An Effective BIST Architecture for Fast Multiplier Cores

A. Paschalis' D. Gizopoulos®

N. Kranitis®

M. Psarakis® Y. Zorian®

"Institute of Informatics & Telecommunications, NCSR "Demokritos", Athens, GREECE
{paschalilnkran|mpsarak}@iit.demokritos.gr

2 4PLUS Technologies, Athens, GREECE
dgizop@4plus.com

3 LogicVision, San Jose, CA, USA
zorian@lvision.com

Abstract

Wallace tree summation in conjunction with Booth
encoding are well known techniques to design fast
multiplier cores widely used as embedded cores in the
design of complex systems on chip. Testing of such
multiplier cores deeply embedded in complex ICs requires
the utilization of a BIST architecture that can be easily
synthesized along with the multiplier by the module
generator.

In this paper we introduce an effective BIST
architecture for fast multipliers that completely complies
with this requirement. The algorithmic BIST patterns that
this architecture generates guarantee a fault coverage
higher than 99%. The required Test Pattern Generator
consists of a simple fixed-size binary counter,
independent of the multiplier size. Accumulator-based
compaction is adopted since multipliers and adders co-
exist in most datapath architectures.

1. Introduction

Fast multipliers are widely used as embedded cores in
both general purpose datapath structures and specialized
digital signal processors. In order to accelerate
multiplication, first, we reduce the number of partial
products by using Booth encoding [1,2], and, then, we
sum up these partial products accordingly by using
Wallace tree summation [3] and carry look-ahead
addition.

The low controllability and observability of fast
multiplier cores deeply embedded in complex ICs impose
serious testability problems. External testing of fast
multiplier cores using scan techniques is not trivial at
speed, a demand in today’s high speed 1Cs. Furthermore,
scan design is not always cost effective in high complexity
designs with many deeply embedded cores. In such cases,
Built-In Self Test (BIST), a method that puts the tester on
the chip, provides an excellent solution.

The use of effective BIST architectures for embedded
fast multiplier cores, as well as, for other multiplier cores
[4,5] or RAMs [6], ROMs [7], FIFOs [8] and ALUs [9], is
the best solution. It permits at-speed testing, provides very
high fault coverage and drives down the testing costs for
the overall IC.

An effective BIST architecture for fast multiplier cores
must satisfy the following requirements:

e It must not apply Design For Testability (DFT)
modifications to the multiplier’s structure to avoid
performance degradation in carefully optimized
designs.

e It must guarantee very high fault coverage without
requiring time-consuming iterative fault simulations.

e It must consist of a small number of regular test
vectors independent of the multiplier size.

¢ The BIST hardware must be easily synthesizable and
must impose little hardware and delay overhead in the
multiplier design.

Y multiplicand
8

multiplier

78 . Modified Booth Encoder

oV oY 9of 9
pro Y PP1Y PPY PP3

Wallace Tree Block

Sum]ét]ﬂt Carry
vector vector
CLA Adder

16

P

Figure 1: An 8x8-bit fast multiplier core

Open literature currently lacks BIST architectures for
fast multiplier cores. In this paper, we present a generic
BIST architecture for fast multiplier cores that complies
with the requirements just listed. The BIST algorithm
introduced in this paper provides fault coverage higher
than 99% and is generated by a fixed size test set,
regardless of the multiplier size. This means that both the
cost of the BIST test pattern generation hardware and the
test application time are constant. We use as test pattern
generator a fixed width counter that needs very little
design effort to be synthesized along with an existing
multiplier design. The best known output data compaction
techniques (accumulator-based compaction [10,11] and
signature analysis [12]) provide excellent error coverage.
In the case that an accumulator already exists at the
multiplier outputs, accumulator-based compaction with
single or multiple rotate carry requires negligible extra
hardware and hence it is more efficient with respect to
hardware overhead. Multipliers are accompanied by an
accumulator in the majority of datapath architectures. If
the multiplier is not accompanied by an accumulator there
are two excellent alternative solutions. One solution is to
add an accumulator with area optimized adder cells and
exact pitch matching. This requires little design effort due
to accumulator’s modularity and imposes small hardware
overhead. The other solution is to add a classical multiple
input signature register (MISR). In this paper, we consider
both alternatives.

2. Fast multiplier core architecture

The fast multiplier core architecture considered in this
paper consists of three blocks (see Fig. 1) :

e the Booth Encoder for the multiplier recoding and the
formation of the partial products,

e the Wallace Tree Block for the summation of the
partial products which leads to two vectors, and

e the Carry Look-Ahead (CLA) Adder which adds the
two vectors to obtain the final multiplication product.

The Booth encoder recodes the N;-bit two’s comple-
ment multiplier operand and generates [IN,/2[Ny.-bit
partial products PPi’s (i = 0,1,2,.., [N/2[31) [5]. For
example, the Booth encoder of an 8x8-bit fast multiplier
core generates four 9-bit partial products (PPO, PP1, PP2
and PP3). This reduction by half of the number of the
partial products is the main purpose of the Booth encoder
in the multiplier architecture leading to speeding up the
multiplication operation. Each partial product PPi is
shifted by 2 bit positions with respect to its neighbours.
The various required multiples can be easily obtained by a
simple shift of the multiplicand. Negative multiples (in 2’s
complement form) can be obtained by inverting every bit
of the multiplicand and adding “1” at the least significant
bit position of the partial product. This is performed by
adding the sign recoding signal (shown as S in Fig. 2) at
the least significant bit position of the corresponding
partial product. The Booth encoder consists of an array of
two different cells. The r-cells which perform the
recoding function and the pp-cells which perform the
generation of the partial products PPi’s to be added by the
Wallace tree block. Since the Booth recoding is used for
two’s complement binary number representation, and the
Wallace tree architecture adds the partial products in
parallel, sign extension should take place. For proper
addition, the sign bit of each PP; must be extended to the
sign bit position of the [IN,/2[3st partial product which is
the most significant one. We adopt the “add one method”
for sign extension [13]. This method dictates the
following simple operations:

e to invert every sign bit of each PPi,
e toadd “1” in the sign bit position of the PP0,

e to add “1” in the bit position after the sign bit position
of the PPi (i=0,1,2,.., IN,/2(31),

In Fig. 2 we illustrate Booth recoding and sign
extension of an 8§x8-bit fast multiplier core.

PPO ooooooooo<—{
PP1 seeccccce~—{ ©
PP2 ooooooooo;—{

PP 000000000 «
11 1 11 S

Figure 2: Dot diagram of an 8x8-bit fast mult. core

Booth encoding reduces the number of partial products
by half and Wallace tree increases the speed of summing
the partial products by means of increased parallelism [3].
The Wallace tree performs the addition of the partial
products in each bit position (column) in parallel and
independent of other columns. This tree structure which
consists of full adder cells and half adder cells, reduces
the partial product summands of each column to two
vectors: a sum vector and a carry vector. These vectors
represent the multiplication result in a redundant form.
They must be added together by the succeeding CLA
adder to obtain the final multiplication result in a non-
redundant form.

The CLA adder is organized in a hierarchical approach
in order to speed up carry propagation leading to fast
addition. In the first level, 4-bit adder blocks are formed.
First-level group carry generate and carry propagate
signals are computed inside each 4-bit adder block.
Following the hierarchical approach, 16-bit adder blocks
are formed using four 4-bit adder blocks, along with
second level carry generate and carry propagate signals,
and so on. Since some of the adder inputs are always
stable to “0”, simplification has taken place to achieve
irredundant implementations.

3. Test Strategy and Fault Model

Our testing strategy is based on pseudo-exhaustive
testing for the cell-based parts of the fast multiplier core
(i.e., the Booth encoder and the Wallace tree block). This
means that every cell (r-cell, pp-cell, full adder cell and
half adder cell) receives, during BIST mode, all input
combinations that can appear during normal mode.

We assume that only one cell can be faulty at a time
and that only combinational faults can happen. Adopting
this fault model we cover all detectable combinational
faults. The set of faults included in the adopted fault
model is a superset of all single stuck-at faults. It also
includes any other type of single or multiple fault, that
may happen in the single faulty cell and change its
function to a different combinational one.

The set of input combinations that each type of cells
receives during BIST is given in the following :

r-cells: They receive all possible 8 input combinations of
their 3 inputs. The first r-cell has one input stable to “0”.
This r-cell is reduced to a simpler irredundant 2-input cell
and receives all possible 4 input combinations.

pp-cells: They receive all 24 different input combinations
of their 5 inputs that can appear during normal operation.
In details, the 3 inputs from the corresponding r-cell
receive 6 input combinations, which represent a recoded
digit (+0, -0, +1, -1, +2, -2), and the 2 inputs from the pair
of bits of the non-recoded operand receive all possible 4
input combinations. There are some pp-cells which
receive less input combinations during normal operation.
These pp-cells are reduced to simpler irredundant pp-cells
and receive during BIST mode all input combinations
appearing during normal operation.

adders: The full adder cells receive all possible 8 input
combinations of their 3 inputs. The half adder cells
receive all possible 4 input combinations of their 2 inputs.
There are some full adders with one input stable to “1”.
These full adder cells are reduced to simpler irredundant
2-input cells and receives all possible 4 input
combinations.

Apart from this, for the non cell-based part of the fast
multiplier core (i.e., the CLA adder) we adopt the
classical single stuck-at fault model.

4. Proposed BIST Architecture

Usually fast multiplier core designs have optimized
layouts since they are critical modules of a circuit in terms
of both circuit area and speed. Since Design-for-
Testability (DFT) modifications inside a multiplier
structure may add extra hardware overhead and lead to
performance degradation, it is preferable to avoid such
modifications whenever possible. The proposed BIST
architecture does not require modification of the fast
multiplier structure since it uses a test pattern generator
and an output data compactor to be augmented on the
periphery of the multiplier, as shown in Fig. 3. The
proposed BIST structure makes a complex BIST
controller unnecessary.

Fig. 3 also shows the input data registers for the two
operands X and Y. The architecture uses two sets of
multiplexers at the top and left sides of the fast multiplier
core to select between normal and BIST multiplier inputs.
The propagation delay of the fast multiplier core affects
the performance of the system. To avoid performance
degradation we can place the multiplexers before the input
registers, provided that the multiplier inputs come from
faster modules. As a result, the BIST architecture imposes
virtually no delay overhead.

| Y Input Register

TPG Ny

8-bit counter
3 Foree e

Ny mod3
I 1
|Multiplexers|¢—

— 5 —
X M

u
I s, |1 R
n + e Wallace
P
u i c T
£ - o ree

l —=
By d
= =] i
i! X n CLA

e
s r q Ldder
t s
=}
r Nz modST
— Nz + Ny

BIET

‘Accumulator

ODE

Figure 3: BIST architecture

TEST PATTERN GENERATION

The proposed Test Pattern Generator for an N, x N, bit
fast multiplier core is an 8-bit counter which goes through
all its 256 cycles. During BIST, through the first set of
multiplexers, the multiplier repeatedly receives five
counter outputs as X inputs (which are the inputs of the
Booth encoder) while, through the second set of
multiplexers, it repeatedly receives the remaining three
counter outputs as Y inputs, as shown in Fig. 3.

During the application of the 256 test vectors produced
by the counter, all the cells of the Booth encoder and the
Wallace tree block (i.e., r-cells, pp-cells, full adder cells
and half adder cells) receive all their input combinations
that can appear during normal operation. Besides, during
the application of these test vectors the CLA adder has
very high fault coverage with respect to single stuck-at
fault model.

Apart from this, any faulty cell output of the Booth
encoder and the Wallace tree block is propagated towards
primary outputs.

OuTPUT DATA COMPACTION

Accumulator-based output data compaction (ABC)
with single rotate carry [11] and multiple rotate carry [5]
has been adopted in our BIST architecture considering
that fast multiplier are usually accompanied by
accumulators in the majority of datapath architectures.

If the multiplier is not accompanied by an accumulator
we add either an accumulator with area optimized adder
cells and exact pitch matching, or a classical multiple
input signature register (MISR).

The effectiveness of our BIST architecture has been
measured by fault simulation. We extensively simulated
the proposed BIST architecture for a 16x16 bit fast
multiplier core using the Verifault stuck-at fault
simulator of the Cadence Design Framework . We
explored all different compaction schemes mentioned
below. Table 1 summarizes the fault simulation results.

Table 1: Fault Simulation Results

compaction scheme fault coverage
before compaction 99.8%
ABC with single rotate carry 99.1%
ABC with multiple rotate carry 99.7%
MISR 99.8%

We analyze the results of Table 1 as follows:

e The fault coverage of the proposed BIST architecture
is 99.8% before compaction. Undetected faults appear
only in the CLA adder.

e ABC with single rotate carry [11] satisfies the fault
coverage target of 99% with aliasing of 0.7%.

e ABC with multiple rotate carry [5] over-satisfies the
fault coverage target of 99% with negligible aliasing
0f 0.1%.

e MISR also over-satisfies the fault coverage target of
99% with zero aliasing.

Therefore, all compaction schemes satisfy the target of
99% and they can be used in our BIST architecture for
fast multiplier cores.

HARDWARE AND DELAY OVERHEAD

A rough estimation of the hardware overhead imposed
by our BIST architecture is given below in gate
equivalents for the case of the 16x16 bit fast multiplier
core.

Table 2: Hardware and Delay Overhead

Acc. ABC single | ABC mult. MISR
Exists ? | rot. carry rot. carry
yes 3.8% 4.9% -
no 12.7% 13.9% 8.8%

From Table 2 we conclude that:

¢ when the accumulator exists, the hardware overhead is
very little (less than 5%) for both cases of ABC with
single and multiple rotate carry.

¢ when the accumulator does not exist, the hardware
overhead imposed for the cases of ABC with single
and multiple rotate carry is 12.7% and 13.9%,
respectively. This hardware overhead can be reduced
using an accumulator with area optimized adder cells
and exact pitch matching. Alternatively, a classical
MISR should be used that imposes little hardware
overhead (8.8 %) and achieves zero aliasing,.

In all cases the hardware overhead becomes negligible
for fast multiplier cores of larger size.

The delay hardware overhead imposed by our BIST
architecture is no more than the smallest possible delay
overhead of any off-line BIST architecture that has a
single multiplexing stage. Moreover, when the multiplier
inputs come from faster modules, we can place the
multiplexers (Fig. 3) before the input registers that
imposes virtually no delay overhead.

The small delay overhead introduced in the
accumulator [5] when the multiple rotate carry
compaction scheme is utilized does not affect the system
performance. This is because the multiplier’s speed,
which in any case is less than the adder’s speed,
determines the clock period of the data path in which both
the multiplier and adder participate. Since we introduce
no DFT modification to the multiplier structure, the
proposed architecture does not significantly affect the data
path’s performance.

5. Conclusions

We have introduced an effective BIST architecture for
fast multiplier cores. An 8-bit counter test pattern
generator is used along with either accumulator-based
output data compaction or signature analysis. No Design-
for-Testability modifications to the multiplier are required
and the architecture is totally applied on the periphery of
the multiplier structure therefore causing no internal
performance degradation. The BIST architecture is
generic and can be applied to any tree-like (Wallace)
multiplier, with or without Booth encoder to form the
partial products and with other adder structure instead of
CLA adder to obtain the final product.

References

1. A. D. Booth, "4 Signed Binary Multiplication
Technique", A. J. Mech. Appl. Math. 4, pp. 260-264,
April 1951.

2. L. P. Rubinfield, "4 Proof of the Modified Booth
Algorithm for Multiplication”, 1EEE Trans. on
Computers, vol. C-24, pp. 1014-1015, October 1975.

3. C. S. Wallace, "4 Suggestion for a Fast Multiplier”,
IEEE Transactions on Computers, vol. EC-13, pp. 14-
17, February 1964.

4. D. Gizopoulos, A. Paschalis and Y. Zorian, “An
Effective BIST Scheme for Carry-Save and Carry-
Propagate Array Multipliers”, in Proc. 4th 1EEE
Asian Test Symposium, pp 286-292, 1995.

5. D. Gizopoulos, A. Paschalis and Y. Zorian, “Effective
Build-in Self-Test for Booth Multipliers”, 1EEE
Design & Test of Computers, vol. 15, no. 3, pp 105-
111, July 1998.

6. B. Nadeau-Dostie, A. Silburt and V.K. Agarwal,
"Serial Interfacing for Embedded Memory Testing”,
IEEE Design & Test of Computers, vol. 7, no. 2, pp.
52-63, April 1990,

7. Y. Zorian and A. Ivanov, "An Effective BIST Scheme
for ROMs", IEEE Trans. on Computers, vol. 41, no. 5,
pp. 646-653, May 1992,

8. Y. Zorian, A.J. Van de Goor and 1. Schanstra, "4n
Effective BIST Scheme for Ring-Address Type FIFOs",
in Proc. IEEE International Test Conference, 1994,

9. D. Gizopoulos, A. Paschalis, Y. Zorian and M.
Psarakis, “An Effective BIST Scheme for Arithmetic
Logic Units”, in Proc. IEEE International Test
Conference, pp 868-877, 1997.

10.A. Ivanov and Y. Zorian, "Count-Based BIST
Compaction Schemes and Aliasing Probability
Computation”, 1EEE Trans. on Computer-Aided
Design, vol. 11, no. 6, pp.768-777, June 1992.

11.J. Rajski and J. Tyszer, "Test Responses Compaction
in Accumulators with Rotate Carry Adders", 1EEE
Trans. on Computer-Aided Design, vol. 12, no. 4, pp.
531-539, April 1993.

12.R. A. Frohwerk, "Signature Analysis: A New Digital
Field Service Method", Hewlett-Packard J., pp. 2-8,
May 1977.

13. H. Yamauchi et al. “10ns 8x8 Multiplier LSI Using
Super Self-Aligned Process Technology”, IEEE
Journal of Solid-State Circuits, , vol. SC-18, pp. 204-
210, April 1983.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

