Codesign of Embedded Systems Based on Java and
Reconfigurable Hardware Components

Josef Fleischmann Klaus Buchenrieder, Rainer Kress
Technical University of Munich Siemens AG
Inst. of Electronic Design Automation Corporate Technology
D-80290 Munich, Germany D-81730 Munich, Germany

Josef.Fleischmann@ei.tum.de {Klaus.Buchenrieder|Rainer.Kress}@mchp.siemens.de

Abstract reconfigured at run-time, i.e. a portion of the chip can be

In the design of embedded hardware/software Systemsreprogrammed while other sections are operating without

exploration and synthesis of different design aIternatives'nte”umlon' The target software platform for system proto-

and co-verification of specific implementations are the typing is currently a Linux PC.
most demanding tasks. Networked embedded systems pose .

a new challenge to existing design methodologies as nove?' Hardware/Software Runtime Management
requirements like adaptivity and runtime-reconfigurability =~ For controlling the dynamic behavior of the reconfig-
arise. In this paper, we introduce a co-design environmenturable system during execution, a run-time manager has
based on the Java language which supports specificationpeen implemented. The run-time manager schedules meth-
co-synthesis and prototype execution for dynamically ods for execution either as software on the Java virtual

reconfigurable hardware/software systems. machine (JVM) of the host processor or as hardware on the
reconfigurable DPGA hardware. The scheduling depends
1. Specification and Synthesis on the dynamic behavior of the application and on the cur-

rent partitioning table chosen by the designer. In contrast to

. For the d'e3|gn_of embeddgq haraware/software SyStem?raditional prototyping systems, execution on this platform
with reconfiguration capabilities, we have developed a5 a highly dynamic process. The execution flow of the

design exploration and prototyping platform. The target hardware/software system is dominated by the software
architecture for such systems consists of a microprocesso art. Software methods are executed on the JVM. When-

running a Java virtual machine, and a hardware ProCESSOL ey the control flow reaches a hardware method, the run-
consisting of one or more FPGAs. An overview of our

design flow for co-synthesis is illustrated in figure 1. Start- ficat
ing from an initial Java specification, profiling data is gath- Java specification

ered while executing the program with typical input data.

This profiling data is then visualized to guide the designer Profiling

in the partitioning process. Partitioning is done at the .

method level of granularity using a graphical user interface. Partitioning 4_@
Functions which are to be implemented in hardware are library

synthesized using high-level and logic synthesis tools. Pre-
viously designed hardware components are accessible

Hardware

through a database of parameterizable VHDL components. Interface (methods
More information on the individual synthesis steps and the |/ generation \‘
automatic generation of the hardware/software interface _—

can be found in [1]. After co-synthesis, Java bytecode for Cgr%fg‘i’}’ggn ';%ﬂ;’("gg
all methods of the initial specification is stored in the pool

of software methods. For all methods which are candidates
for implementation in reconfigurable hardware, the FPGA
configuration data as well as interface information is stored Java FPGA

in the pool of hardware methods. The target hardware plat- bytecode bitfiles
form consists of dynamically reconfigurable FPGAs

(DPGAS). These new FPGA architectures may be partially Fig. 1. Specification and co-synthesis

time system determines whether the appropriate configurawrapper (figure 2). Furthermore, a strict synchronization
tion file has already been downloaded. If not, then the manimechanism has been implemented. Currently, only one
ager chooses a DPGA and starts configuration. If there ighread at a time is allowed to access the DPGA board.
already a DPGA configured with the desired functionality, |nterfacing with Native Methods. By extending the

or if only partial reconfiguration is necessary, the addressjava virtual machine for interaction with reconfigurable
and parameters of the communication channel to the targqt]ardware resources, we were able to imp|ement a com-
DPGA are loaded. pletely user-transparent mechanism for execution of a
Extending the Java Virtual Machine. As shown in mixed hardware/software implementation. In the prototyp-
figure 2, the core component of the run-time environmenting phase, the user can explore design alternatives and dif-
is the Java virtual machine. It basically consists of a classerent hardware/software mappings via a graphical user
loader for dynamically loading Java bytecode and an exednterface. The Java code remains unchanged, as the run-
cution engine for interpreting these bytecodes on the hostime system and the extended interpreter completely man-
processor. In our design framework we use therg JVM age execution of hardware and software components. How-
[2], as it comes with complete source code. As our execu-ever, the drawback of this approach is that only Java virtual
tion framework integrates reconfigurable DPGA hardware, machines can be used where the source code is available.
several extensions to the class loader and the interpretefor different VMs or newer releases the above mentioned
became necessary. The class loader was extended for reagxtensions and customizations have to be made.

ing in the current hardware/software partitioning table and Therefore, we provide a second alternative implementa-

for handling hardware methods, i.e. methods which have tQjon where we use a Java class and native methods for inter-
be executed on the DPGA board. These hardware methodg,cing with the hardware part of the system. The main
and information about their corresponding interfaces whichfqcys is on implementing all necessary functionality for
are necessary to transfer data to and from the DPGA argardware interfacing and reconfiguration in Java. There-
accessed through a database. fore, the platform specific API of the reconfigurable hard-

The execution engine needs to know whether a methoqyare board can be kept very small. In this case the board
is to be interpreted as bytecode or executed in hardwareap| pasically consists of native functions to write a value
Therefore, the class loader assigns a special flag to even and read a value from a certain address of the board.
hardware method. During execution of the application, theThese functions are implemented via Jaga Native Inter-
interpreter has to activate the hardware call module whenface (JNI). That means, all methods for managing the
ever flow of control reaches a hardware method. Dependreconfiguration process and execution are implemented in
ing on the current state of the DPGA board, several actiongava and all communication to the hardware board is based
are triggered with every hardware call: If necessary, newon the native implementations of the read and write func-
configuration data is downloaded to the chip; input data istions. For communicating with the external board via the
transferred to the board; the hardware design is executeg¢hC| pus, a dedicated device driver has been implemented
and the resulting data is transferred back to the callingas g kernel loadable module under Linux.

thread. These procedures are implemented in the hardware The benefits of this approach are clear. The Java VM does
—

Frontend —— not_have tp pe modified and the hardvx{are interface is clgarly
Eilt:fﬁaé defined within the Java language. This means the designer
GUI — has complete control over all methods for accessing and
) N S managing the reconfigurable hardware. The drawback is that
exe<t:ut||0n PrfOf"'“gt. ‘ Java the application code has to be modified. The DPGA interface
contro information w class has to be included in the application source and the
designer has to call the appropriate functions for using the
Run time environment DPGA. However, this methodology can be used with any
virtual machine. Therefore, it is relatively simple to integrate
Class loader | Database and test different commercial implementations of the JVM.
Interpreter | Hardware References
engine wrapper D|:PIGA board [1] J. Fleischmann, et. al.: A Hardware/Software Prototyping
. i Environment for Dynamically Reconfigurable Embedded
Operating system E()j(?i\\//lt(a::a PCI E = - Systems. In Int. Wo)r/kshop onyHardwarg/Software Codesign
. bus - (CODES), 1998.

))) [2] Transvirtual = Technologies, Kaffe ~ Open VM,
Fig. 2. Design exploration platform http://www.transvirtual.com/kaffe.html, 1998.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

