
AN EFFICIENT FILTER-BASED APPROACH FOR

COMBINATIONAL VERIFICATION

Rajarshi Mukherjee1 Jawahar Jain1 Koichiro Takayama1

Masahiro Fujita1 Jacob A. Abraham2 Donald S. Fussell2

1Fujitsu Laboratories of America

595 Lawrence Expressway

Sunnyvale, CA 94086

USA

2Computer Engineering Research Center

University of Texas at Austin

Austin, TX 78712

USA

Abstract

We have developed a �lter-based framework where sev-
eral fundamentally di�erent techniques can be combined
to provide fully automated and e�cient heuristic so-
lutions to veri�cation and possibly other NP-complete
problems. Such an integrated methodology is far more
robust and e�cient than any single existing technique
on a wide variety of circuits. Our methodology has been
applied to verify the ISCAS 85 benchmark circuits and
e�cient veri�cation results have been presented on a
large set of industrial circuits which could not be veri-
�ed using several published techniques and commercial
veri�cation tools available to us.

1 Introduction

The problem of automatic combinational veri�ca-
tion or Boolean comparison (BC) can be stated as fol-
lows: Given two Boolean netlists, check whether the
corresponding outputs of the two circuits are equiva-
lent for all possible input combinations. The existing
methods for combinational veri�cation can be broadly
classi�ed into two categories: (1) Based on building
and comparing the BDDs of entire networks (2) Based
on the extraction and use of internal correspondences
using a combination of structural and functional tech-
niques [1, 2, 5, 8, 9, 10, 11, 12, 13, 14].

1.1 De�ciencies in current BC approaches
Most current methods for combinational veri�ca-

tion are based on a single \core" technique such as
OBDDs, ATPG, learning etc. We refer to any veri�ca-
tion technique A as a core technique if given enough
time, it can verify a particular circuit without the help
of another veri�cation technique. We call two core
techniques A and B mutually orthogonal if there are
many circuits where A is far more superior than B and
vice-versa. Thus, exhaustive simulation,OBDDs, func-
tional partitioning, resynthesis/learning based meth-
ods, *BMDs [4], or the use of ATPG in the framework
of [2] are core techniques which are orthogonal. For
example, ATPG can e�ciently verify erroneous mul-
tipliers, whereas *BMDs are very e�cient when the

design is correct. Also, by the orthogonality of two
techniques we do not imply that there are no circuits
on which both techniques are equally e�ective. Due
to the NP-hard nature of the veri�cation problem it
is expected that a single core technique will not per-
form well on a wide range of circuits. In addition,
the nature of any given veri�cation problem is usu-
ally not known a-priori. This uncertainty is further
aggravated in internal correspondence-based veri�ca-
tion techniques where the entire veri�cation problem
is broken down into many other veri�cation problems.
Thus, a veri�cation program that uses only a single
core technique, or a very small number of such tech-
niques (especially if improperly combined), cannot be
expected to be very robust.

2 Characteristics of an E�cient BC

Scheme
An e�cient veri�cation methodology should have

the following characteristics: (1) it should have good
performance on a wide variety of circuits; (2) it must
be robust in memory usage; (3) it must be modular
and extensible. To achieve these objectives we propose
a �lter-based combinational veri�cation methodology.
The �lter approach is a combination of communicat-
ing techniques where each technique calculates (�lters
out) the information it is most suited for, alters the
circuit accordingly, and passes (sieves) its results to
the subsequent techniques (�lters). Typically, easier
cases of veri�cation are handled �rst with fast, low-
cost �lters, followed by more complex and expensive
�lters that have a higher time and space complexity.
In this paper we propose an extremely e�cient veri�-
cation procedure by systematically integrating various
orthogonal veri�cation techniques.

The key contributions of this paper are as follows:
(1) We have developed a �lter con�guration for very
e�cient Boolean comparison (2) We have intuitively
explained the need for such a con�guration and the
reason for its e�ciency and robustness (3) Several spe-
cialized techniques have been developed to further en-
hance the performance of the veri�er and make very
di�cult veri�cation problems more tractable.

We demonstrate the e�ciency of our BC frame-

work on a large set of industrial designs as well as on
the ISCAS 85 benchmark circuits. Many of the indus-
trial circuits could not be veri�ed by several published
techniques and commercial BC tools available to us.

2.1 Designing an E�cient BC Methodol-
ogy

In most current veri�cation methodologies a given
veri�cation problem is broken down into several veri�-
cation instances1 Since the nature and the probability
distribution of these instances cannot be known ahead
of time, it is impossible for any single veri�cation en-
gine like BDDs or ATPG to perform well on all such
instances. In this paper we develop a robust frame-
work for BC which overcomes the drawback that typi-
cal single-engine-based techniques would have.

Given a set of core techniques and a set of veri�-
cation instances, we �rst make the following important
observations:
(1) Each core technique has an easy-domain (a set of
veri�cation instances which it can verify e�ciently with
very low space and time overhead), a moderately-
hard domain (a set of veri�cation instances on which
it is not too e�cient) and a hard-domain (a set of
veri�cation instances which are very hard or intractable
for the technique).

(2) Given a veri�cation instance and a core technique,
we can check (by setting parameters) if the instance is
in the easy-domain of the technique. For example,
if a veri�cation instance can be solved by an ATPG-
based tool with a very small backtrack limit (say, 5),
then the instance is in the easy-domain of ATPG.

(3) For real life BC problems we do not know the na-
ture of the veri�cation instances a-priori. Therefore,
to be robust on a wide variety of circuits, a BC tool
should not depend on a single core technique.

(4) Therefore, an e�cient BC tool should be con�g-
ured as a set of communicating orthogonal veri�cation
techniques (�lters) arranged in a certain order. A ver-
i�cation instance can trickle down through successive
�lters starting at the topmost �lter. A set of �lters can
also use partial results of each other to solve a veri�ca-
tion instance more e�ciently. For example, BDDs can
be used to prune a large portion of the search space
for an ATPG-based �lter, thus making the latter more
e�ective. Such interaction of two or more �lters could
result in a veri�cation instance being veri�ed more ef-
�ciently than by any �lter alone. The goal of the �l-
ter con�guration is to minimize the time and space re-
sources used by each technique and to try to verify each
instance using the least expensive technique available.
Each technique uses three criteria to pass a veri�ca-
tion instance to a subsequent technique: (a) runtime
bound, (b) memory usage bound and, (c) based on
information extracted from the network.

3 Details of a Filter-Based Veri�er

The proposed combinational veri�er consists of a
set of �lters arranged one after another. Given a pair
of circuits N1; N2 to be veri�ed, the miter circuit (NC)

1
We refer to a pair of nodes g and h, whose functional equiv-

alence has to be proved, as a veri�cation instance.

E 1

BDD Was Required

ATPG Was Required
Hard Problems

H

E

1

H

H

H:
E: Easy Problems

H1’

2’PI PO

1’

2
1 1Replacing E with E ’ simplifies

ATPG for H H ’
2 2

Figure 1: Simplifying e�ect of early �lters

created fromN1; N2 is �rst subjected to fast techniques
with very low memory overhead followed by a series of
increasingly powerful methods that require more time
and memory. The entire veri�er proceeds by verifying
pairs of internal nodes in NC and merging the equiv-
alent pairs. The ow diagram of the �lter approach is
shown in Fig. 2. Note, an important advantage of the
�lter con�guration is that the early veri�cation of eas-
ier instances can make the subsequent veri�cation of
harder instances easier. Fig. 1 shows how �nding easy
equivalences can either remove the need to solve some
harder problems (such as H1�H10) or modify the fault
propagation/excitation problem for some gates (such
as H2 � H20) so that ATPG becomes easier. Table 2
(compare column 8 with column 2) quanti�es how �nd-
ing easy equivalences earlier can dramatically reduce
the total veri�cation time.

START

Structural
Filter

Functional
Filter

Random
pattern

simulation

Too few
candidates?

 NO
For each
partition

YES Partition
Circuit into
k partitions

Verification
Core

Resynthesis
for

Verification

Verification
Core

Micro-filter

verification
based
ATPG

verification
based

Smart cutset

verification
based

Naive cutset

ODC
and

learning based
resynthesis

Macro-filter

Reordering
with

ROBDDs
Checking

Phase

Modified
Checking

Phase

Targetted

Decomposition

Partitioned

ROBDDs

END

Figure 2: Flow Diagram of Veri�cation: Each Filter
Passes a Modifed Circuit to the Next Filter

3.1 Filter 1: Targetted Decomposition
(TD)

During multilevel optimization of circuits many in-
ternal correspondences between the original network
and its optimized version could disappear. We carry
out a fast re-synthesis of the given network (NC) to
create a new network (NC1

) where many internal cor-
respondences can be uncovered to help veri�cation.
Complex gates with more than 4 inputs and simple
gates with more than 10 inputs are decomposed into
AND and OR trees respectively.

3.2 Filters For Easier Veri�cation In-
stances

In this section we describe the two low-cost �lters
that are sequenced at the beginning of the combina-
tional veri�er in order to verify the easier instances of
veri�cation.

3.2.1 Filter 2: Subgraph Isomorphism-based
Structural Filter (SIF)

Since synthesis tools often make only local modi�ca-
tions to circuit structures, the structurally isomorphic
parts of the two networks can be identi�ed (creating a
new network NC2

) using a fast method based on sub-
graph isomorphism recognition and can be merged.

3.2.2 Filter 3: OBDD Hashing-based Func-
tional Filter (BHF)

This �lter is based on the techniques proposed in [9,
13]. It consists of building BDDs of internal nodes of
the circuit in terms of di�erent cutsets and hashing the
nodes based on their BDDs. Nodes that hash to the
same location in the hash table are merged (creating
a new circuit NC3

). This �lter can verify most easy
instances with a very low computational cost.

3.3 Auxilliary Filters
Before entering the �lters which verify harder in-

stances of veri�cation we attempt to simplify the exist-
ing veri�cation problem using two �lters which collect
information about potentially equivalent nodes in NC3

and decide to partition the circuit based on this infor-
mation in order to create more equivalences and further
simplify the BC problem.

3.3.1 Filter 4: Random Pattern Simulation

In this phase we carry out regression-based random
pattern simulation to determine candidate nodes which
may be functionally equivalent. Many inequivalent pri-
mary outputs can be identi�ed and removed to produce
an altered network NC4

.

3.3.2 Filter 5: Circuit Partitioning
If the number of candidates for functional equivalence
are very few compared to the total number of gates
in NC4

, or if the structural distance between the can-
didates nearest to the primary outputs and the pri-
mary output nodes is very large, a set of reduced cir-
cuits (functions) can be created by partitioning the 2n

Boolean space of the original circuit (function) having
n primary inputs by assigning Boolean constants to a
small number of primary inputs. In order to verify N1
and N2, we verify if each partition of NC4

can be re-
duced to a Boolean 0. Circuit partitioning also helps
veri�cation by creating (1) new conditional equiv-
alences (e.g. two gates ga; gb may be equivalent only
when xi = 0) (2) new conditional learnings.

4 Veri�cation in The Hard Domain
If for a given node pair (n1; n2) we have still not

been able to resolve whether n1 � n2, then we are faced
with one of the following two scenarios: (1) n1 � n2:
Typically, BDDs are best suited to prove this rela-
tion. If ATPG is used, we would have to prove the
redundancy of a s-a-0 fault at the output of a miter
as in [2]. But this could be computationally expensive
if the smallest search space required to prove the re-
dundancy is very large. (2) n1 6� n2: ATPG is best
suited to derive an assignment to the primary inputs
which di�erentiates n1 and n2. This is because build-
ing the canonical BDD for all the di�erentiating vec-
tors is needlessly expensive. However, we have encoun-
tered a small number of cases where ATPG is faster

than OBDDs in proving n1 � n2. Due to a rigorous
regression-based simulation, we expect a majority of
the candidate pairs (n1; n2) to be actually function-
ally equivalent. Therefore, in order to minimize the
time spent for each veri�cation instance, the initial �l-
ters during this phase of veri�cation are BDD-based.
These are followed by an ATPG-based approach.

4.1 Filter 6: Macro-Filter

The core (VC) of the veri�cation program consists
of three distinct �lters that are tightly bound by an
e�cient time-out (to limit the time resources used) and
space-out mechanism (to limit the memory used). Two
of these three techniques are combined in a loop to
create a highly e�cient internal �lter. We refer to the
top-level �lter as the macro-�lter (Fig. 2) and the
internal �lter as the micro-�lter. Pairs of nodes are
picked up from the candidate lists created by random
pattern simulation and VC is applied to verify if they
are functionally equivalent. All equvalent nodes are
merged.

The three �lters constituting VC are: (1) Naive
cutset-based veri�cation (NCV) (2) Smart cutset-
based veri�cation (SCV) (3) ATPG-based veri�cation
(AV). NCV and SCV are variants of a BDD-based �l-
ter. Each technique is associated with its own time-
out limit. The �rst two methods are BDD-based and
are associated with their own space-out limits. Vari-
able reordering is invoked only for large BDDs. The
ATPG-based method is controlled by setting a limit on
the number of backtracks. It is aborted if a preset num-
ber of backtracks is exceeded. The smart-cutset-based
technique and ATPG-based technique are arranged in
a loop (micro-�lter). Each successive entry into this
loop causes these two techniques to be invoked with
a higher time-out, space-out, and backtrack limit, and
hence with higher strength. This enables the micro-
�lter to try and choose the exact technique (BDD or
ATPG) and allocate the right amount of computational
resources for each di�cult veri�cation instance. Thus,
given a pair of nodes to be veri�ed, we give each of the
two methods (the BDD-based method and the ATPG-
based method) a fair chance to solve the problem before
spending more computational resources on the other
method. Our experiments have shown that this tech-
nique is very e�cient, especially on di�cult circuits.
The micro-�lter can be further enhanced by using the
partial information captured by BDDs to reduce the
ATPG search space and by using the information found
by ATPG to reduce the BDD size.

If after the �rst pass through SCV and AV, we
could not answer if n1 � n2, then SCV and AV are
repeated (within the micro-�lter) with higher time-out,
space-out and backtrack limits. The time complexity
of VC depends on the space and time limits set on the
OBDD and ATPG routines and is fully controllable.

4.2 Filter 7: ROBDDs with Reordering

This phase (checking phase) is focussed on pairs of
corresponding primary outputs not yet proved equiva-
lent. To prove the equivalence of two primary outputs
F1 and F2, we �rst successively compose and reorder
the OBDDs of F1 � F2 in terms of cutsets of internal
equivalent points [8, 11] till we reach the primary in-
puts, or the function is reduced to a 0. Since this phase

Table 1: Comparing our method with other published techniques (all methods run on SUN Sparc-20)
Ckt. Filter [11] (A) [11] (B) [12] OBDDs

(in SIS (in SIS (Original Code) (Original Code) (CUDD)
Environ.) Environ.) (Non-SIS Env.) (Non-SIS Env.)

c432 vs. c432nr 0.40 0.88 0.73 0.49 1.8
c499 vs. c499nr 0.37 1.05 0.84 1.14 46.2
c1355 vs. c1355nr 0.95 4.55 1.67 3.5 155.8
c1908 vs. c1908nr 2.13 5.08 4.32 5.76 8.1
c2670 vs. c2670nr 3.38 7.73 2.90 48 8.3
c3540 vs. c3540nr 12.65 22.03 15.14 365 36.5
c5315 vs. c5315nr 8.32 12.85 10.04 417 5.9
c6288 vs. c6288nr 7.20 44.72 11.85 24.87 unable
c7552 vs. c7552nr 20.78 45.73 17.56 1911 32.8
RC2 vs. RC3 15.43 11.57 10.80 unable unable

RC2 vs. RC2.opt 1.75 5.18 2.22 unable unable
RC2 vs. RC2.high.opt 38.45 unable unable unable unable

fms vs. fmst 123.35 unable unable unable unable
ut vs. utnr 48.50 unable unable unable unable

Mp.6288 vs. Mp.6288di� 58.72 unable unable unable unable
msw vs. msw.new1 52.88 unable unable unable unable
msw vs. msw.new2 51.35 unable unable unable unable
nin vs. nin.new.1 44.18 unable unable unable unable
ut vs. ut.new 1073.10 unable unable unable unable

NOTES: (1) All runtimes in seconds. (2) unable) (Space > 512 MB) OR (Time > 100K seconds) (3) For
[11] (B), and [12] their original source code used; (4) Note that [11] (A) (our prototype of the algorithm of
[11]) has somewhat slower run times than the original program of [11] (referred as [11] (B)) that we have obtained
from its author. Upon our enquiries with the author of [11], as well as upon examination of his source code, we
found out that this is due to our use of the SIS environment and of a substantially slower BDD package.

could face a memory explosion, we terminate the BDD
construction if a large preset space-out/time-out limit
is exceeded. This enhances the e�ciency of the veri�er.

4.3 Verifying Very Hard Instances

In this phase the checking phase is re-invoked sepa-
rately on each hard output pair in the presence of BDD
partitioning [7]. Each partition is maintained under a
separate BDD manager and is independently reordered
to reduce the possibility of a memory explosion. Selec-
tive re-synthesis of the circuit is also carried out to
create more equivalences.

5 Experimental Results
The proposed algorithm has been implemented in

C within the SIS environment, using the CMU BDD
package with dynamic reordering, and run on a Sun
SPARC 20 with 512 MBytes RAM. Our test circuits
include the combinational parts of various designs from
Fujitsu, such as data transfer bu�ers, data transfer con-
trollers, hard-wired models for logic/fault simulation,
crossbar switch controllers, and the switching unit of
a parallel machine. We have also successfully veri�ed
numerous di�cult circuits provided by other industrial
organizations, including EDA vendors. The sizes of the
circuits veri�ed ranged up to 100K gates.

We �rst present a comparison of our methodology
with some of the existing techniques. Then we present
the results of several experiments in order to prove that
our organization of the various �lters is by far the best
among many other options.

Explanation of Table 1: Here we compare our

methodology with several published techniques whose
programs we could obtain and thus run on the same
machine. Also we have implemented a prototype of the

algorithm in [11] (one of the core techniques incorpo-
rated in our �lter framework) in the SIS environment.
Our methodology is, almost always, much faster than
the other techniques. Due to our highly e�ective �lter
approach we are able to verify many circuits that [11]
is unable to verify. When the algorithm in [11] fails,
it is mostly because of a BDD blow-up while trying to
verify a pair of internal candidates. Since we incorpo-
rate e�cient orthogonal techniques for addressing such
a case, our method is robust over a much wider range
of circuits. Functional learning-based techniques [8, 12]
failed to verify many industrial circuits and were infe-
rior to the proposed approach on the ISCAS85 circuits
due to the high computational cost of extracting impli-
cations. Since extracting implications using recursive
learning (a patented technique, unavailable to us) and
functional learning have similar complexity, we believe
a recursive learning-based veri�er [10] would also fail
on these circuits. Our own version of the approach in
[2] using our own ATPG tool also failed on the indus-
trial circuits.

Explanation of Table 2: Table 2 establishes that

our proposed �lter con�guration has the best average
performance among several possible alternative �lter
con�gurations. Although several of the other con�gu-
rations, shown in the table, outperform our proposed
method on some circuits, they have much worse aver-
age performance. The results show that our proposed
con�guration has the best overall performance. From
Table 2 we can draw the following additional conclu-
sions. We see that methods (1) and (5) have compara-
ble performance. Note that (1) and (5) are very similar
except that in the latter case, while testing the equiv-
alence of two nodes n1; n2 using ATPG techniques, we

Table 2: Runtime comparison for di�erent �lter con�gurations
Ckt. (1) (2) (3) (4) (5) (6) (7)

c432 vs. c432nr 0.40 0.47 0.50 0.43 0.38 0.48 0.90
c432 vs. c432.opt.1 10.45 17.58 23.82 10.30 10.60 11.80 2.65
c432 vs. c432.opt.2 13.78 12.53 15.85 13.53 13.60 15.0 13.75
c499 vs c499nr 0.37 0.37 0.37 0.38 0.35 0.32 1.13

c1355 vs. c1355nr 0.95 0.90 0.88 0.87 0.92 0.72 4.47
c1908 vs. c1908nr 2.13 1.95 1.85 2.22 2.12 2.08 4.83
c2670 vs. c2670nr 3.38 5.45 5.55 3.37 3.47 2.30 7.68
c3540 vs. c3540nr 12.65 27.53 27.57 69.20 12.23 11.10 22.95
c5315 vs. c5315nr 8.32 35.10 35.13 8.18 8.15 6.0 14.52
c6288 vs. c6288nr 7.20 7.07 7.22 7.05 7.07 5.63 56.05
c7552 vs. c7552nr 20.78 45.48 45.52 20.58 25.80 19.28 41.37
RC2 vs. RC3 15.43 26.20 25.05 13.75 15.62 14.52 15.50

RC2 vs. RC2.opt 1.75 1.60 1.65 1.70 1.63 1.47 11.05
RC2 vs. RC2.high.opt 38.45 87.45 86.35 34.05 43.07 146.68 17.00

fms vs. fmst 123.35 263.70 268.68 599.68 123.23 145.65 244.30
ut vs. utnr 48.50 47.80 48.08 42.70 47.90 50.83 1418.32

Mp.6288 vs. Mp.6288di� 58.72 1543.80 1543.43 254.45 56.32 53.97 78.93
msw vs. msw.new1 52.88 182.15 183.65 555.32 52.37 69.70 81.10
msw vs. msw.new2 51.35 188.55 194.73 360.28 51.47 65.97 175.13
nin vs. nin.new.1 44.18 47.18 46.10 43.65 47.30 40.72 1036.08

ut.new 1073.10 5380.70 5262.40 1100.03 1167.32 1037.23 1824.73
TOTAL 1588.18 7928.54 8203.03 2713.87 1738.79 1752.28 6534.87

(1) proposed algorithm; (2) micro-�lter sequence: ATPG, naive-cut, smart-cut, ATPG, smart-cut;
(3) micro-�lter sequence: no loop: ATPG, naive-cut, smart-cut; (4) micro-�lter sequence: no loop:
naive-cut, smart-cut, ATPG; (5) No fault tested by ATPG under ODC; (6) subgraph isomorphism
disabled; (7) both subgraph isomorphism and BDD-hash-based �lters turned o�.

only check if n1�n2 = 0 rather than whether the di�er-
ence in the functions of the two nodes is observable at
the primary outputs. We �nd that on most optimized
circuits, method (5) is slower than (1). This shows that
equivalences derived under ODC are helpful in the ver-
i�cation of highly optimized circuits. Method (2) in-
vestigates the performance of the micro-�lter if ATPG
precedes the other core techniques. The results show
that this is very ine�cient. This is because after a rig-
orous regression-based simulation and pruning of can-
didate lists, it is expected that most of the candidate
pairs would be functionally equivalent. Therefore, in a
majority of the internal veri�cation cases, the ATPG
tool has to prove that the corresponding fault is redun-
dant, which may be a di�cult task if the search space
is large. BDDs, on the other hand, can be used for e�-
cient compaction of the search space and can be more
e�ective in proving the equivalence of internal nodes.
Experiments (3) and (4) show that an internal loop
in the micro-�lter is highly useful. The results show
that both these methods are very ine�cient. This is
because, in the absence of the internal loop, there is
no way to identify the easy-domain of a given instance
of veri�cation. Thus, since each core technique in the
micro-�lter can be invoked only once, it has to be in-
voked with a fairly high timeout and space-out limit.
Therefore, much higher time and space resources could
be required for many easy veri�cation instances. Ex-
periments (6), (7) have been carried out to evaluate
the importance of SIF, SIF-with-BHF. The results are
slower than those of experiment (1), proving that they
are an important part of the entire framework.

5.1 Simplifying E�ect of Earlier Filters

Veri�cation of easier instances by the earlier �lters
can modify the circuit so that the veri�cation of harder
instances by the subsequent �lters can become dispro-

portionately easier. For example, in verifying msw vs.
msw.new.1, we �nd that initial �lters (SIF, and BHF)
consume a total of 4.6 seconds in processing/modifying
the circuit. Later, when ATPG is invoked on the modi-
�ed circuit, in 32 seconds it identi�es 20 particular pairs
of gates as equivalent. On the other hand, without the
initial �lters, ATPG took 48 seconds on the same 20
veri�cation instances. Similarly, the BDD time in the
NCV, and SCV �lter increased from 9 to 22 seconds,
and also larger BDDs were required. In the circuit nin,
the earlier �lters reduce veri�cation time from 1036 sec-
onds to 44 seconds. In c3540, with easy equivalences
identi�ed by initial �lters, space-out was invoked 10
times. This increased to 34 times without the modify-
ing e�ect of such �lters, which can remove (or, modify)
large cones in a circuit, and thereby e�ectively make
many hard veri�cation problems easier.

5.2 An Illustration of the Economy Inher-
ent in the Filter Process

Table 3: Comparison of Time spent in Di�erent Filters
Phase # runs eq/inv. ineq. time TPI
str-�lter 1 11 - 0.07 0.006
BDD-hash 1 13 - 0.17 0.013
(Rand-sim.) 1 - - 0.13 -
BDD-based-1* 19 11 0 7.12 0.37

ATPG-1 2 0 1 1.55 0.77
BDD-based-2** 1 1 0 4.37 4.37

ATPG-2 - - - - -

* Naive-Cut + Smart-Cut: �rst iteration; ** Smart-
cut: Second iteration.

Table 3 presents detailed results for verifying c432
against its heavily optimized version. The results show
that our arrangement of the �lters ensures that the

time per instance2 (TPI) for each �lter in the veri-
�er is usually less than the TPI of its subsequent �l-
ters. This implies that the �lter framework is usually
successful in verifying each veri�cation instance using
a �lter with lowest computational cost. An instance
is passed to a more expensive subsequent �lter only
when it is recognized that the instance is too hard for
the present �lter to handle. This ensures that the cost
of the overall veri�cation is minimized. Both NCV and
SCV being variants of a �lter based on (BDD + inter-
nal Equivalent Points), we have added their times and
represented it by a �lter called BDD-based-1. The �rst
(second) pass of ATPG �lter is called ATPG-1 (ATPG-
2), the second pass of SCV �lter as BDD-based-2. The
number of veri�cation instances found to be equivalent
and inequivalent by each �lter are shown in the third
and fourth column respectively. It is seen that a ma-
jority of the equivalences are recognized by the initial
low cost �lters SIF and BHF. A majority of the re-
maining equivalences and inequivalences are caught in
the phase BDD-based-1. There is one instance which
does not fall in the easy domains of either SCV or AV
but the next run of SCV with a higher strength auto-
matically caught it.

5.3 Veri�cation In the VeryHard Domain:
Use of Partitioning

In all the circuits presented in Table 1 and Table 2
partitioning was not necessary. We discuss next the
veri�cation of two di�cult circuits (not shown in Tables
1 and 2) on which automatic partitioning had to be
invoked. All published techniques available to us
and several commercial veri�ers failed to verify
these circuits.

Case 1: OP1 vs. OP2: In this circuit we found
that the frontier of candidate nodes (found by simula-
tion) that is nearest to the primary outputs is actually
on an average 15 structural levels away from the pri-
mary outputs. Thus, both BDDs and ATPG proved
ine�ective. Partitioning on the input space was ap-
plied (7 partitions were created), which reduced the
veri�cation time from 23,000 seconds to only 1336 sec-
onds!

Case 2: Two arti�cial circuits were created to ver-
ify multipliers in [6]. A function f(x; y) is a multiplier
if the following relations are satis�ed: f(x; 0) = 0 and
f(x; y+ 1) = f(x; y) + x. The �rst condition is easy to
check. To verify the second condition two circuits C1

and C2 are built for f(x; y+ 1) and f(x; y) + x respec-
tively and are veri�ed for equivalence. C1 and C2 are
intractable to OBDD-based veri�cation. We also found
that these two circuits have no internal equivalences.
Therefore, the circuits were partitioned to create inter-
nal equivalences, after which they could be veri�ed in
481 seconds.

6 Conclusions

We have proposed a fully automated, �lter-based
approach for Boolean Comparisonwhere numerous ver-
i�cation techniques are arranged according to their fun-
damental characteristics. We have presented intuitive

2
This is the average runtime required by any given �lter per

veri�cation instance given to it.

explanations and experimental evidence to show that
our approach is extremely e�cient. Veri�cation results
have been presented on the ISCAS 85 benchmark cir-
cuits and a large number of industrial circuits. Many
of these industrial circuits could not be veri�ed us-
ing several available published techniques and popu-
lar commercial veri�cation tools. Detailed comparison
with several published techniques shows the superior-

ity of our approach.3 In order to prove that the �l-
ter con�guration proposed by us has the best perfor-
mance, we have reported veri�cation results comparing
the proposed con�guration with several other possi-
ble arrangements. Experimental evidence to show that
our arrangement of various veri�cation techniques al-
lows each veri�cation instance to be solved with the
least computational cost has been presented. As fu-
ture work, we plan to apply the �lter framework to
provide e�cient solutions to other NP-hard problems.
We also plan to investigate the interaction of the �lters
and use of partial information produced by one �lter
by other �lters in order to improve the performance of
the veri�er.

References

[1] C. Berman et. al., \Functional Comparison of Logic
Designs for VLSI Circuits," ICCAD 1989.

[2] D. Brand, \Veri�cation of Large Synthesized Designs,"
ICCAD 1993.

[3] R. Bryant, \Graph-Based Algorithms for Boolean
Function Manipulation," IEEE Trans. Comp., Aug.
1986.

[4] R. Bryant et. al., \Veri�cation of Arithmetic Circuits
with Binary Moment Diagrams," DAC 1995.

[5] Cerny et al., \Tautology Checking Using Cross-
Controllability and Cross-Observability Relations,"
ICCAD 1990.

[6] M. Fujita, \Veri�cation of Arithmetic Circuits by com-
paring two similar Circuits," CAV 1996.

[7] A. Narayan et al., \Partitioned ROBDDs - A Com-
pact, Canonical and E�ciently Manipulable Represen-
tation for Boolean Functions", ICCAD 1996.

[8] J. Jain et al., \Advanced Veri�cation Techniques
Based on Learning," DAC 1995.

[9] A. Kuehlmann et. al., \Equivalence Checking Using
Cuts and Heaps," DAC 1997.

[10] W. Kunz, \HANNIBAL: An E�cient Tool for Logic
Veri�cation Based on Recursive Learning," ICCAD
1993.

[11] Y. Matsunaga, \An E�cient Equivalence Checker for
Combinational Circuits," DAC 1996.

[12] R. Mukherjee et al., \VERIFUL : VERI�cation using
FUnctional Learning," EDAC 1995.

[13] R. Mukherjee et al., \E�cient Combinational Veri�-
cation Using BDDs and a Hash Table," ISCAS 1997.

[14] S. Reddy et al., \Novel Veri�cation Framework Com-
bining Structural and OBDD Methods in a Synthesis
Environment," DAC 1995.

3
Non-disclosure agreements do not allow us to publish veri�-

cation results comparing our approach with commercial veri�ca-

tion tools.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

