Exploiting Conditional Instructions in Code Generation
for Embedded VLIW Processors

Rainer Leupers

University of Dortmund
Dept. of Computer Science 12
44221 Dortmund, Germany
email: leupers@Is12.cs.uni-dortmund.de

Abstract— This paper presents a new code optimizaional instructionshave been implemented in several recent
tion technique for a class of embedded processors. Modmbedded processors. Such instructions may implement ITE
ern embedded processor architectures show deep instructistatements without altering the control flow in a machine pro-
pipelines and highly parallel VLIW-like instruction sets. Forgram, i.e. without modifying the program counter.
such architectures, any change in the control flow of a ma- In this paper, we present a technique for optimized im-
chine program due to a conditional jump may cause a signiplementation of nested ITE statements for a class of VLIW
icant code performance penalty. Therefore, the instructioprocessors. Since embedded applications mostly have to
sets of recent VLIW machines offeipport for branch-free meet real-time constraints, the goal is to minimizewlest-
execution of onditional statements in the form of so-calledcase execution timef a (control dominated) software func-
conditionalinstructions. Whether an if-then-else statementtfon. This is performed by appropriately selecting either a
implemented by a conditional jump scheme or by conditiongbnditional jump or a conditional instruction based imple-
instructions has a strong impact on its worst-case executianentation scheme for each ITE statement.
time. However, the optimal selection is difficult particularly ~ The structure of the paper is as follows: Section 2 gives
for nested conditionals. We present a dynamic programmingh introduction to conditional instructions and their use in
technique for selecting the fastest implementation for nestegachine programs. Section 3 describes the alternative im-
if-then-else statements based on estimations. The efficacyiémentation schemes for ITE statements using conditional
demonstrated for a real-life VLIW DSP. jumps and conditional instructions. Sections 4 and 5 describe

the proposed two-pass optimization technique. In section 6,
. we provide experimental results for a recent VLIW DSP, the
1 Introduction TI C62xx. Finally, section 7 gives conclusions.

A major goal of current research efforts in the area of code
generation for embedded processors is to overcome the im- it i i
sufficient code quality of current DSP compilers, which stillg Conditional instructions
makes time-consuming assembly-level programming of DS
software essential [1]. Traditionally, DSPs have been main o , » e ,

onditionC' and a "regular” machine instructioh e.g., an

used for implementation of data flow dominated applicaz) . . ; .
rithmetic operation, a register move, or a jump. Instruction

tions. Consequently, much of the recent work on code of¥-. m Vit th I h .
timization for DSPs has focussed on data flow graphs, e.d./S €xecuted, ifand only if th€’ evaluates to true at the point
f f time when the control flow in a machine program reaches

2, 3, 4,5, 6]. However, automotive applications and tele= U X . X
E:om protocol functions also require a significant amount of: Otherwise, instructior behaves like a no-operation. The
control functionality to be implemented by DSPs. Eﬁ‘ectingond't'o.nC is stored in @ machine registét. By defini-
compilation techniques are particularly important for controf O C'is false if # = 0, and true otherwise. The notation
dominated applications, since usually no assembly code JiLC] | " denotes a conditional instruction withreegated
brary support is available for control functions. condition, . :

The source code of control dominated applications typ- _Several recent VLIW-like architectures, such as the
ically contains a large number of if-then-else (ITE) statel€X@S Instruments C62xx or the Philips Trimedia TM1000,
ments. Classical compiler technology uses conditional jumg&oW full support for conditional instructions. Also the next
for implementation of ITE statements. However, the pregéneration of 64-bit Intel processors will be equipped with
ence of many conditional jumps has a negative impact dRis feature [8]. For such machines, the decision of whether

code performance in particular for deeply pipelined an implement an ITE statement by conditional jumps or by

highly parallel VLIW-like processors. Therefore, an alter.conditional instruction execution has a large impact on code

native architectural support for ITE statements, catieddi- quality in terms of worst-case execution time. In the follow-
ing, we denote these two schemeschiymp andc-exec.

*The author acknowledges the support by HP EEsof Usingc-exec instead ofc-jump may increase the code

conditional instruction [C] | " consists of a Boolean

performance by a twofold effect: Due to control hazards in The notation [c] B " denotes the conditional execu-

the instruction pipeline, execution of jump instructions usution of all instructions in a block3. The worst-case execu-

ally causes gump penalty i.e., the pipeline needs to be tion time when using-execis 7'(S) = T'(Br o Bg), where

stalled for some machine cycles. This problem is avoideth” denotes the concatenation of blocks. In totakexec

if conditional instructions are used, because these do not &ads to a shorter worst-case execution time thamp, ex-

ter the control flow in a program. In turn, this leads to largeactly if

branch-free (basic) blocks in the program, which give higher

opportunities for parallelization of instructions. On the other T'(Br o Bg) < max(J + T(Br),2-J + T(Bg))

hand, using-exec may also degrade performance due to re-

source contentions. Note that, in VLIW processors](Br o Bg) is fre-
Previous work on exploiting conditional instructionsquently much less thaf(By)+7(Bg), because the instruc-

during compilation [9, 10] is primarily based on estimatedionsin By andBg may be patrtially executed in parallel. On

execution times only fosingle basic blocks Furthermore, the other hand it is obvious thatexec is not guaranteed to

focus has been on minimizing tleerageexecution time. be the fastest alternative in any case.

In contrast, our technique estimates Warst-caseexecution

time, which is more relevant for real-time applications, and it

handles complete (possibly nested) ITE statements withmu-3 C-jump with precondition

tiple blocks at a time. The abovec-jump andc-exec implementation schemes are

in general only valid for innermost ITE statements, where the
then and else blocks are basic blocks. However, in general we
have to cope with nested ITE statements. As shown above,

thec-exec scheme requires that the then and else bldgks

This section presents and analyzes the different implemen%dBE of ITE statemens be executed dependent on a con-
tion schemes used in our approach. Bothdgump andc- gition . In this case, we say that the statement®inand
exec two cases have to be considered, depending on whethgf haye. as aprecondition If some statemen§’ in By or

3 ITE implementation schemes

or not ITE statements are nested. Bp is an assignment or a jump, we can simply attach the pre-
conditionc to S* by forming a conditional instruction¢]
3.1 c-jump S’ ”. However, if S" inturnis an ITE statementt’, B, By),

thenboth B/, and B mustnot be executed if precondition
Let S = (cond, Br, Bg) be an ITE statement, wherg; ¢ is false, independent of the value of Thus, in order to
and By are basic blocks. The standard replacement scherfefain the correct program behavior, preconditions have to be

using conditional jumps is: propagated to the inner ITE statements. This requires the
following generalized implementation schemes.
c = eva|uate(cond) LetS = (cond, BT, BE) be an arbitrary ITE statement,
[c] goto then_label and letp be the precondition of. Then, the followingc-

- jump implementation scheme is used.
goto join_label

then_label: BT [p] ¢ := evaluate(cond)
join_label: [lp] ¢ = 0
[c] goto then_label
The condition is evaluated into a registeland depen- [p] BE
dent on its value, eitheBy or Bg get executed. Then, con- goto join_label
trol flow joins at the next instruction aftet. then_label: BT

Let T(B) denote the time to execute a basic bldggk join_label:

and letJ be the (machine-dependent) jump penalty. If the o

conditional jump is taken (i.e., condition is true) then The whole statement must only be executed if is

the execution time for the ITE statemefitis 7,(5) = true. The condition for executingr is p A cond, while

J + T(Br). If the jump is not taken, then two jump instruc- Bz must be executed exactly jf A NOT'(cond) is true.

tions are executed, and the timefig(S) = 2- J 4+ T(Bg). After execution of the conditional instructiofip] ¢ =

The worst-case execution time (neglecting the time for co)”, the condition registec contains the value gf A cond.

dition evaluation) i'(S) = max(1(S), T2(S)). If this value is true, then a jump By is taken, andBy is
executed unconditionally. If the jump is not taken, then ei-
therp or cond are false. By propagatingas a precondition

3.2 c-exec to Bg it is guaranteed, thaBg is executed if and only if

ANOT d) is true.
For a non-nested ITE statemefit= (cond, Br, Bg), the b (cond)
c-exec implementation scheme looks as follows: _ N
3.4 c-exec with precondition

¢ := evaluate(cond) .)]
[c] BT Alternatively, ac-exec scheme can be used, in which case
B_E

the implementation scheme is the following:

¢ source cjump only for each ITE statement. The tables are used in the second
if c(ia_>b1t3r) ryy POt 210R1 (top-down) pass to select the fastest implementation for the
it d > 13 Ry e ot ITE statements at each level.
{h=d+ ¢ jmp L2
}I L1: add t:,cc,idl3 -
else cmpgt d,13, .
(i=d-e Rl imp 13 ' 4 Cost table computation
Sul ,e,l
} jmp L2 .
else L3: add 4.6 Setup costs: The setup cosbf an ITE statement' is de-
fh=tf+9 L2 fined as the number of instructions in the setup code in the
_ implementation ofS. The setup cost is a constant implied
c-exec only mixed by the chosen implementation scheme and the existence of
cmpgt a,10,R1 __cmpgt a,10,R1 a precondition forS. Thus, it can be determined by table
{Eﬂ igﬁagtt)’cdfils,m R Jn;ﬁdL%,g,h lookup. Table 1 shows the setup cdstsr the implemen-
{Ezlﬁ ot R2,R3 L. Jmo L2 tation schemes shown in sections 3.1 to 3.4 and defines a
[IR1] mov %szF] ' d%mgg{ r;d,ls,Rz notation for each case.
R2 e, R2 e, -
{RB% b dei [![RZ]] sub diei . c-jump c-exec
[R1] add fg.h L2: precondition: N0 | Ne_jump =0 | Necegee =0
precondition: yes Pe_jump =1 | Pe—cgec =3

Figure 1: lllustration of thec-jump and c-exec ITE imple-

mentation schemes

Table 1:Simplified setup cost table

{B% g Z ?:aluate(cond) Statement blocks:Let B = (s, ..., s,) be a block of state-
p] ¢ = 0 ments. We denote the estimated cost®dfy 77 (B) (if B

lp] d =0 has a precondition) an@™ (B) (if B has no precondition),
{g]] g_g respectively. The costs of a bloékare defined as the sum of

the costd ¥ (s;) or T (s;) of all statements; in B. If state-

. - ments; is an assignment or an unconditional jump, then we
The correctness of this scheme follows by a similar ar- ! 9 Jump

. : o setTF (s;) = TN (s;) = 1, because the execution time of an
ﬁ; nlegé?rtgg22;?3&22?55%&2?? ;r/l:‘etzzxare exemplified Inassignment or a jump instruction does not depend on whether

the instruction is conditional. Otherwiss,is in turn an ITE

We now consider how the fastest implementation scheme catatement; = (¢, Br, Bg), in which case the costs of the
be selected for each ITE statement. Obviously, the exectwo alternativeg-jump andc-exec must be estimated.

tion time for an ITE statemerft = (cond, By, Bg) depends c-jump scheme: Since we compute the cost tables bottom-
on the execution times foBr and Bg. In turn, these de- up, the cost values for the blocksr and Bg are already
pend on the ITE implementation versions selected for thenown when the costs far; are estimated. If we implement
ITE statements insidBr andBg. However, also a converse s; by c-jump ands; has no precondition, then bofhy and
dependence exists, since the execution timesfoandBg Bg have no precondition, and we estimate the worst-case
depend on the implementation version foiitself: As can execution time by . is the jump penalty, cf. section 3.1):

be seen in the generalized implementation schemes,doth ~ ~

jump andc-exec may require somsetup codewhich con- 1:ljunp (5i) = Ne—jumptmax(J+1" (Br), 2-J+T" (BEg))
tributes to the total execution time. This setup code consists ~ i :

of additional instructions required to compute precondition&herel™ (Br) (the cost of the fastest implementationfef

for By and By (excluding the code for evaluating the ITE N absence of a precondition) is given as

condition itself). For instance-exec with precondition has N N N

three setup instructions: I7(Br) = min(Le jump (Br), TeZepec(Br))

[p] d:='c ['p] c =0 ['p] d:=0

Since the amount of setup code is differentdgump andc-

exec, the execution times for ITE statements insigle and
Bg depend on the implementation.8f Especially for small
blocks? that consist of very few instructions, the executiofle—jumy (51) = Pejumptmax(J+T™ (Br), 2-J+T" (Bg))
time overhead due to the setup code must not be neglecte 'Hh

order to achieve accurate estimations. This means, that the

fastest implementation version for each ITE statement can- (Be), TY(Bg))

not be decided locally, but that information must be passed

both bottom-up and top-down through different ITE nesting _1Actually, a larger setup cost table with two further dimensions is re-

_ ; squired: First, if an ITE statement has an empty else block, theo-fhmp
levels. We therefore use a two pass dynamlc proqramm'@ﬁdc-exec schemes are slightly different, and so are the setup costs. Sec-

t_eChnique described in the f0||0Wing two sectiqns. In thgngd, the setup costs depend on whether the target processor directly supports
first (bottom-up) pass, a cost estimation table is compute@gated conditions.

and analogously fof'Y (Bg). If s; has a precondition, then,
according to the implementation scheme from section 3.3,
the else blockBg also has a precondition, whilBr has
none. Thus, we obtain

T*(Bg) = min(TF

c—jump

The estimation function? ... and7TZ .. are defined in | source [#ITE | nest.] size|
the following. adaptquant 4 3 16
c-exec schemeilf s; is implemented byc-exec, then the adaptpredictl| 3 1 29
blocks Br and Bg are effectively concatenated to form a adapipredici2| 6 2 44
single "large” block. Therefore, we need to estimate the diff_comp 2 1 22
parallelization of the instructions iBr and Bg. For this outpconv A 2 34
purpose, we incorporate a machine-dependent parameter codeadil 5 5 19
that reflects the available instruction-level parallelism, and codeadi? 17 9 36
which has to be determined empirically. The uselofis codeadi3 17 5 o5
based on the following observation: If there is a large dif- detectpos 7 3 25
ference in the estimated execution timed3af and Bg, say find.mv Z i 75

T(Br) > T(Bg), thenitis likely thatBg will almost com-
pletely fit into instruction slots not occupied by computations
from Br, so thatT(Br o Bg) is only slightly larger than
T(Br). This can be modeled by subtracting a fraction of
T(Br) from T'(Br) + T(Bg). Furthermore, the possible on the best implementation. From this decision, we in turn
parallelization ofBr and B is inversely related to the nest- know which values need to be compared for the ITE state-
ing level L(s;) (with L(s) := 1 for any innermost ITE state- ments at the next lower level. Converselnyifjump(S) >
ments) of statement;, because _the size of blocksr and N (S), we prefer the-exec version forS, so thatBr

B Fendito grow Vf;”t%|(8i|)(, Ielgdlng to more rr(]aso.urce CON-and By, have a precondition. Then, for all ITE statements
tentions between t eP ocks. For estimating t e.tlmeBﬁﬁ_)r in By and By, we only need to compare thef . and
andBg, we use thd™” values as defined in section 4, since . . . Jump -

in thec-exec scheme both blocks have to be executed under -czec Values in order to select the best implementation.

Table 2:Characteristics of tested C source codes

it i imation i In each step of the top-down pass, the fastest implemen-
a precondition. Summarizing, a useful estimation is tation for an ITE statement — (cond. Br,) is decided.
T(Bp oBp)=M+m—z In turn, this decision makes the presence or the absence of
a precondition forBy and Bg known. This information is
with exploited at the next lower level, and the process is contin-
M = max(TF (Br), TF (Bg)) ued down to the innermost ITE statements. The complete
P P optimization procedure is illustrated in fig. 2.
m = min(T" (Br),T" (Bg)) Since in both the bottom-up and the top-down pass each
K ITE statement is visited only once, the total runtime of the
z=min(—— - M, m) dynamic programming technique is linear in the number of
L(si) ITE statements.

The "min” in the latter formula ensures thd@i(Br o Bg)
is never estimated less thar. Like for c-jump, we com- .
pute two cost estimations ferexec, again dependent on the 6 Experlmental results
presence of a precondition:
We have evaluated the proposed optimization technique for

T ree(5i) = Neegpee + M +m — 2 a Tl C62xx [7], a fixed-point VLIW DSP that issues up to 8
instructions per cycle. We have compared the worst-case ex-
TF o oo(5i) = Pe_coce + M +m — 2 ecution times of code generated by our technique to the code

generated by the TI C6x ANSI-C compiler. For experimenta-
tion, we have compiled 10 control-intensive pieces of ANSI-
5 Implementation selection C code extracted from the ADPCM transcoder "g721.c” in-
cluded in the DSPStone benchmark suite [1] and from an
After bottom-up cost table computation, each ITE statemeANSI-C MPEG package. Table 2 shows the characteristics
has been annotated with the four valtes ;... 7% ;. (number of ITE statements, maximum nesting level, number
N P of statements in the intermediate representation) of the code
T .o @ndT.” ... In a top-down pass, we can now se-
lect the best irﬁpleéfﬁentationsfor each ITE statement starti#tlrgagmentS we have tested. T
from the "root” statemeng” = (cond, Br, By) When se- In order to determine the net effect of our optimization
lecting the implementation f_oﬁ* Wé cgr’u egpioit the fact technique, we have used the following methodology: The C
thatS* cannot have a preconditilon since it is the outerrﬁo spurce code was first compiled by an ANSI C frontend into
ITE statement. Therefore, we just néed to compare the valu%ltn intermediate representation (IR). The IR essentially con-
N o N o he . §i%ts of three-address code, but originally retains all source-
T2 jump(57) @NATCLcpe(S7). SUPPOSET.L jump(57) < Jevel ITE statements. On the IR we have applied the pre-
TX rec(S7). Then,c-jump is the faster implementation. sented technique to replace all ITE statements by (condi-
Furthermore, from the implementation scheme in section 3tibnal) assignments and jumps. From the modified IR, we
we know thatBr and Bg will have no precondition. Thus, have generated symbolic sequential C62xx assembly code.
for all ITE statements i3y and B, we again only need to This sequential code has been processed by tlas3g@mbly
compare thg'Y and7¥ values in order to decide optimizer that performs register allocation, and scheduling

c—jump c—exec

setup cost table select min

(constant) PASS 1: BOTTOM-UP - - trom row TN
T -
Nc—exec Nc-jump c-exec c-jump
<P P implementation
Peexec | Pejump .- cexec | Tejump generates

z ~~_ precondition ?
root ITE statement AN N .
compute new cost " : no: select m’\lln
\ U = from row T

table from TNand 77 @ Teexec | Tedump
< P P

and setup cost table ™ ™

cexec | ' cump N T yes: select min
/’ N c-exec cjump |<— P
P ° / vV N\ fromrow T
cexee | Tejump , N
/oA (ITE) D)
N ’ A 7’ \\
min=T_| N N ¥V N\ vV \
c-exec c-jump B T B E
min=TP| » P

c-exec Tc—]ump

PASS 2: TOP-DOWN

cost table
for block Bt

Figure 2:1llustration of the optimization procedure for a nested ITE statement

of the symbolic sequential assembly while using the samé ~ Conclusions

code generation techniques as the TI C6x C compiler. For

the dynamic programming technique, we have set the jumihis paper has presented a new optimization technique for
penalty .J to a value of 4, while for the parallelism parame-mapping control-intensive programs to embedded VLIW
ter K (see section 4) we empirically found a value of 3 mosprocessors. The technique makes use of conditional instruc-
appropriate. The code generated in this way has been coti¢ns and aims at globally selecting the fastest ITE imple-
pared to the code that was directly generated through the mentations across all nesting levels. Its efficacy has been
C compiler. The worst-case execution times (in instructiodemonstrated for a recent VLIW DSP. Since the optimization
cycles) are shown in table 3. is guided by machine-dependent parameters, we expect that
comparable results can be achieved for similar VLIW ma-

[__source | cjump | c-exec | opt] TI | chines. The dynamic programming technique is not affected
adaptquant 21 11 11 115 by the replacement of the cost estimation functions. There-
adaptpredictl | 12 13 113113 fore, the simple and fast estimation techniques presented here

adaptpredict2| 26 21 22 [27 might be substituted in the future by marecurate and time-
diff_comp 9 12 12 | 10 intensive procedures that exploit schedulability information.
outp.conv 26 30 24 121
codeadj1 32 23 23] 30
codead)2 57 | 173 |49 [51 References
codead]3 39 244 30 | 41 R) .
detecipos 28 27 | 27 | 29 B aicng Methodoloamit. Cant on SIgAAI Proceeting Apphcatons and

find-mv 27 30 30 78 Technology (ICSPAT), 1994

[2] B. Wess: Automatic Instruction Code Generation based on Trellis Diagrams
. . . IEEE Int. Symp. on Circuits and Systems (ISCAS), 1992, pp. 645-648
Table 3:Exper|mental results: worst-case execution time .) : : . .
[3] G.Araujo,S. Malik, M. LeeUsing Register Transfer Paths in Code Generation
for Heterogeneous Memory-Register Architectu@3rd Design Automation
Conference (DAC), 1996

Columns 2 and 3 show the execution times when us- o .
. . " [4] D.Lanneer, M. Cornero, G. Goossens, H. De MBata Routing: A Paradigm
ing thec-jump andc-exec schemes only, respectively. Col- for Efficient Data-Path Synthesis and Code GeneraffohInt. Symp. on High-
umn 4 shows the results for optimized ITE implementation, ~ LevelSynthesis (HLSS), 1994, pp. 17-21
i i 5] C. Liem, T. May, P. Paulininstruction-Set Matching and Selection for DSP
and C.0|umn S gives the correspondlng results for the Tl C [5] and ASIPCodeyGeneratioEuropean Design and TegtConference (ED&TC),
compiler. In most cases, our technique was able to generate 1994, pp. 31-37
f.aSte_r code. Ina feW cases, due to Inaccuracies In the_es[G] A. Timmer, M. Strik, J. van Meerbergen, J. Je€onflict Moddling and In-
timations, the ”0pt|m|zed" solutions computed by dynam|c struction Scheduling in Code Generation for In-House DSP Cdigsd De-
. . sign Automation Conference (DAC), 1995, pp. 593-598

programming are worse than the pargump or c-exec so-) . ’

H 7] Texas Instruments: TMS320C62xx CPU and Instruction Set Reference Guide,
lutions. However, the two larger and deeply nested examples] T s Tes2ox 100y
("code adj2” and "codeadj3”) indicate that exclusively us-
ing eitherc-jump or c-exec is not a good approach, but that
the optimum in general is located somewhere in between. g

[8] ng H5\6vu: Introductionto Predicated ecution IEEE Computer, Jan. 1998, pp.

J.R. Allan, K. Kennedy, C. Porterfield, J. Warre@pnversion of control de-
Eendenceto data dependenteth ACM Symp. on Principles of Programming
anguages, 1983

2 [10] S.A. Mahlke,D.C. Lin, W.Y. Chen, et alEffective Compiler Supportfor Pred-
The TI C62xx_has 5 bran_ch delay slots. However, t_he Vall.J‘é ofas . icated Execution Using the Hyperblg@&th Ann. Symp. on Microarchitecture
chosen smaller, since sometimes the delay slots are filled with useful in- (MICRO-25), 1092

structions, resulting in a lower average jump penalty.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

