

s.de

be
ut

o-

-
has
eth-
ual
 the
ds

ur-
t to
m
e

are
en-
un-
Codesign of Embedded Systems Based on Java and
Reconfigurable Hardware Components

Josef Fleischmann Klaus Buchenrieder, Rainer Kress
Technical University of Munich Siemens AG

Inst. of Electronic Design Automation Corporate Technology
D-80290 Munich, Germany D-81730 Munich, Germany

Josef.Fleischmann@ei.tum.de {Klaus.Buchenrieder|Rainer.Kress}@mchp.siemen

Abstract
In the design of embedded hardware/software systems,

exploration and synthesis of different design alternatives
and co-verification of specific implementations are the
most demanding tasks. Networked embedded systems pose
a new challenge to existing design methodologies as novel
requirements like adaptivity and runtime-reconfigurability
arise. In this paper, we introduce a co-design environment
based on the Java language which supports specification,
co-synthesis and prototype execution for dynamically
reconfigurable hardware/software systems.

1. Specification and Synthesis
For the design of embedded hardware/software systems

with reconfiguration capabilities, we have developed a
design exploration and prototyping platform. The target
architecture for such systems consists of a microprocessor
running a Java virtual machine, and a hardware processor
consisting of one or more FPGAs. An overview of our
design flow for co-synthesis is illustrated in figure 1. Start-
ing from an initial Java specification, profiling data is gath-
ered while executing the program with typical input data.
This profiling data is then visualized to guide the designer
in the partitioning process. Partitioning is done at the
method level of granularity using a graphical user interface.
Functions which are to be implemented in hardware are
synthesized using high-level and logic synthesis tools. Pre-
viously designed hardware components are accessible
through a database of parameterizable VHDL components.
More information on the individual synthesis steps and the
automatic generation of the hardware/software interface
can be found in [1]. After co-synthesis, Java bytecode for
all methods of the initial specification is stored in the pool
of software methods. For all methods which are candidates
for implementation in reconfigurable hardware, the FPGA
configuration data as well as interface information is stored
in the pool of hardware methods. The target hardware plat-
form consists of dynamically reconfigurable FPGAs
(DPGAs). These new FPGA architectures may be partially

reconfigured at run-time, i.e. a portion of the chip can
reprogrammed while other sections are operating witho
interruption. The target software platform for system prot
typing is currently a Linux PC.

2. Hardware/Software Runtime Management
For controlling the dynamic behavior of the reconfig

urable system during execution, a run-time manager
been implemented. The run-time manager schedules m
ods for execution either as software on the Java virt
machine (JVM) of the host processor or as hardware on
reconfigurable DPGA hardware. The scheduling depen
on the dynamic behavior of the application and on the c
rent partitioning table chosen by the designer. In contras
traditional prototyping systems, execution on this platfor
is a highly dynamic process. The execution flow of th
hardware/software system is dominated by the softw
part. Software methods are executed on the JVM. Wh
ever the control flow reaches a hardware method, the r

Software
methods

Software
methods

Hardware
synthesis

Interface
generation

ProfilingPartitioning

Profiling

operator
library

operator
library

operator
library

Java specification

Profiling

Interface
generation

Software
compilation

Hardware
synthesis

Reuse
library

Java
bytecode

FPGA
bitfiles

Software
methods

Hardware
methods

Fig. 1. Specification and co-synthesis

on
ne

le
m-

 a
p-
 dif-
ser
run-
an-
ow-
ual
ble.
ed

ta-
ter-
in

or
re-
d-
ard
e

ard.

e
 in
sed
c-

he
ted

oes
arly
ner
nd

that
ce
the
the
ny
te
.

g
d
gn
time system determines whether the appropriate configura-
tion file has already been downloaded. If not, then the man-
ager chooses a DPGA and starts configuration. If there is
already a DPGA configured with the desired functionality,
or if only partial reconfiguration is necessary, the address
and parameters of the communication channel to the target
DPGA are loaded.
Extending the Java Virtual Machine. As shown in
figure 2, the core component of the run-time environment
is the Java virtual machine. It basically consists of a class
loader for dynamically loading Java bytecode and an exe-
cution engine for interpreting these bytecodes on the host
processor. In our design framework we use the KAFFE JVM
[2], as it comes with complete source code. As our execu-
tion framework integrates reconfigurable DPGA hardware,
several extensions to the class loader and the interpreter
became necessary. The class loader was extended for read-
ing in the current hardware/software partitioning table and
for handling hardware methods, i.e. methods which have to
be executed on the DPGA board. These hardware methods
and information about their corresponding interfaces which
are necessary to transfer data to and from the DPGA are
accessed through a database.

The execution engine needs to know whether a method
is to be interpreted as bytecode or executed in hardware.
Therefore, the class loader assigns a special flag to every
hardware method. During execution of the application, the
interpreter has to activate the hardware call module when-
ever flow of control reaches a hardware method. Depend-
ing on the current state of the DPGA board, several actions
are triggered with every hardware call: If necessary, new
configuration data is downloaded to the chip; input data is
transferred to the board; the hardware design is executed
and the resulting data is transferred back to the calling
thread. These procedures are implemented in the hardware

wrapper (figure 2). Furthermore, a strict synchronizati
mechanism has been implemented. Currently, only o
thread at a time is allowed to access the DPGA board.

Interfacing with Native Methods. By extending the
Java virtual machine for interaction with reconfigurab
hardware resources, we were able to implement a co
pletely user-transparent mechanism for execution of
mixed hardware/software implementation. In the prototy
ing phase, the user can explore design alternatives and
ferent hardware/software mappings via a graphical u
interface. The Java code remains unchanged, as the
time system and the extended interpreter completely m
age execution of hardware and software components. H
ever, the drawback of this approach is that only Java virt
machines can be used where the source code is availa
For different VMs or newer releases the above mention
extensions and customizations have to be made.

Therefore, we provide a second alternative implemen
tion where we use a Java class and native methods for in
facing with the hardware part of the system. The ma
focus is on implementing all necessary functionality f
hardware interfacing and reconfiguration in Java. The
fore, the platform specific API of the reconfigurable har
ware board can be kept very small. In this case the bo
API basically consists of native functions to write a valu
to and read a value from a certain address of the bo
These functions are implemented via the Java Native Inter-
face (JNI). That means, all methods for managing th
reconfiguration process and execution are implemented
Java and all communication to the hardware board is ba
on the native implementations of the read and write fun
tions. For communicating with the external board via t
PCI bus, a dedicated device driver has been implemen
as a kernel loadable module under Linux.

The benefits of this approach are clear. The Java VM d
not have to be modified and the hardware interface is cle
defined within the Java language. This means the desig
has complete control over all methods for accessing a
managing the reconfigurable hardware. The drawback is
the application code has to be modified. The DPGA interfa
class has to be included in the application source and
designer has to call the appropriate functions for using
DPGA. However, this methodology can be used with a
virtual machine. Therefore, it is relatively simple to integra
and test different commercial implementations of the JVM

References
[1] J. Fleischmann, et. al.: A Hardware/Software Prototypin

Environment for Dynamically Reconfigurable Embedde
Systems. In Int. Workshop on Hardware/Software Codesi
(CODES), 1998.

[2] Transvirtual Technologies, Kaffe Open VM,
http://www.transvirtual.com/kaffe.html, 1998.Fig. 2. Design exploration platform

Frontend

GUI

Run time environment

DPGA board

execution profiling
control information

operator
library
FPGA
bitfiles

operator
library
Java

bytecode

Database

Hardware
wrapper

Operating system Device
driver PCI

bus

Interpreter
engine

Class loader

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

