time
in minutes for each experiment is shown in column T(m).
All experiments have been run on an UltraSparc 1 machine
running at 175 Mhz. In the first experiment, shown in Table
3,Rmax = 576 CLBS andCT is 30ns. The minimum num-
ber of partitions estimated by MinAreaPartitions() is 8
and by MaxAreaPartitions() is 11. We started our algo-
rithms with N = 9, (Starting Partition Relaxation, � = 1).
We are able to reduce the latency of the circuit in steps
by doing a binary division. Once the difference between

Bounds Result
CT N I Dmax(ns) Dmin(ns) Da T(s) T(m)
30ns 9 1 25,710 1,065 9,650 37.40
� = 1 2 7,226 1,065 7,060 77.32

3 4,145 1,065 Inf. 300
4 5,685 4,145 Inf. 300
5 6,455 5,685 Inf. 300
6 6,840 6,455 Inf. 300

10 1 7,060 1,095 6,500 278.8
2 4,077 1,095 Inf. 300
3 5,568 4,077 Inf. 300
4 6,314 5,568 Inf. 300
5 6,407 6,314 Inf. 300

11 1 6,500 1,125 Inf. 300
12 1 6,500 1,155 Inf. 300 56.55

Table 3. DCT, Rmax = 576; � = 200;
 = 1

Bounds (without N � CT) Result
CT N I Dmax(ns) Dmin(ns) Da T(s) T(m)

10ms 8 1 25,440 795 Inf. 300
� = 0 9 1 25,440 795 9,630 77.60

2 6,956 795 Inf. 300
3 9,266 6,956 9,100 78.95
4 8,111 6,956 8,100 185.73
5 7,533 6,956 7,380 281.93
6 7,244 6,956 Inf. 300 25.4

Table 4. DCT, Rmax = 576; � = 200;
 = 1

the maximum and minimum latency bounds is less than
� = 200, we stop. Then, we proceed by increasingN to 10
and repeat the latency refinement procedure. We sometimes
need to have a timeout, either if the problem is infeasible or
a solution is too difficult to find. This timeout is shown in
the results as Inf.. Notice that, while we are tightening the
latency constraint in each iteration of the solution, we are
in effect making the solver progressively look at different
parts of the design space. Since Ending Partition Relaxation,

 = 1, we stop our search at N = 12.

For the second experiment shown in Table 4,CT is 10ms.
For this experiment, we have not shown the value of recon-
figuration overhead N � CT in the table. In this case we
started with � = 0, since the overhead of reconfiguration
is very large, the least latency solution is most likely to be
obtained in the minimum number of partitions. We start
with 8 partitions, but no solution is possible. Then we relax
the partition bound by 1, to 9 and continue the search for a
solution. Notice that no relaxation of N was undertaken in
this experiment, after a solution was achieved. This is be-
cause, the algorithm Refine Partition Bound calculates
the new minimum latency on relaxation, Dmin, and finds
that it is greater than the already achieved latency Da, so
it stops. In Table 5, we show the results on DCT with
Rmax = 1024. In this experiment the latency tolerance �
is 800. To show how varying the parameter � affects the
performance of the algorithm, we reduce � to 100 and re-
peat the same experiment whose results are shown in Table
7. The number of iterations spent looking for a solution
increases, thus increasing the runtime. But a better solution
is achieved in iteration 6, atN = 6. The same results can be
observed in Table 6 and Table 8, for the larger reconfigura-
tion overhead of 10ms. Again, we see that reducing latency

Bounds Result
CT N I Dmax(ns) Dmin(ns) Da T(s) T(m)
30ns 6 1 25,620 975 7,290 4.28
� = 1 2 7,136 975 6,475 9.34

3 4,055 975 4,040 76.43
4 2,515 975 Inf. 300
5 3,285 2,515 Inf. 300

7 1 4,040 1,005 3,980 214.4
2 2,522 1,005 Inf. 300
3 3,281 2,522 Inf. 300

8 1 3,980 1,035 Inf. 300 30.07

Table 5. DCT, Rmax = 1024; � = 800;
 = 1

Bounds (without N � CT) Result
CT N I Dmax(ns) Dmin(ns) Da T(s) T(m)

10ms 5 1 25,440 795 6,030 20.92
� = 0 2 3,875 795 Inf. 300

3 5,222 3,875 Inf. 300
4 5,853 5,222 5,610 288.46 15.15

Table 6. DCT, Rmax = 1024; � = 800;
 = 1

Bounds Result
CT N I Dmax(ns) Dmin(ns) Da T(s) T(m)
30ns 6 1 25,260 975 7,290 4.28
� = 1 2 7,136 975 6,475 9.34

3 4,055 975 4,040 76.43
4 2,515 975 Inf. 300
5 3,285 2,515 Inf. 300
6 3,670 3,285 3,640 104.04
7 3,477 3,285 Inf. 300
8 3,573 3,477 Inf. 300

7 1 3,640 1,005 Inf. 300
8 1 3,640 1,035 Inf. 300 33.23

Table 7. DCT, Rmax = 1024; � = 100;
 = 1

Bounds (without N � CT) Result
CT N I Dmax(ns) Dmin(ns) Da T(s) T(m)

10ms 5 1 25,440 795 6,030 20.92
� = 0 2 3,875 795 Inf. 300

3 5,222 3,875 Inf. 300
4 5,853 5,222 5,610 288.46
5 5,537 5,222 5,190 74.17 16.39

Table 8. DCT, Rmax = 1024; � = 100;
 = 1

tolerance increases the run time but achieves better solu-
tions. For all the experiments shown, we also experimented
with obtaining optimal latency solutions as shown for the
AR filter. However, in none of these experiments could the
optimal solution process get even a single feasible solution
in the same run time as the iterative solution process.

5 Conclusion
We have shown, that by using mathematical program-

ming techniques we can model the task level temporal parti-
tioning and design exploration problem incorporating mul-
tiple constraints of area, latency, and memory. We have also
developed a framework in which these techniques can be
used in a novel manner to solve constraint satisfaction prob-
lems for large specifications of real world examples such as
the DCT. We are able to get near-optimal solutions in short
run times with this iterative procedure. The effectiveness of
the formulations and iterative procedure was demonstrated
by the case study of the DCT.

The algorithms presented in this paper are integrated
in the SPARCS (Synthesis and Partitioning for Adaptive

Reconfigurable Computing Systems) [6, 7] design envi-
ronment being developed at the University of Cincin-
nati. SPARCS is an integrated design system for au-
tomatically partitioning and synthesizing designs for re-
configurable boards with multiple field-programmable de-
vices (FPGAs). The SPARCS system contains a tempo-
ral partitioning tool to temporally divide and schedule the
tasks on the reconfigurable architecture, a spatial parti-
tioning tool to map the tasks to individual FPGAs, and
a high-level synthesis tool to synthesize efficient register-
transfer level designs for each set of tasks destined to
be down loaded on each FPGA. For more details go to
http://www.ececs.uc.edu/�ddel/projects/sparcs/sparcs.html.

References
[1] R. D. Hudson, D. I. Lehn and P. M. Athanas, “A Run-Time Reconfigurable Engine

for Image Interpolation”, IEEE Symposium on FPGAs for Custom Computing
Machines, FCCM ’98.

[2] M. J. Wirthlin and B. L. Hutchings, “Sequencing Run-Time Reconfigured
Hardware with Software”, ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, FPGA’96.

[3] M. Vasiliko and D. Ait-Boudaoud, “Architectural Synthesis for Dynamically
Reconfigurable Logic”, International Workshop on Field-Programmable Logic
and Applications, FPL’96.

[4] M. B. Gokhale and J. M. Stone, “NAPA C:Compiling for Hybrid RISC/FPGA
Architectures”, IEEE Symposium on FPGAs for Custom Computing Machines,
FCCM ’98.

[5] J. Spillane and H. Owen, “Temporal Partitioning for Partially-Reconfigurable-
Field-Programmable Gate”, Reconfigurable Architectures Workshop in
IPPS/SPDP’98.

[6] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Vemuri, “An Integrated
Partitioning and Synthesis System for Dynamically Reconfigurable Multi-FPGA
Architectures”, Reconfigurable Architectures Workshop in IPPS/SPDP’98.

[7] S. Govindarajan, I. Ouaiss, M. Kaul, V. Srinivasan and R. Vemuri, “An Ef-
fective Design Approach for Dynamically Reconfigurable Architectures”, IEEE
Symposium on FPGAs for Custom Computing Machines, FCCM ’98.

[8] M. Kaul and R. Vemuri, “Optimal Temporal Partitioning and Synthesis for Re-
configurable Architectures”, Design and Test in Europe, DATE ’98.

[9] C. H. Gebotys, “Optimal Synthesis of Multichip Architectures”, IEEE ICCAD,
p238-241, Nov. ’92.

[10] C. H. Gebotys and M. I. Elmasry, “Optimal VLSI architectural synthesis”,
Kluwer Academic Publishers.

[11] S. Trimberger, “Scheduling designs into a Time-Multiplexed FPGA”,
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA’98.

[12] S. Trimberger, “A Time-Multiplexed FPGA”, IEEE Symposium on FPGAs for
Custom Computing Machines, FCCM ’97.

[13] R. Niemann and P. Marwedel, “An Algorithm for Hardware/Software Parti-
tioning Using Mixed Integer Linear Programming”, Proceedings of the European
Design and Test Conference ED&TC ’96.

[14] A. Kalavade, “System-Level Codesign of Mixed Hardware-Software Systems”,
Ph.D. Dissertation, University of California, Berkeley, ’95.

[15] D. S. Rao and F. Kurdahi,“Hierarchical Design Space Exploration for a Class
of Digital Systems”, IEEE Transactions on VLSI, v 1, n 3, ’93.

[16] M. Xu and F. Kurdahi, “Layout Driven High Level Synthesis for FPGA Based
Architectures”, Design and Test in Europe ’98.

[17] J. Roy, N. Kumar and R. Vemuri, “DSS: A Distributed High-Level Synthesis
System for V HDL Specifications”, IEEE Design and Test of Computers ’92 .

[18] R. Dutta, J. Roy, and R. Vemuri, “Distributed Design Space Exploration for
High-Level Synthesis Systems”, 29th Design Automation Conference, June ’92.

[19] G. D. Micheli, “Synthesis and Optimization of Digital Circuits”, McGraw-Hill,
’94.

[20] G.K. Wallace, “The JPEG Still Picture Compression Standard”, ACM Commu-
nications, ’91.

[21] Y. Hung, A. Parker, “High-Level Synthesis with Pin Constraints for Multiple-
Chip Designs”, 29th Design Automation Conference, ’92.

[22] WILDFORCE Reference Manual, Document #1189 - Release Notes, Annapolis
Micro Systems, Inc..

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

