Parametric Fault Diagnosis for Analog Systems Using Functional Mappir'?g

S. Cherubal and A. Chatterjee
Georgia Institute of Technology, Atlanta, GA-30332
e-mail: (sashi, chat)@ee.gatech.edu

Abstract approaches to fault diagnosis can be divided into two

i i classes- (1) Simulation Before Test (SBT) methods and (2)
We propose a new Simulation-After-Test (SAT) methodg; . 1ation After Test (SAT) methods.

ology for. acc_urate diagnosis of cirpuit parameters in Iarge SBT approaches are based on the principle of building
analog circuits. Our methodology is based on constructing, 51t dictionary-i.e. a list of all possible behaviors of the
a non-linear regression model using prior circuit simula- ¢jrcjit under fault. The behavior of the CUT is compared
tion, which relates a set of measurements to the Circuit'Syith the list of faulty behaviors stored in the fault dictio-
internal parameters. First, we give algorithms to selectnary for fault diagnosis [8-11]. SBT approaches have been

measurements that give all the diagnostic informationiniy aimed at the diagnosis of digital systems and single
about the Circuit-Under-Test (CUT). From these SeIeCtedcatastrophic faults in analog systems.

measurements, we solve for the internal parameters of the gt methodologies explicitly solve for the values of

circuit using iterative numerical techniques. The methodniernal parameters of the CUT from a set of measure-
ology has been applied to several mixed-signal test benchyents on the CUT using on-line circuit simulations [3-7].
mark circuits and has applications in process debuggingrne appiication of these methods has been limited to lin-
for mixed-signal integrated circuits (ICs) as well trouble- o5 systems and small non-linear circuits because of the
shooting and repair of board level systems need to perform costly circuit simulations in real time.
Slamani and Kaminska [2] use the concept of incremental
sensitivity for identification of circuit parameters. In this
1 Introduction and Previous Work approach, the authors assume that the sensitivity matrix
can be computed easily. In general, the computation of

The test cost of mixed-signal systems is dominated bysensitivity will be as complex as a full-circuit simulation.
the test complexity of the analog part. Faults (violation of ~Stenbakken and Sounders [12] and Spaandonk and
functional specifications) caused by variation of parameXKevenaar [13], have used matrix decomposition tech-
ters in analog components are particularly difficult to testniques on the sensitivity matrix, to select measurements
and diagnose. Currently, these devices are tested for thefipr analog circuits. Here, the aim of measurement selec-
functional specifications. If the circuit fails any one of the tion is computation of all the specifications of the CUT
functional specifications, it is necessary to determine whaffom a subset, and not diagnosis of parameters of the CUT.
caused the failure for process debugging, repair and tuning
the manufacturing process. In this paper, we present 2 Qverview of the Methodology
comprehensive methodology for test selection and diagno-

sis of parametric faults in cqm_plex analog circuits. The Tpe performance specifications of any analog CUT

proposed methodology (a) eliminates the need to perforyenends on a set of circuit parameters. (values of resistors,
circuit simulation for fault diagnosis from observed Me&- canacitors, gain of opamps etc.) Our goal is to compute
surements, (b) is applicable to general non-linear CirCUiFS(diagnose) the values of the circuit's parameters, given a

(c) can diagnose single as well as multiple faults, (d) iSset of measurements on the CUT. As noted in Section 1,

able to diagnose large deviation of parameters where sefge major obstacle in the extension of SAT methodologies
sitivity based techniques are inaccurate (€) allows meag, |arge analog circuits is the need to perform circuit simu-
surement selection that minimizes the number of nodeg,sions based on measurement data. We propose to build a
accessed during testing as well as test time. non-linear regression model to approximate the functional

Many approaches to fault diagnosis have been prefg|ationship between parameters of the CUT and measure-
sented in literature. Bandler and Salama [1] have given a

review of the early work on fault diagnosis. Existing
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ments made on it, which we denote B)mehe regression benchmark circuits [20]. Finally, conclusions are presented
model is given by in Section 7.

Fm(p) = m pOo™ moo™ 1)
whereny is the number of parameters of the CUT amg

is the number of measurements. This regression model is We assume that a list of all possible measurements that
constructed using prior circuit simulations. We use a non- P

linear regression tool -Multivariate Adaptive RegressionCan be made on the CUT is given. The abjectives of the

Splines (MARS) [18] to generate the regression model.measurement selection procedure are

Given a set of measurementifrom the CUT, we solve for 1. Minimize the number of nodes accessed during testing

a set of parameter values that satisfies Equation(1). This is an_d_ . .

set of nonlinear equations in several variables and is solveg M|n|m|_ze the test time. . _

using iterative techniques similar to Newton-Raphson’s To achieve these goals, we examine the te_stmg Process.
As an example, consider the frequency domain testing of a

algorithm [16]. . . - . :
gor [16] state variable filter shown in Figure 2. Sine-waves of differ-

3 Measurement Selection for Diagnosis
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FIGURE 2. State-Variable Filter.
ent frequencies are applied to the input and the gains at the

Regression
Models for Selected

Measurements ' %?g;g?gﬁset different nodes are measured. The set of gains at the differ-
' ent frequencies are the set of measurements on the CUT.
"""""" ) Each measurement on the CUT has the following two
FIGURE 1. Overview of Diagnosis attributes: (a) dest signalwhich consists of the state of all
Methodology inputs to the CUT (in this case, frequency of the input sig-

Our technique can be seen as a ‘SAT-like’ technique imal) and (b) the node where the measurement is made.
which time consuming circuit simulation has been replacedsince test signals are applied sequentially to the CUT, test
by a simple evaluation of the regression model. This meangme will be minimized by minimizing the number of test
that our technique can be used to diagnose large analog cisignals. An overview of the measurement selection algo-
cuits where simulation complexity makes conventional SATrithms is given in Figure 3.
methods difficult to apply. Since we explicitly solve for all
the circuit parameters, we can diagnose single as well a3.1 Node and Signal Selection
multiple faults. An overview of the diagnosis technique is

showninFigure1. _ Liu et. al. [15] have shown that the number of parame-
In many analog circuits, internal nodes will have to beg o 14t can be solved for from a given set of measurements
probed to achieve the required diagnostic resolution. Wes oy () \where S is the sensitivity matrix which is the
propose algorithms to pick a minimum number of intermal iy derivativeof the measurements w.r.t the parameters.
nodes to observe in order to achieve the required d'agr‘os“?herefore, we use the rank of the sensitivity matrix as a
resolution. _ _ measure of the diagnostic information contained in a set of
_In Section 3, we discuss the algorithms used for chooSge a5 rements. The rank of a matrix is defined as the num-
ing an minimum set of nodes, and measurements on e ot jts non-zero singular values [17]. In the case of
selected nodes, to obtain the required diagnostic resolutionyyroyimate dependencies or low sensitivity values, instead
In Section 4, we discuss the methodology for buildifgh, ot singular values that are zero, we will get singular values
In Section 5, we discuss the different diagnosis algorithmshat are extremely small. In these cases, it is may not be
used to solve for the circuit parameters. In Section 6, Weyossible to solve for as many parameters of the CUT as
give diagnosis results for three of the mixed-signal testhere are non-zero singular values, due to measurement

noise, modeling errors etc. Therefore, while computing the



rank of the sensitivity matrix, we consider all singular val- selection we get a minimal set of nodes and test signals for
ues which are less than a pre-specified fraction (for exampléhe CUT. Since these nodes and test signals are selected
1%) of the first (largest) singular value to be zero. By doingusing the sensitivity matrix computed with the nominal val-
this, we are considering nearly dependent columns of thees of the CUTs parameters, these may not gmmplete

sensitivity matrix to be dependent.
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The relationship between parameters and measurements
can change under fault. For example, an output of an opamp
can saturate or a transistor can cut off due to parametric
faults, making measurements made on the circuit insensi-
tive to parameter variations in the circuit. Such change of
behavior is most likely to occur when the measurements
take extreme values. Therefore, we use the heuristic of
identifying points in the parameter space where the selected

measurements take extreme values. To find these points, for
each selected measurement we compute two sets of

parameterdJi=[uy, U, .., Y ,.., Y] andLi=[l 1, I, .., | ..,

The aim of the measurement selection algorithm is tdnl- The parameters; andl; are given by
select a subset of measurements whose sensitivity matrix i
has the same rank as the whole set of measuremenyﬁ Let Uj = pj+sgn( ﬁ) tAp; @
be a subset of the set of all possible measurements on the o m,
CUT with sensitivity matrix=Se. If rank(S=) = rank(S), i = P=SON(S,) (AP, ®)
whereS is the sensitivity matrix of the whole set of mea-  respectivelyp; is the nominal value of thé"j parameter
surements, we define the satto be a set havingomplete
diagnostic information

Our primary aim is to minimize the number of nodes thatis the sensitivity ofn, to p;. The measurement; is taken to
have to be accessed during testing. Therefore, we initialljts upper extreme value by the parameter set by the parame-
assume thaall the test signals are applied on the CUT andter setU; and it is taken to the lower extreme value by the
try to find a minimum set of nodes that will gi@mplete  parameter seli;. A set of pointsP=[ Uy, U,,.., Uy, L3, Ly,

diagnostic informationWe use the following greedy proce- L] is computed, where the selected measurements take
dure to search for the set of nodes.

1. Selected Nodes @ Selected Measurememts.

2. Find node which, if added to the set of selected nodes,
will cause a maximum increase in thenk(Sg,). Let this
node bek.

. Add node k to Selected Nodes.

. Add all measurements made on nkdem.

5. If rank(Sy) < rank(S) go to step 2, else end.

Once a set of nodes has been selected, we try to mini4
mize the number of test signals that have to be applied to
minimize test time. In order to achieve this, we use a greedy
search similar to the one used for node selection. For each ©Once the measurements to be made on the CUT are
test signal applied, the list of measurements consists of alfléntified, a regression model is built relating the parame-
the measurement(s) of the test signal which are on thi"s of the CUT to the selected measurements. The regres-
selected nodes. Test signals are sequentially added to the S#n model is built from a set of training data generated
of selected test signals titink(Ss) = rank(S). After signal through simulation of the CUT. We generate instances of

FIGURE 3. Overview of Measurement Selection
Methodology

andAp; is the maximum deviation in the paramefgr S:_'

extreme values. At each of the pointsHrthe sensitivity of

all the measurements is recomputed. Now, we check if the
set of selected measurements is a set hastimgplete diag-
nostic information If not, additional nodes/signals are
selected using the algorithms described in Section 3.1, till
the set of selected measurements basplete diagnostic
information

AW

Building the Regression Model.



the CUT by varying the parameters of the CUT accordingcalledambiguity group$14,15]. We use the approach given

to the fault statistics given. If no information is known by Liu et. al. [15] to identify ambiguity groups. Once the

about the specific kinds of faults that can occur, we assumambiguity groups are identified, parameters in each ambi-

uniform, independent distribution to the different parame-guity group are treated as reference parameters (i.e. they are

ters. not varied) so that the rest of the parameter set can be
We have used Cadence circuit simulaSpectrefor our  solved for.

circuit simulations. To extract measurements from the sim-

ulation data we used the Cadence waveform processing tool .
i Measuremnts o] MARS regression
Artil. CUT=m Models

We used a non-linear regression tool, MARS [18] to —
generate the regression model from the simulation data. Coarse Search for

The tool has the ability to accurately model highly non-lin- Initial Guessp

ear functions with large dimensionality of input parameter

space. Devarayanadurg et. al. [19] have used MARS to cap- Compute i‘fgs”i"”y
ture the output of mixed-signal modules as a function of v
different input signals for behavioral simulation. In our Iggg%gigmt:s
approach, we use MARS to approximate the variation of Vi
measurements made on a analog circuit with the variation Update guess

(Equation 5))

of the circuit’s parameters.

5 Diagnosis Procedure

Diagnosed Parametgrs
Our methodology solves for the values of parameters of Ambiguity Groups

the circuit using a modified Newton-Raphson (N-R)
method. For the system of non-linear equatufingm—mc,

the iteration step is given by

Pre1—pe = I(p) A hm(p)-me) (@)
wherem, are the measurements obtained from the CUT  We need a coarse search procedure to get fairly close to
andJ(py) is the Jacobian dF ,(p) atpy. Here the Jacobian the actual solution to ensure convergence of N-R. We use a
is the sensitivity matrix described in Section 3.1. An over-Simple heuristic of varying one parameter at a time till the
view of the diagnosis procedure is given in Figure 4. Theremaximum value of the erroff* ,.{p) - mc) is minimized.
are several issues involved in diagnosis using N-R iteraWe use these values of parameters as the initial value for N-

FIGURE 4. Overview of Diagnosis Procedure.

5.2 Convergence of N-R

tions. They are R iterations. Also, damping of the iteration sequence, which
1. The set of measurements may not uniquely identify theis a very common way of improving convergence [16] has
parameters of the CUT been implemented. In a damped N-R iteration, the iteration

2. Convergence: N-R is only locally convergent- i.e. the equation is given by
iterations converge only if the starting point is close to Die1—Pr = A D](bk)—l E(pom(f)k) _mo) ®)

the solution _ .
We deal with these issues below where 0<A < 1. The starting value foh is 1 and the
value is geometrically reduced till the error in the present
5.1 Dependent Input Variables iteration becomes smaller than the error in the previous iter-
ation.

To solve for the parameters of the CUT, we need to
invert thesensitivity matrixn each iteration. Dependent or 6 Results
approximately dependent variables can cause the sensitivity
matrix to be ill-conditioned. Existence of dependent vari- In this section, we apply our methodology to three ITC
ables means that there exists infinitely many solutions to thenixed-signal test benchmark analog circuits and show diag-
diagnosis equations. In this case, we need to identifyrosis results. The circuit schematics are shown in Figure 2,
parameters that cannot be uniquely solved for, and find ongigure 5 and Figure 6. The list of parameters for each cir-
possible solution. Groups of parameters that cannot beuit is given in Table 1. The values within the parentheses
uniquely solved for from the given set of measurements argndicate the nominal values of the parameters. Since we are



using a voltage input signal and measuring only voltagedable 4. The first column of the table shows the measured
we cannot solve for the values of individual resistors orvalues of all the parameters of the CUT and the second col-
capacitors. Therefore, the parameters of the CUT are resisimn gives the values computed by the diagnosis algorithm.
tor ratios and R-C products. The list of all accessible nodeél'he average error in the diagnosed parameters for the state
and test signals for the circuits is given in Table 2. The twovariable filter and leapfrog filter are 2.07% and 2.83%,
linear filters are tested in the frequency domain using sineespectively. For the ladder DAC, complete diagnosis was
waves. For the DAC, the list of measurements consists ofiot possible from the given set of measurements. The
Integral Non-linearity (INL) for inputs words 0 to 255, volt- parameters that cannot be solved for uniquely are marked
e by an asterisk (*). The gain-bandwidth and of the opamp
_ﬁl_ Wy - does not affect any of the measurements, and hence it can-
not be solved for. Also, the parameters which control the
+ " R4|
u R
@% Ord M

LSBs of the DAC cannot be identified uniquely because of

TABLE 1. Parameters of the three circuits

Ri3 Circuit Parameters (Nominal Values)
m State Vari- R2/R1(1), R5/R1(1), 1/R3C2(5000),
FIGURE 5. Leapfrog Filter able Filter 1/R4C2(5000), R6/R7(0.428)
Leapfrog fil- | R2/R1(1), R3/R1(1), R5/R4(1), R13/R4(1), R9/R8(1), R1/
ter R7(1), R10/R11(1), 1/R1C1(10000), 1/R6C2(5000), 1/

R7C3(5000), 1/R11C4(10000)

8-bit ladder R10/Rfb(0.5), R20/Rfb(1), R11/Rfb(0.5), R21/Rfb(1), R14/

DAC Rfb(0.5), R22/Rfb(1), R13/Rfb(0.5), R23/Rfb(1), R14/

Rfb(0.5), R24/Rfb(1), R15/Rfb(0.5), R25/Rfb(1), R16/
Rfb(0.5), R26/Rfb(1), R27/Rfb(1),Rend/Rfb(1),
(GBW(1.0e6), SR(0.4\is) and Vos(0)) of opamp

TABLE 2. Accessible nodes and tests for the

circuits
FIGURE 6. 8-bit Ladder D/A converter
L .| circuit Test Signal Accessible Nod
ages at nodes 1 to 7 and the rise-time fora 0 255 transi- —— oo =
. . . State Variable Fil- 400Hz, 800Hz, ...4kHz HPO, LPO,BPO,1
tion. Nodes and test signals were chosen using the ter
measurement selection glgorlthms. The selected nodes and™ capirog fiter 200Hz, 400Hz, 600HZ, 12 3 4.5 out
test signals are shown in Table 3. Three test frequencies ..4kHz
were chosen for the state variable filter and six test frequen-| s-bit ladder DAC INL(O to 255), V(1), out, 1,2,3,4,5,6,7
cies were chosen for the leapfrog filter. For the DAC, the ‘\’/((?) ://E;),gF\i/l(:e)tnwaes()o
measurements chosen were INL measurements for 9 input ->255 transition)

code words, the DC voltages at nodes 1, 2, 3,4, 6 and 7 and
the rise-time for a 0. 255 transition. Regression models TABLE 3. Nodes and Test signals chosen

were built for the selected measurements. Prototypes of the| . . Nodes Ch Test signal ch

ircui built to test the diagnosis algorithms. Faults - kel ikl
CII‘CUIt.S.WeI’e . . . . R . ) State Variable Filter HPO, BPO, LPO 400Hz, 800Hz, 3.6kHz
were injected into the circuit by varying the circuit parame- _

Leapfrog filter 1,2,3,4,5, out 200Hz, 600Hz, 1400Hz,
ters. In the DAC, anm346 programmable opampas used 2000Hz, 2200Hs, 2400Hz
to vary the opamp’s Gam-Bandw_ldth (GBW) and Slew 8-bit ladder DAC out, 1,2,3,4,6,7  INLfor(128, 64,32,31,16, 14,
Rate (SR). The GBW and SR of this opamp IC can be var- 8,5, 3), V(1), V(2), V(3),
ied by changing an external bias resistor. The selected mea- N o

surements were made on the CUTS. Test signals wer%w sensitivity values. It is seen that the methodology is
generated using an HP33120A signal generator and mea; y ‘ 9y

surements were made using an HP54645D digital storag%ble to accurately solve for parameters of the different cir-

oscilloscope. The 8-bit quantizer of the osciIIoscopeClJItS for single and multiple faults

implies an error of about0.5 % (1/256) in the measure-¢ 4 Computational Requirements
ments. The diagnosis algorithms were run on the measured
data. The parameters of the circuit (values of resistors,

capacitors, etc.) were measured using an HP974A 4.5-digit. T(.) compute the average (?PU time required for diagno-
: . . . .7sis, instances of faulty circuit parameters were generated
multimeter. The results of fault diagnosis are given in

and measurements for these instances were computed



through simulation. The diagnosis algorithms were run or{3]A. Walker, W. E. Alexander and P. K. Lala, “Fault Diagnosis in
this simulation data to compute the average CPU timeAnalog Circuits using Element ModulationEEE design & test
required for diagnosis. Experiments were run on a SUN°f computersvol. 9, No. 1, March 1992, pp 19-29. .
Ultra-2 workstation. The average CPU time required forl4H: Dai and M. Sounders, “Time Domain Testing Strategies and
diagnosis of the three circuits is given in Table 5. The thirgF2ult Diagnosis for Analog Systems|EEE transactions on

column indicates the average number of NR iteration:s'n;tlrg;n_ig?t'on and MeasuremeNl. 39, No. 1, February 1990,

required by the diagnosis algorithm for each test circuit. [5IN. Sen and R. Saeks, “Fault Diagnosis for Linear Systems via

TABLE 4. Diagnosis results

Measured values of parameters

Diagnosed Values of parameters

State Variable Filter

1.223, 1.226, 4280, 6079, 0.4049

1.232, 1.240, 4325., 6113., 0.4173

1.222, 1.226, 7545, 3724, 0.3326

1.241, 1.24, 7401., 3825, 0.3295

1.414,1.232, 7350, 6063, 0.2703

1.393, 1.252, 7678, 6070, 0.2924

Leapfrog Filter

1.230, 1.225, 1.001, 1.200, 0.8142
1.225, 0.8119, 11970, 7403, 6157,
10220

1.226, 1.265, 0.977, 1.176,0.8193,
1.201, 0.7984, 12657, 7458, 6266,
10885

1.225, 1.198, 11959, 7403, 6157,
15085

1.476, 1.225, 0.6807, 1.200, 0.8142,

1.412, 1.331, 0.6818, 1.168, 0.8277,
1.180, 1.187,12728, 7301, 6050,
14536.

8-bit ladder DAC

1.000, 0.450, 0.996 0.450, 0.997,
0.448, 1.000, 0.449, 1.005, 0.450,
0.997 0.449 0.996 0.449 0.998,
1.002, 1.10e6, 4.05€5, 3e-3

1.006, 0.468, 1.020, 0.4660, 1.039,
0.480, 1.0370.490%, 0.984*, 0.410*,
0.931* 0.515* 0.894*, 0.581*, 1.25%,
0.886*, 2.18e6;4.745e5, 4.30e-3

1.131, 0.581, 0.996, 0.450, 1.129,
0.579, 1.000, 0.449, 1.005, 0.450
0.997, 0.449, 0.996, 0.449 0.998

1.002, 2.3e6, 0.937€6, 3e-3

1.141, 0.586, 1.029, 0.463, 1.197,
0.590, 1.1550.486*, 1.251*, 0.562*,
1.091*, 0.520%, 1.11*, 0.639*, 1.249,
0.7009*, 1.87e6}1.079¢6, 4.5e-3

TABLE 5. CPU time required for diagnosis

Average CPU Time | Average # of NR
Circuit for Diagnosis (sec) iterations
State Variable filter 0.0284 1.44
Leapfrog Filter 0.252 2.3
8-bit ladder DAC 0.2186 3.1

7 Conclusions and future work

In this paper, we have discussed a methodology for iden-

Multifrequency MeasurementsJEEE transactions on circuits
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[6]L. Rapisarda and R. A. Decarlo, “Analog Multifrequency Fault
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[8]R. Spina and S. Upadhyaya, “Linear Circuit Fault Diagnosis
using Neuromorphic AnalyzersfEEE transactions on Circuits
and Systems-1I: analog and digital signal processivigl, 44, No.

3, March 1997, pp 190-196.

[9]S. S. Somayajulam, E. Sanchez-Sinencio and J. P. de Gyvez,
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nigue for Analog Fault DiagnosisProceedings of IEEE VLSI test
symposium1994, pp 234-239.

[10]Z. You, E. Sanchez-Sinencio and J. P. de Gyvez, “Analog Sys-
tem-level Fault Diagnosis based on a Symbolic Method in the Fre-
quency Domain,”IEEE transactions on Instrumentation and
Measurementyol. 44, No. 1, February 1995, pp28-35.
[11]R.Voorakaranam, et. al., “Hierarchical Specification-Driven
Analog Fault Modeling for efficient fault simulation and diagno-
sis” Proceedings, International Test Conferent@97, pp 903-12.
[12] G. N. Stenbakken and T. M. Sounders, “Test point selection
and testability measures via QR factorization of linear models,”
IEEE transactions on Instrumentation and measuremduohe
1987, pp 813-817.

[13]J. van Spaandonk and T. A. M. Kevenaar, “Iterative test point
selection for analog circuitsProceeding of the VLSI test sympo-
sium,1996, pp 66-71

[14]G. N. Stenbakken, M. T. Sounders and G. W. Stewart, “Ambi-
guity Groups and Testability/EEE transaction on Instrumenta-
tion and Measurementpl. 38, No 5, October 1989, pp 941-945
[15]E. Liu, W. Kao, E. Felt and A. Sangiovanni-Vincentelli, “Ana-
log testability analysis and Fault diagnosis using behavioral mod-
eling,” Proceedings of IEEE Custom Integrated Circuits

tification of a circuit’s parameters from measurements mad%onference1994 pp 413-416

on it. The methodology has been shown to be applicable tpy )5 M. Ortega and W. C. Rheinbolldt, Iterative Solution of Non-
a large class of analog circuits. It is seen that the extent tgnear Equations in Several Variables, New York, Academic, 1970.
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devising such efficient tests to aid diagnosis.
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