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Abstract

We propose a new Simulation-After-Test (SAT) method-
ology for accurate diagnosis of circuit parameters in large
analog circuits. Our methodology is based on constructing
a non-linear regression model using prior circuit simula-
tion, which relates a set of measurements to the circuit’s
internal parameters. First, we give algorithms to select
measurements that give all the diagnostic information
about the Circuit-Under-Test (CUT). From these selected
measurements, we solve for the internal parameters of the
circuit using iterative numerical techniques. The method-
ology has been applied to several mixed-signal test bench-
mark circuits and has applications in process debugging
for mixed-signal integrated circuits (ICs) as well trouble-
shooting and repair of board level systems.

1  Introduction and Previous Work

The test cost of mixed-signal systems is dominated by
the test complexity of the analog part. Faults (violation of
functional specifications) caused by variation of parame-
ters in analog components are particularly difficult to test
and diagnose. Currently, these devices are tested for their
functional specifications. If the circuit fails any one of the
functional specifications, it is necessary to determine what
caused the failure for process debugging, repair and tuning
the manufacturing process. In this paper, we present a
comprehensive methodology for test selection and diagno-
sis of parametric faults in complex analog circuits. The
proposed methodology (a) eliminates the need to perform
circuit simulation for fault diagnosis from observed mea-
surements, (b) is applicable to general non-linear circuits,
(c) can diagnose single as well as multiple faults, (d) is
able to diagnose large deviation of parameters where sen-
sitivity based techniques are inaccurate (e) allows mea-
surement selection that minimizes the number of nodes
accessed during testing as well as test time.

Many approaches to fault diagnosis have been pre-
sented in literature. Bandler and Salama [1] have given a
review of the early work on fault diagnosis. Existing

approaches to fault diagnosis can be divided into tw
classes- (1) Simulation Before Test (SBT) methods and
Simulation After Test (SAT) methods.

SBT approaches are based on the principle of buildi
a fault dictionary-i.e. a list of all possible behaviors of th
circuit under fault. The behavior of the CUT is compare
with the list of faulty behaviors stored in the fault dictio
nary for fault diagnosis [8-11]. SBT approaches have be
mainly aimed at the diagnosis of digital systems and sing
catastrophic faults in analog systems.

SAT methodologies explicitly solve for the values o
internal parameters of the CUT from a set of measur
ments on the CUT using on-line circuit simulations [3-7
The application of these methods has been limited to l
ear systems and small non-linear circuits because of
need to perform costly circuit simulations in real time
Slamani and Kaminska [2] use the concept of incremen
sensitivity for identification of circuit parameters. In this
approach, the authors assume that the sensitivity ma
can be computed easily. In general, the computation
sensitivity will be as complex as a full-circuit simulation.

Stenbakken and Sounders [12] and Spaandonk a
Kevenaar [13], have used matrix decomposition tec
niques on the sensitivity matrix, to select measureme
for analog circuits. Here, the aim of measurement sele
tion is computation of all the specifications of the CU
from a subset, and not diagnosis of parameters of the CU

2  Overview of the Methodology

The performance specifications of any analog CU
depends on a set of circuit parameters.(values of resist
capacitors, gain of opamps etc.) Our goal is to compu
(diagnose) the values of the circuit’s parameters, given
set of measurements on the CUT. As noted in Section
the major obstacle in the extension of SAT methodologi
to large analog circuits is the need to perform circuit sim
lations based on measurement data. We propose to bui
non-linear regression model to approximate the function
relationship between parameters of the CUT and measu
1This work was supported by DARPA, under contract number F33615-95-2-5562
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ments made on it, which we denote byf* pm.The regression
model is given by

(1)
wherenp is the number of parameters of the CUT andnm

is the number of measurements. This regression model is
constructed using prior circuit simulations. We use a non-
linear regression tool -Multivariate Adaptive Regression
Splines (MARS) [18] to generate the regression model.
Given a set of measurementsm from the CUT, we solve for
a set of parameter values that satisfies Equation(1). This is a
set of nonlinear equations in several variables and is solved
using iterative techniques similar to Newton-Raphson’s
algorithm [16].

Our technique can be seen as a ‘SAT-like’ technique in
which time consuming circuit simulation has been replaced
by a simple evaluation of the regression model. This means
that our technique can be used to diagnose large analog cir-
cuits where simulation complexity makes conventional SAT
methods difficult to apply. Since we explicitly solve for all
the circuit parameters, we can diagnose single as well as
multiple faults. An overview of the diagnosis technique is
shown in Figure 1.

In many analog circuits, internal nodes will have to be
probed to achieve the required diagnostic resolution. We
propose algorithms to pick a minimum number of internal
nodes to observe in order to achieve the required diagnostic
resolution.

In Section 3, we discuss the algorithms used for choos-
ing an minimum set of nodes, and measurements on the
selected nodes, to obtain the required diagnostic resolution.
In Section 4, we discuss the methodology for buildingf* pm.
In Section 5, we discuss the different diagnosis algorithms
used to solve for the circuit parameters. In Section 6, we
give diagnosis results for three of the mixed-signal test

benchmark circuits [20]. Finally, conclusions are present
in Section 7.

3   Measurement Selection for Diagnosis

We assume that a list of all possible measurements t
can be made on the CUT is given. The objectives of t
measurement selection procedure are
1. Minimize the number of nodes accessed during testin

and
2. Minimize the test time.

To achieve these goals, we examine the testing proce
As an example, consider the frequency domain testing o
state variable filter shown in Figure 2. Sine-waves of diffe

ent frequencies are applied to the input and the gains at
different nodes are measured. The set of gains at the diff
ent frequencies are the set of measurements on the C
Each measurement on the CUT has the following tw
attributes: (a) atest signalwhich consists of the state of all
inputs to the CUT (in this case, frequency of the input si
nal) and (b) the node where the measurement is ma
Since test signals are applied sequentially to the CUT, t
time will be minimized by minimizing the number of tes
signals. An overview of the measurement selection alg
rithms is given in Figure 3.

3.1  Node and Signal Selection

Liu et. al. [15] have shown that the number of param
ters that can be solved for from a given set of measureme
is rank(S), whereS is the sensitivity matrix which is the
matrix derivativeof the measurements w.r.t the parameter
Therefore, we use the rank of the sensitivity matrix as
measure of the diagnostic information contained in a set
measurements. The rank of a matrix is defined as the nu
ber of its non-zero singular values [17]. In the case
approximate dependencies or low sensitivity values, inste
of singular values that are zero, we will get singular valu
that are extremely small. In these cases, it is may not
possible to solve for as many parameters of the CUT
there are non-zero singular values, due to measurem
noise, modeling errors etc. Therefore, while computing t

f ∗
pm p( ) m= p ℜ

np m ℜ
nm∈,∈

Off-line Computations
Diagnosis Process

Circuit -Under -Test

Iterative solution of
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Parameter set

FIGURE 1. Overview of Diagnosis
Methodology
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rank of the sensitivity matrix, we consider all singular val-
ues which are less than a pre-specified fraction (for example
1%) of the first (largest) singular value to be zero. By doing
this, we are considering nearly dependent columns of the
sensitivity matrix to be dependent.

The aim of the measurement selection algorithm is to
select a subset of measurements whose sensitivity matrix
has the same rank as the whole set of measurements. Letm
be a subset of the set of all possible measurements on the
CUT with sensitivity matrix=Sm. If rank(Sm) = rank(S),
whereS is the sensitivity matrix of the whole set of mea-
surements, we define the setm to be a set havingcomplete
diagnostic information.

Our primary aim is to minimize the number of nodes that
have to be accessed during testing. Therefore, we initially
assume thatall the test signals are applied on the CUT and
try to find a minimum set of nodes that will givecomplete
diagnostic information. We use the following greedy proce-
dure to search for the set of nodes.
1. Selected Nodes =φ, Selected Measurementsm=φ.
2. Find node which, if added to the set of selected nodes,

will cause a maximum increase in therank(Sm). Let this
node bek.

3. Add node k to Selected Nodes.
4. Add all measurements made on nodek tom.
5. If rank(Sm) < rank(S) go to step 2, else end.

Once a set of nodes has been selected, we try to mini-
mize the number of test signals that have to be applied to
minimize test time. In order to achieve this, we use a greedy
search similar to the one used for node selection. For each
test signal applied, the list of measurements consists of all
the measurement(s) of the test signal which are on the
selected nodes. Test signals are sequentially added to the set
of selected test signals tillrank(Sm) = rank(S). After signal

selection we get a minimal set of nodes and test signals
the CUT. Since these nodes and test signals are sele
using the sensitivity matrix computed with the nominal va
ues of the CUTs parameters, these may not givecomplete
diagnostic informationwith different values of parameters
Therefore, the set of measurements must be checked
points of the parameter space where the relations
between parameters and measurements is likely to h
changed.

3.2  Augmenting Measurement Set

The relationship between parameters and measurem
can change under fault. For example, an output of an opa
can saturate or a transistor can cut off due to parame
faults, making measurements made on the circuit insen
tive to parameter variations in the circuit. Such change
behavior is most likely to occur when the measuremen
take extreme values. Therefore, we use the heuristic
identifying points in the parameter space where the selec
measurements take extreme values. To find these points
each selected measurementmi, we compute two sets of
parametersUi=[u 1, u2, .., uj ,.., un] andLi=[l 1, l2, .., lj, ..,

ln]. The parametersuj andlj are given by

(2)

(3)

respectively.pj is the nominal value of the jth parameter

and∆pj is the maximum deviation in the parameterpj.

is the sensitivity ofmi to pj. The measurementmi is taken to
its upper extreme value by the parameter set by the para
ter setUi and it is taken to the lower extreme value by th
parameter setLi. A set of pointsP=[ U1, U2,.., Uk, L1, L2,

Lk] is computed, where the selected measurements t
extreme values. At each of the points inP, the sensitivity of
all the measurements is recomputed. Now, we check if t
set of selected measurements is a set havingcomplete diag-
nostic information. If not, additional nodes/signals are
selected using the algorithms described in Section 3.1,
the set of selected measurements hascomplete diagnostic
information.

4 Building the Regression Model.

Once the measurements to be made on the CUT
identified, a regression model is built relating the param
ters of the CUT to the selected measurements. The reg
sion model is built from a set of training data generate
through simulation of the CUT. We generate instances

Circuit Netlist,

Accessible nodes

Choose Nodes and
Test Signals

Choose points where
Measurement set is

likely to change

Measurement Set
Still Valid?

yes

Augment
Measurement Set

No

Set of Measurements
on CUT

FIGURE 3. Overview of Measurement Selection
Methodology

Compute Sensitivity
Matrix at Nominal

Sensitivity Matrix

Critical Sets
of Parameters

Check Measurement
Set at Critical Points

uj pj sgn Spj

mi( ) ∆ pj⋅+=

l j pj sg– n Spj

mi( ) ∆ pj⋅=

Spj
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the CUT by varying the parameters of the CUT according
to the fault statistics given. If no information is known
about the specific kinds of faults that can occur, we assume
uniform, independent distribution to the different parame-
ters.

We have used Cadence circuit simulatorSpectrefor our
circuit simulations. To extract measurements from the sim-
ulation data we used the Cadence waveform processing tool
Artil.

We used a non-linear regression tool, MARS [18] to
generate the regression model from the simulation data.
The tool has the ability to accurately model highly non-lin-
ear functions with large dimensionality of input parameter
space. Devarayanadurg et. al. [19] have used MARS to cap-
ture the output of mixed-signal modules as a function of
different input signals for behavioral simulation. In our
approach, we use MARS to approximate the variation of
measurements made on a analog circuit with the variation
of the circuit’s parameters.

5  Diagnosis Procedure

Our methodology solves for the values of parameters of
the circuit using a modified Newton-Raphson (N-R)
method. For the system of non-linear equationsf* pm=mc,
the iteration step is given by

(4)
wheremc are the measurements obtained from the CUT

andJ(pk) is the Jacobian off* pm(p) atpk. Here the Jacobian
is the sensitivity matrix described in Section 3.1. An over-
view of the diagnosis procedure is given in Figure 4. There
are several issues involved in diagnosis using N-R itera-
tions. They are
1. The set of measurements may not uniquely identify the

parameters of the CUT
2. Convergence: N-R is only locally convergent- i.e. the

iterations converge only if the starting point is close to
the solution
We deal with these issues below

5.1  Dependent Input Variables

To solve for the parameters of the CUT, we need to
invert thesensitivity matrixin each iteration. Dependent or
approximately dependent variables can cause the sensitivity
matrix to be ill-conditioned. Existence of dependent vari-
ables means that there exists infinitely many solutions to the
diagnosis equations. In this case, we need to identify
parameters that cannot be uniquely solved for, and find one
possible solution. Groups of parameters that cannot be
uniquely solved for from the given set of measurements are

calledambiguity groups[14,15]. We use the approach given
by Liu et. al. [15] to identify ambiguity groups. Once the
ambiguity groups are identified, parameters in each am
guity group are treated as reference parameters (i.e. they
not varied) so that the rest of the parameter set can
solved for.

5.2  Convergence of N-R

We need a coarse search procedure to get fairly close
the actual solution to ensure convergence of N-R. We us
simple heuristic of varying one parameter at a time till th
maximum value of the error(f* pm(p) - mc) is minimized.
We use these values of parameters as the initial value for
R iterations. Also, damping of the iteration sequence, whi
is a very common way of improving convergence [16] ha
been implemented. In a damped N-R iteration, the iterati
equation is given by

(5)

where . Τhe starting value forλ is 1 and the
value is geometrically reduced till the error in the prese
iteration becomes smaller than the error in the previous it
ation.

6  Results

In this section, we apply our methodology to three IT
mixed-signal test benchmark analog circuits and show dia
nosis results. The circuit schematics are shown in Figure
Figure 5 and Figure 6. The list of parameters for each c
cuit is given in Table 1. The values within the parenthes
indicate the nominal values of the parameters. Since we

pk 1+ pk– J pk( )
1–

f ∗
pm pk( ) mc–( )⋅=

FIGURE 4. Overview of Diagnosis Procedure.

Measuremnts on
CUT= mc

MARS regression
Models

Coarse Search for
  Solution

Compute Sensitivity
Matrix atp

Find & Eliminate
Ambiguity Groups

Update guess

f* pm(p)-mc
<thresh

yes

no

Diagnosed Parameters
Ambiguity Groups

Initial Guessp0

(Equation 5))

pk 1+ pk– λ J⋅ pk( )
1–

f ∗
pm pk( ) mc–( )⋅=

0 λ 1≤<
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using a voltage input signal and measuring only voltages
we cannot solve for the values of individual resistors or
capacitors. Therefore, the parameters of the CUT are resis-
tor ratios and R-C products. The list of all accessible node
and test signals for the circuits is given in Table 2. The two
linear filters are tested in the frequency domain using sine
waves. For the DAC, the list of measurements consists of
Integral Non-linearity (INL) for inputs words 0 to 255, volt-

ages at nodes 1 to 7 and the rise-time for a 0 255 transi-
tion. Nodes and test signals were chosen using the
measurement selection algorithms. The selected nodes and
test signals are shown in Table 3. Three test frequencies
were chosen for the state variable filter and six test frequen-
cies were chosen for the leapfrog filter. For the DAC, the
measurements chosen were INL measurements for 9 input
code words, the DC voltages at nodes 1, 2, 3, 4, 6 and 7 and
the rise-time for a 0 255 transition. Regression models
were built for the selected measurements. Prototypes of the
circuits were built to test the diagnosis algorithms. Faults
were injected into the circuit by varying the circuit parame-
ters. In the DAC, anlm346 programmable opampwas used
to vary the opamp’s Gain-Bandwidth (GBW) and Slew
Rate (SR). The GBW and SR of this opamp IC can be var-
ied by changing an external bias resistor. The selected mea-
surements were made on the CUTs. Test signals were
generated using an HP33120A signal generator and mea-
surements were made using an HP54645D digital storage
oscilloscope. The 8-bit quantizer of the oscilloscope
implies an error of about % (1/256) in the measure-
ments. The diagnosis algorithms were run on the measured
data. The parameters of the circuit (values of resistors,
capacitors, etc.) were measured using an HP974A 4.5-digit
multimeter. The results of fault diagnosis are given in

Table 4. The first column of the table shows the measur
values of all the parameters of the CUT and the second c
umn gives the values computed by the diagnosis algorith
The average error in the diagnosed parameters for the s
variable filter and leapfrog filter are 2.07% and 2.83%
respectively. For the ladder DAC, complete diagnosis w
not possible from the given set of measurements. T
parameters that cannot be solved for uniquely are mark
by an asterisk (*). The gain-bandwidth and of the opam
does not affect any of the measurements, and hence it c
not be solved for. Also, the parameters which control th
LSBs of the DAC cannot be identified uniquely because

low sensitivity values. It is seen that the methodology
able to accurately solve for parameters of the different c
cuits for single and multiple faults

6.1  Computational Requirements

To compute the average CPU time required for diagn
sis, instances of faulty circuit parameters were genera
and measurements for these instances were compu

FIGURE 5. Leapfrog Filter
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TABLE 1. Parameters of the three circuits

Circuit Parameters (Nominal Values)

State Vari-
able Filter

R2/R1(1), R5/R1(1), 1/R3C2(5000),
1/R4C2(5000), R6/R7(0.428)

Leapfrog fil-
ter

R2/R1(1), R3/R1(1), R5/R4(1), R13/R4(1), R9/R8(1), R12/
R7(1), R10/R11(1), 1/R1C1(10000), 1/R6C2(5000), 1/

R7C3(5000), 1/R11C4(10000)

8-bit ladder
DAC

R10/Rfb(0.5), R20/Rfb(1), R11/Rfb(0.5), R21/Rfb(1), R12/
Rfb(0.5), R22/Rfb(1), R13/Rfb(0.5), R23/Rfb(1), R14/
Rfb(0.5), R24/Rfb(1), R15/Rfb(0.5), R25/Rfb(1), R16/

Rfb(0.5), R26/Rfb(1), R27/Rfb(1),Rend/Rfb(1),
(GBW(1.0e6), SR(0.4V/µs) and Vos(0)) of opamp

TABLE 2. Accessible nodes and tests for the
circuits

Circuit Test Signals Accessible Nodes

State Variable Fil-
ter

400Hz, 800Hz, ...4kHz HPO, LPO,BPO,1

Leapfrog filter 200Hz, 400Hz, 600Hz,
...4kHz

1, 2, 3, 4, 5, out

8-bit ladder DAC INL(0 to 255), V(1),
V(2), V(3), V(4), V(5),
V(6), V(7), Risetime(0

->255 transition)

out, 1,2, 3, 4, 5, 6, 7

TABLE 3. Nodes and Test signals chosen

Circuit Nodes Chosen Test signal chosen

State Variable Filter HPO, BPO, LPO 400Hz, 800Hz, 3.6kHz

Leapfrog filter 1, 2, 3, 4, 5, out 200Hz, 600Hz, 1400Hz,
2000Hz, 2200Hs, 2400Hz

8-bit ladder DAC out, 1, 2, 3, 4, 6, 7 INL for(128, 64, 32,31,16, 14
8, 5, 3), V(1), V(2), V(3),

V(4), V(5), V(7) Risetime(0 -
>255)transition
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through simulation. The diagnosis algorithms were run on
this simulation data to compute the average CPU time
required for diagnosis. Experiments were run on a SUN
Ultra-2 workstation. The average CPU time required for
diagnosis of the three circuits is given in Table 5. The third
column indicates the average number of NR iterations
required by the diagnosis algorithm for each test circuit.

7  Conclusions and future work

In this paper, we have discussed a methodology for iden-
tification of a circuit’s parameters from measurements made
on it. The methodology has been shown to be applicable to
a large class of analog circuits. It is seen that the extent to
which diagnosis is possible depends on the set of measure-
ments chosen. Our future research will concentrate on
devising such efficient tests to aid diagnosis.
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0.997 0.449 0.996 0.449 0.998,
1.002, 1.10e6, 4.05e5, 3e-3

1.006, 0.468, 1.020, 0.4660, 1.039,
0.480, 1.037,0.490*, 0.984*, 0.410*,
0.931*, 0.515*, 0.894*, 0.581*, 1.25*,
0.886*, 2.18e6*, 4.745e5, 4.30e-3

1.131, 0.581, 0.996, 0.450, 1.129,
0.579, 1.000, 0.449, 1.005, 0.450
0.997, 0.449, 0.996, 0.449 0.998
1.002, 2.3e6, 0.937e6, 3e-3

1.141, 0.586, 1.029, 0.463, 1.197,
0.590, 1.155,0.486*, 1.251*, 0.562*,
1.091*, 0.520*, 1.11*, 0.639*, 1.249,
0.7009*, 1.87e6*, 1.079e6, 4.5e-3

TABLE 5. CPU time required for diagnosis

Circuit
Average CPU Time
for Diagnosis (sec)

Average # of NR
iterations

State Variable filter 0.0284 1.44

Leapfrog Filter 0.252 2.3

8-bit ladder DAC 0.2186 3.1
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