
On Reducing Transitions Through Data Modi�cations

Rajeev Murgai, Masahiro Fujita

Fujitsu Laboratories of America, Inc.

California, USA
murgai,fujita@fla.fujitsu.com

Abstract

Since busses take up signi�cant fraction of chip-area, the bus ca-
pacitances are often considerable, and the bus power may account
for as much as 40% of the total power consumed on the chip [5]. In
applicationswhere the integrity of data is not very important, data
may be changed by 3 to 5% without losing too much information.

One such application is that of a binary-encoded image, in which
case the human eye cannot perceive the small change. However,

these small changes can signi�cantly reduce the number of transi-
tions on the data bus and thus the power/energy consumed. We
address the following problem: Given a sequence of n k-bit data

words and an error-tolerance e% (i.e., at most e% of the data bits
are permitted to change), select the bits to be modi�ed so that the

total number of transitions is minimized. We show that a greedy
strategy is not always optimum. We propose a linear-timedynamic

programming based algorithm that generates an optimum solution
to this problem. The experimental results for randomly generated
data with a uniformdistribution indicate that by changing e% data

bits, the transitions can be reduced, on average, by 4e%.

1 Introduction

With the proliferation of portable electronic devices, low power
has become an important design objective. Among the suite of
emerging techniques for low power design are pipelining and par-

allelization [2, 6], reduction of supply voltage [2], and minimization
of switching activity. The problem of minimizing the switching ac-

tivity in a circuit has been addressed at various levels: system
level [1, 2], logic or gate level [10, 11, 13], layout level [3, 7, 4], and
transistor level [12].

We focus on the issue of minimizing switching activity on high-
capacitance busses. In microprocessors and DSPs, busses account
for almost 40% of the chip area; 30-40% of the power consumption
on a chip is due to bus-power [5], i.e., the power consumed in
charging/discharging the often large bus capacitances.

Recently, in [8], one aspect of the bus switching activity problem
was addressed. If a set of data words or messages is to transmit-
ted over a bus (as shown in Figure 1) such that the sequence in
which the words are transmitted is irrelevant, it may be possible to
send the data words in an order that minimizes the total number
of transitions on the bus. It was shown in [8] that this prob-
lem has applications in various design scenarios and phases such

as scheduling in high-level synthesis, cache write-back, instruction
sequencing, die testing, and transmission of a set of records. In

[9], an extra degree of freedom namely word complementation was
used to further reduce the transitions.

In this paper, we address a di�erent aspect of switching activity
reduction on the bus. In many applications, the integrity of data
is not extremely important and the data may be changed by 3

Transmitter Receiver

w
3

w
2

w
1

0

0

0

1

1

0

1

1

0

1

0

1

Figure 1: Transmitting a set of words

to 5% without incurring a signi�cant information loss. One such
application is that of a binary-encoded image (see Figure 2). A

typical image may be about 100 x 100 pixels. If each pixel is
encoded in (say) 7 bits, the entire image takes 70K bits. Suppose

we modify 3% of the binary-encoded image, i.e., change about 2K
bits from 0 to 1 (or 1 to 0). Being a relatively small change, it may

not be perceived by the human eye. However, the modi�ed bits
can signi�cantly reduce the number of transitions seen on the data
bus when the image is stored into or read from the memory. Since

the data bus is a high-capacitance line, the savings in transitions
translate to considerable savings in the power consumed. These

savings become signi�cant if the modi�ed data (for instance, the
modi�ed image) is stored at a central location (e.g., a popular

ftp or www site). The power savings are available to all the users
(possibly hundreds of thousands) who download the data to their
respective computers (the bold lines in Figure 2 indicate the sites

of power savings). These savings assume even more importance
if the computer is a portable one, since the battery life is really

critical.

Example 1.1 As a simple case, consider the 10-bit sequence S =
0110111100. Assume that S is transmitted on one of the bit-lines
of a bus. S has four transitions. Suppose that we are permitted
to change (complement or
ip, i.e., from 0 to 1 or 1 to 0) 20%
of the bits of S, i.e., 2 bits. If we complement the 1st and the 4th

bits (both are 0s and we change them to 1s), the new bit-sequence
becomes 1111111100, which has just one transition. Thus a 20%

modi�cation results in a 75% reduction in the number of transi-
tions.

The outline of the paper is as follows. In Section 2 we for-
mally state the problem of reducing the number of transitions if
a pre-speci�ed number of bits is allowed to
ip. We call it the
data modi�cation problem (DMP). In Section 3, we present
a linear-time algorithm to solve the DMP optimally. Experimental
results and implementation details are covered in Section 4. Fi-

nally, we conclude with some drawbacks of the proposed method-
ology and possible �xes in Section 5.

modify e% of

 the image
 gif/jpgcompress

 gif/jpg

ethernet

uncompress

in the main
 memory

DISPLAY

FTP site

user 1

 binary−
encoded
 image
 BI

 modified
 binary−
encoded
 image
 MBI

 modified
 binary−
encoded
 image
 MBI

 gif/jpg
uncompress

in the main
 memory

DISPLAY

 modified
 binary−
encoded
 image
 MBI

user p

ethernet

sites of power
 savings

Figure 2: Power savings for a binary-encoded image

2 Problem De�nition

Consider n k-bit data words w1; w2; : : : ; wn that have to be trans-

mitted in this order over a k-bit bus, i.e., �rst w1 is transmitted,
then w2, and so on, and �nally wn. We are allowed to change

at most e bits (out of the total kn bits).1 The data modi�cation
problem (DMP) is deciding which bits to change so that the total
number of transitions on the bus is minimized when the modi�ed

data words are transmitted in the same order.

If word wr is transmittedand is immediately followed byws, the
number of transitions is given by the number of bits that change.

This is

d(wr; ws) =

kX
j=1

wrj � wsj (1)

sometimes called the Hamming distance between wr and ws.
Here, wrj denotes the jth bit of wr , and � denotes the Boolean
EX-OR.2 For instance, the Hamming distance between 11001 and

10010 is 3, i.e., d(11001;10010) = 3.

Formally, DMP can be stated as:

\Given a sequence of n k-bit words w1, w2, : : :wn and an error-
tolerance of e bits, �nd words ew1, ew2, : : : ; ewn such that the total

number of transitions,
Pn�1

i=1
d(ewi; ewi+1), is minimized subject to

the constraint that a total of at most e bits change while deriving
ewis from wis for all i, i.e.,

Pn

i=1
d(ewi; wi) � e."

1In the paper, we overload the symbol e to denote both the
maximum allowable percentage error-tolerance and the maximum
number of bits that can be modi�ed. The usage should be clear
from the context.

2Given bits a and b, a� b = 1 if a = 1; b = 0 or a = 0; b = 1.

3 Proposed Solution

First, in Section 3.1, we consider the case of DMP where each word
is 1-bit long, i.e., k = 1. We call this the 1-bit DMP. We propose

a dynamic programming based algorithm to solve this problem
optimally. The algorithm takes time linear in n and the error-
tolerance e. Later, in Section 3.2, we address the general problem,

i.e., for k-bit data words. We call it the k-bit DMP. We extend
the algorithm of Section 3.1 to generate an optimum solution for

the k-bit DMP in time O(nke).

3.1 The 1-bit DMP

Given n 1-bit words wi, we think of them as an n-bit long sequence
S = w1w2 : : : wn. We have to choose at most e bits for
ipping.

There are a total of n!
e!(n�e)!

possibilities. For a constant e (i.e.,

not a function of n), this is O(ne). However, we do not need to

look at all these possibilities. We show that it is possible to devise
a simple O(ne) algorithm to solve this problem optimally.

Given an n-bit sequence S = s1s2 : : : sn, let �(S) denote the

number of transitions in S, i.e., �(S) =
Pn�1

i=1
d(si; si+1).

De�nition 3.1 Given an n-bit sequence S and a positive integer
e, an n-bit sequence � is (S; e)-legal if d(S; �) � e (i.e., � di�ers
from S in at most e bits).

De�nition 3.2 Given an n-bit sequence S and a positive integer

e, an n-bit sequence eS is (S; e)-optimum if

1. eS is (S; e)-legal, i.e., d(S; eS) � e, and

2. �(eS) = minf�(�) : � an (S; e)-legal sequenceg.

Given a sequence S and error-tolerance e, solving the DMP
means �nding an (S; e)-optimum sequence. It should be evident
that an (S; e)-optimum sequence always exists.

Example 3.1 Let S = 110110000, e = 4. Then, 100000000
is (S;4)-legal (in fact, it is (S; 3)-legal), but 000001100 is not.
000000000 is (S; 4)-optimum.

We now introduce the concept of a packet.

De�nition 3.3 Given a sequence S, a maximal subsequence of S
containing identical bits is called a packet. A 0-packet has all
bits 0, and a 1-packet has all 1s. We will represent a 0-packet
by ~0 and a 1-packet by ~1. Let jpj denote the number of bits in the
packet p.
A completely-
ipped packet p is obtained by
ipping (or

complementing) all the bits of the packet p. Given a packet p with
at least 2 bits, a partially-
ipped packet is obtained from p by

ipping at least one but not all bits.

Note that after partial
ipping, a packet has at least one 0-bit
and at least one 1-bit.

Example 3.2 Let S = 110110000. Then, S has 4 packets (from
left to right): p1 = 11; p2 = 0; p3 = 11 and p4 = 0000. Thus, S
has a unique packet decomposition: p1p2p3p4. p4 = 1111. An
example of a partially-
ipped packet obtained from p4 is 0010.

The concept of a packet is an important one, since as we show
next, there exists an optimum sequence in which no packet is par-

tially
ipped, i.e., either a packet remains intact or is completely

ipped.

Given a packet p of S, let p` denote the leftmost bit of p and pr

the rightmost bit of p. Let b` denote the bit to the left of p` and
br the bit to the right of pr. So S looks like

S = : : : b` p` : : : pr| {z }
p

br : : :

Note that b` or br may be NULL if p is the �rst or the last

packet respectively.

Proposition 3.1 Given a sequence S with its packet decomposi-
tion p1p2 : : : pz, and e, the maximum number of modi�able bits.

Then, there exists an (S; e)-optimum sequence in which no packet
of S is partially
ipped.

Proof Let V = f� : � is an (S; e)-optimum sequence with at least
one packet of S partially
ipped g. V = fg implies the proposi-

tion. So assume V is non-empty. Then, there exists S1 2 V such
that S1 is an (S; e)-optimum sequence with the minimum number
of partially
ipped packets. We will derive an (S; e)-optimum se-

quence eS from S1 that does not have any partially-
ipped packets.
Let p be a partially-
ipped packet in S1. By de�nition, jpj � 2.
We can safely assume jSj > jpj (i.e., S has at least two packets),
otherwise p is the only packet of S and
ipping some but not all
bits is clearly non-optimum. Without loss of generality, assume p
is a 0-packet. Then, b` and br , if non-NULL, are each 1 (from the
maximality of the packet p).

Depending upon p's place in S, there are three cases:

1. p is the �rst (i.e., leftmost) packet of S: There are four sub-
cases depending on the values of pr and br.

(a) In S1, p
r = 1, and br = 1: Because p is partially

ipped, it has a 0 bit somewhere in S1. S1 then looks

like

S1 = : : :0 : : :

prz}|{
1| {z }

p

1|{z}
br| {z }

pbr

R

R denotes the remaining sub-sequence of S1. Then

in S1, �(pb
r) � 1. Consider the following sequence eS,

which is the same as S1 except that no bit of p is
ipped
(i.e., all of p's bits are 0):

eS = ~0|{z}
p

1|{z}
br

R

Clearly, in eS, �(pbr) = 1 � �(pbr) in S1. Since the

subsequences brR are identical in eS and S1, �(eS) �
�(S1). Since the number of bit-
ips in eS is less than

that in S1, (S; e)-legality of S1 implies that eS is (S; e)-
legal.

(b) In S1, p
r = 0, and br = 1: Since p is partially-
ipped,

it has a 1 bit somewhere in S1. S1 then looks like

S1 = : : :1 : : :

prz}|{
0| {z }

p

1|{z}
br

R

Then, in S1, �(pbr) � 2. Consider the following se-

quence eS, which is the same as S1, except that no bit
of p is
ipped:

eS = ~0|{z}
p

1|{z}
br

R

In eS, �(pbr) = 1. Thus, �(eS) < �(S1). As before, eS is
(S; e)-legal.

(c) In S1, p
r = 1, and br = 0: can be handled similarly.

(d) In S1, p
r = 0, and br = 0: can be handled similarly.

2. p is the last packet of S: this is symmetric to the previous

case.

3. p is somewhere in the middle of S: There are four cases
depending on the values of b` and br . We will only address

the �rst case; the rest are proved identically.

(a) In S1, both b` = br = 1. S1 can be written as either

S1 = L

b`z}|{
1 : : :0 : : : 1 : : :| {z }

p

brz}|{
1 R

or

S1 = L

b`z}|{
1 : : :1 : : : 0 : : :| {z }

p

brz}|{
1 R

L and R are the subsequences in S1 to the left of b
` and

to the right of br respectively. Consider a sequence

eS which is identical to S1, except that no bit of p is

ipped.

eS = L

b`z}|{
1 ~0|{z}

p

brz}|{
1 R

Then, in eS, �(b`pbr) = 2. Since in S1 at least one 0
bit and at least one 1 bit occur in the packet p, in S1,

�(b`pbr) � 2. Thus, �(eS) � �(S1). As before, eS is
(S; e)-legal.

(b) In S1, both b` = br = 0.

(c) In S1, b
` = 0; br = 1.

(d) In S1, b
` = 1; br = 0.

In each case, we derived a sequence eS such that

1. eS does not have p partially
ipped. In fact, p remains what
it was in S, and

2. except p, all packets are identical in S1 and eS, and
3. eS is (S; e)-legal, since S1 is (S; e)-legal and S1
ips some

bit(s) of p whereas eS does not (the other parts of S1 and eS
are identical), and

4. �(eS) � �(S1).

Then it follows that since S1 is (S; e)-optimum, eS is also (S; e)-

optimum. However, eS has one less packet partially
ipped as
compared to S1. From the minimality of S1 with respect to the

number of partially-
ipped packets, it follows that eS 62 V . That

implies eS has no partially-
ipped packet. Thus, we have derived an

(S; e)-optimum sequence eS that does not have any partially-
ipped
packet.

In other words, Proposition 3.1 says that there exists an opti-
mum sequence in which each original packet is either unchanged

or completely
ipped. So we can restrict the problem of selecting
from S at most e bits for
ipping to that of selecting packets for

complete
ipping, and still be able to obtain an optimum solution.
The selected packets should not
ip more than a total of e bits.
To formalize all this, we introduce the notions of a packet-selection

set, its legality, and optimality.

De�nition 3.4 Given an n-bit sequence S with packet decompo-
sition S = p1p2 : : : pz. A packet-selection set U is a subset of

fp1; p2; : : : pzg and implies that all the packets in U will be com-
pletely
ipped, and a packet not in U will remain completely un-

changed. Let U(S) denote the sequence obtained from S by com-
pletely
ipping all the packets of U .

Note that d(S; U(S)) =
P

p2U
jpj.

De�nition 3.5 Given an n-bit sequence S with packet decompo-
sition S = p1p2 : : : pz, and a positive integer e. A packet-selection

set U is (S; e)-legal if U(S) is (S; e)-legal, i.e., (
P

p2U
jpj) � e.

A packet-selection set U is (S; e)-optimum if U(S) is (S; e)-

optimum.

Example 3.3 Consider the sequence S = 110110000. The packet
decomposition of S is p1 = 11; p2 = 0; p3 = 11; p4 = 0000. Let
U = fp1; p2g. Then, U(S) = 001110000. Note that U is (S; 3)-
legal since p1 and p2 have a total of 3 bits. Clearly, U is not (S; 2)-
legal. Note that U = fp2g is (S; 1)-, (S; 2)-, and (S; 3)-optimum.

fp3g and fp2; p3g are also (S;3)-optimum.

Our goal now is to determine an (S; e)-optimumpacket-selection
set U . Before that, we introduce the notions of packet cost and
packet gain.

De�nition 3.6 With each packet p, we associate a packet cost
C(p), which is the number of bits in the packet (i.e., jpj), and

a packet gain G(p), which is the reduction in the number of
transitions when p is completely
ipped and the packets adjacent

to p remain the same.

Note that G(p) = 0 if p is the only packet in S, G(p) = 1 if p is
the �rst or the last packet of S, otherwise G(p) = 2.

Next we show that a simple greedy strategy is not always opti-
mum.

3.1.1 Greedy Algorithm is Sub-Optimum

A greedy algorithmproceeds in stages. Let v denote the number of
bits that can be
ipped at a given stage in the algorithm. Initially,
v = e. At each stage, the algorithm selects the best packet p for

ipping. The best packet is the one that has the maximum non-
zero gain among all the packets that have a cost of at most v and if
there is more than one such packet, p is the one with the minimum
cost (i.e., with the minimum number of bits). After
ipping p, at
most v�C(p) more bits can be
ipped. The algorithm stops when
it cannot �nd a v-legal packet with non-zero gain.

As the following example illustrates, the greedy algorithmmay
not always yield the optimum solution.

Example 3.4 Consider the sequence S = 110110000, with e = 4.
Let us divide the sequence into its packets, along with their gains
and costs:

packet pi gain G(pi) cost C(pi) = jpij

p1 = 11 1 2
p2 = 0 2 1
p3 = 11 2 2
p4 = 0000 1 4

The greedy algorithm would work as follows. Initially, v =

e = 4. Each packet is (S; 4)-legal. Packets p2 and p3 have the
maximum gain. Since C(p2) < C(p3), p2 is picked for
ipping.
The new sequence is S1 = 111110000. Now, v = 4 � C(p2) = 3.

S1 has two packets 11111 and 0000, but neither is (S1; 3)-legal.
Hence, no more transition reduction is possible. �(S1) = 1.

However, an (S; 4)-optimum sequence eS is obtained by U =

fp1; p3g. eS = U(S) = 000000000; �(eS) = 0. Note that U is
(S; 4)-legal.

3.1.2 An Optimum Dynamic Programming Al-

gorithm

We �rst prove that there exists an optimum packet-selection set

that does not contain any two adjacent packets of S.

Proposition 3.2 Given a sequence S with its packet decomposi-

tion p1p2 : : : pz; z � 2 and e, the maximum number of modi�able

bits. Then, there exists an (S; e)-optimum packet-selection set eU
such that for no i, 1 � i < z, both pi; pi+1 2 eU .
Proof Let V = fW : W is an (S; e)-optimum packet-selection set

containing at least one adjacent pair of packets of Sg.
If V = fg, we are done. Otherwise, let U 2 V contain the

minimum number of adjacent packet pairs as compared to all the
sets in V . Let pi; pi+1 2 U for some i. Without loss of generality,
assume that in S, pi is a 0-packet (denoted ~0). Then pi+1 is a
1-packet (denoted ~1), pi�1 a 1-packet (if it exists) and pi+2 a 0-
packet (if it exists).

There are four cases:

1. Both pi�1 and pi+2 are NULL, i.e., i = 1 and S has only
two packets. S = pipi+1 = ~0~1. Then U = fpi; pi+1g and
U(S) = pipi+1 = ~1~0. Then, �(U(S)) = 1 and d(U(S);S) =

jpij+ jpi+1j. Consider the set eU = U�fpi+1g = fpig. Then,eU(S) = pipi+1 = ~1~1. So �(eU(S)) = 0 < �(U(S)). Also,

d(eU(S); S) = jpij < jpij+ jpi+1j = d(U(S); S).

2. pi�1 is NULL, but pi+2 is not, i.e., i = 1 and S has at least
three packets, i.e.,

S = ~0|{z}
pi

~1|{z}
pi+1

~0|{z}
pi+2

: : :

There are two sub-cases:

(a) pi+2 62 U : Then

U(S) = ~1|{z}
pi

~0|{z}
pi+1

~0|{z}
pi+2

R

Here R is the sub-sequence of U(S) to the right of pi+2.

Let eU = U � fpig. Then

eU(S) = ~0|{z}
pi

~0|{z}
pi+1

~0|{z}
pi+2

R

Clearly, �(eU(S)) = �(U(S))� 1 < �(U(S)). Also, eU is

(S; e)-legal, since U is (S; e)-legal and eU � U .

(b) pi+2 2 U : Then

U(S) = ~1|{z}
pi

~0|{z}
pi+1

~1|{z}
pi+2

R

Let eU = U � fpi+1g. Then,

eU(S) = ~1|{z}
pi

~1|{z}
pi+1

~1|{z}
pi+2

R

�(eU(S)) = �(U(S))�2 < �(U(S)). Also, eU(S) is (S; e)-
legal.

3. pi+2 is NULL, but pi�1 is not: this is symmetric to the last
case.

4. Both pi�1 and pi+2 are non-NULL: there are four sub-cases
here:

(a) pi�1; pi+2 2 U : Then

U(S) = L ~0|{z}
pi�1

~1|{z}
pi

~0|{z}
pi+1

~1|{z}
pi+2

R

Let eU = U � fpig:

eU(S) = L ~0|{z}
pi�1

~0|{z}
pi

~0|{z}
pi+1

~1|{z}
pi+2

R

(b) pi�1 2 U;pi+2 62 U : can be handled similarly.

(c) pi�1 62 U;pi+2 2 U : can be handled similarly.

(d) pi�1; pi+2 62 U : can be handled similarly.

In each of the above cases, we derived a packet-selection set eU
such that

1. eU = U � fpjg; j 2 fi; i + 1g. So eU does not contain the

packet-pair fpi; pi+1g and eU is (S; e)-legal, and

2. �(eU(S)) � �(U(S)).

Then, from the (S; e)-optimality of U , it follows that eU is also

(S; e)-optimum,with at least one less pair of adjacent packets than
U . The minimality of U in V with respect to the adjacent pairs

implies that eU 62 V . In other words, eU does not have any pair of
adjacent packets. Hence proved.

Now, we are ready to present the optimum algorithm for the

1-bit DMP, which selects a set of packets for complete
ipping
such that the total cost of selected packets is at most e and the
reduction in the number of transitions is maximized. The resulting
sequence would have the minimum number of transitions.

Let S = p1p2 : : : pz. Let TG(pi; v), v � e, denote the maximum
transition gain (or reduction) when only a subset of packets from

fpi; pi+1; : : : ; pzg is selected with a total of at most v bit-
ips
permitted.

TG(pi; v) =

8<
:

0 if v � 0
TG(pi+1; v) if C(pi) > v

maxfG(pi) + TG(pi+2; v � C(pi));
TG(pi+1; v)g otherwise

(2)

We set TG(pz+1; v) = TG(pz+2; v) = 0 8 v.
(2) may be understood as follows. If the cost of packet pi is

greater than the maximum number of bits, v, allowed to be modi-
�ed, pi cannot be selected in the solution, and the total transition
gain is equal to the total transition gain from the packet pi+1 on-
wards with a budget of v modi�able bits. Otherwise, there are two
possibilities:

� pi is selected: the total gain is the gain in transitions due
to pi (i.e., G(pi)) plus the total gain from the packet pi+2
onwards with a budget of v�C(pi) modi�able bits. Note that
since pi has already been selected, pi+1 is not selected { from
Proposition 3.2. Recall that if pi is selected, the de�nition
of the packet gain G(pi) assumes that the packets adjacent
to pi (i.e., pi+1 and pi�1) are not selected. We just saw
that pi+1 is not selected. We note that if pi�1 is selected,
pi is not selected. In other words, if pi is selected, pi�1 is

not selected. So we are correct in adding the gain G(pi) to
TG(pi+2; v � C(pi)) while computing TG(pi; v).

� pi is not selected: the gain is the total accumulated gain from

pi+1 onwards, with the total budget still at v.

The gain TG(pi; v) is the maximum of these two cases.

The optimum solution to the 1-bit DMP then corresponds to
the value of TG(p1; e). If at each packet pi, along with TG(pi; v),

we also remember whether the best solution selects pi, we can
determine the optimum packet-selection set.

Computation Complexity: For each packet pi, we need to
store the TG values for 1 � v � e in the worst case.3 Note from
(2) that the computationof TG(pi; v) takes constant time provided

TG(pi+1; v) and TG(pi+2; v�C(pi)) are already computed. Also,
once a TG value is computed for a packet pi and budget v, it

need not be computed again. Since there are z packets, the time
complexity of the algorithm is given by O(ze). Since z � n, the

complexity is O(ne).
The above discussion leads us to the following proposition.

Proposition 3.3 Given n 1-bit data words and that at most e bits
can change, the algorithm described above computes the optimum

solution to the 1-bit DMP.

Example 3.5 Let S = 110110000, e = 4. The packets pi, their
costs C(pi) and gains G(pi) were shown in Example 3.4.

TG(p1; 4) = maxf1 + TG(p3; 2); TG(p2;4)g

� TG(p3; 2) = maxf2 + TG(p5; 0); TG(p4; 2)g

{ TG(p5; 0) = 0.

{ TG(p4; 2) = 0 (because jp4j = 4).

Thus, TG(p3;2) = maxf2 + 0;0g = 2 { select p3.

� TG(p2; 4) = maxf2 + TG(p4; 3); TG(p3; 4)g

{ TG(p4; 3) = 0 (because jp4j = 4).

{ TG(p3; 4) = maxf2+TG(p5; 2); TG(p4;4)g = maxf2+

0;1g = 2 { select p3.

Thus, TG(p2;4) = maxf2 + 0;2g = 2.

Thus, TG(p1;4) = maxf1 + 2;2g = 3 { select p1.

In the optimum solution, we select p1 and p3, or eU = fp1; p3g.
The total reduction in transitions is TG(p1; 4) = 3. The resulting

optimum sequence eU(S) = 000000000, as noted in Example 3.4.

3In practice, we observed that much fewer values are needed.

3.2 The General Case: k-bit DMP

We now remove the restriction that each data word be a single
bit. Each word is k-bit wide, k � 1. It turns out that the dynamic
programmingalgorithmfor k = 1 can be easily extended for solving
the k-bit DMP optimally as follows.

We are given n k-bit words: w1; w2; : : :wn, where

wi = wi1wi2 : : :wik (3)

For each bit j; 1 � j � k, form the sequence Sj by concatenating
the jth bits of all the words as follows:

Sj = w1jw2j : : :wnj (4)

For each Sj , determine its packet decomposition and store the cost
and gain of each packet. Finally, concatenate all Sjs by inserting a
dummy packet �j;j+1 between the sequences Sj and Sj+1. Assign
a cost of 0 and a gain of 0 to each dummy packet. Let the resulting
sequence be S.

S = S1 (�1;2) S2 (�2;3) S3 : : : Sk�1 (�k�1;k) Sk (5)

Note that the packet decomposition of S is given by the packet
decomposition of S1 followed by �1;2 followed by the packet de-

composition of S2, and so on. Apply the algorithmof Section 3.1.2
on this packet decomposition of S and obtain the (S; e)-optimum

packet-selection set U . From U , discard all the dummy packets �.
The resulting set of packets is the optimum solution to the original
k-bit DMP. It can be seen that the complexity of the algorithm is

O(nke).

Proposition 3.4 The algorithm presented above computes the

optimum solution to the k-bit DMP.

Sketch of Proof We need to ensure that the selection of Sj 's
last packet does not exclude the selection of Sj+1's �rst packet

(the exclusion would have occurred had we simply concatenated
the packet decompositions of the individual sequences { see (2)).

The presence of the dummy packet �j;j+1 accomplishes exactly
that. Also, if the algorithm selects some dummy packet �j;j+1,

the cost and transition gain of the �nal solution (after throwing
away �j;j+1) are not changed, since �j;j+1 has zero cost and zero

gain.

4 Experimental Results

The objective of our experiments is to evaluate the e�ective-

ness of the proposed dynamic programming based algorithm in
minimizing the switching activity. The experimental set-up is as
follows. Since the general k-bit problem is essentially the same as
the 1-bit problem, we only consider n 1-bit data words. Further,
these words are generated from a uniform distribution: the prob-

abilities of generating a 1 and a 0 are the same (= 0.5). We count
the total number of transitions (column � in Table 1) if the words

are transmitted without modi�cation and in the order generated.
Next, we specify the error-percentage e, and from it compute the
maximum number of bits allowed to
ip, denoted as e (bits). We
apply the algorithm of Section 3.1.2 on the n-bit sequence and de-
termine the reduction in transitions (columns �� and �� (%)).

The experiment is run for di�erent values of n and e. For each
(n; e) pair, 3 di�erent bit sequences are generated.

The results are shown in Table 1. The number of bits (or words),
n, is varied as 10, 40, 100, 500, and 1000. The maximum number

of bits permitted to change, e, is set to 3 and 10% of n. Com-
paring the columns \e (% of n)" and �� (%), it can be deduced

that if e% bits are allowed to
ip, the average percentage reduc-
tion in transitions is about 4e. This is indeed encouraging, since

n � e (% of n) e (bits) �� �� (%)

10 7 10 1 2 28

10 4 10 1 2 50
10 3 10 1 2 66

40 20 3 1 2 10

40 23 3 1 2 8

40 17 3 1 2 11

40 18 10 4 8 44

40 20 10 4 8 40
40 16 10 4 8 50

100 50 3 3 6 12

100 45 3 3 6 13

100 55 3 3 6 10

100 58 10 10 20 34

100 44 10 10 20 45

100 48 10 10 20 41

500 246 3 15 30 12

500 290 3 15 30 10
500 247 3 15 30 12

500 261 10 50 100 38
500 276 10 50 100 36

500 267 10 50 100 37

1000 508 3 30 60 11

1000 491 3 30 60 12

1000 525 3 30 60 11

1000 487 10 100 200 41

1000 528 10 100 200 37
1000 506 10 100 200 39

n the number of 1-bit words
� the total number of transitions in the n-bit sequence

e the error-tolerance

�� reduction in # transitions after data modi�cation

Table 1: Reduction in Transitions

a small distortion in the data can reduce the transitions signi�-
cantly. We can explain this behavior analytically as follows. Let
the probability of occurrence of a 1 in the bit stream be p. Then
the probability of a 0 is (1 � p). There is a transition from the
bit i to bit i + 1 if the bit i is 1 and i + 1 is 0, or the bit i is 0
and i + 1 is 1. The corresponding transition probability is then
p(1 � p) + (1 � p)p = 2p(1� p). The expected number of tran-
sitions in an n bit sequence E(�) � 2np(1 � p). Now, e% bits
of n = en=100 bits are allowed to change. Given that e is small,
the algorithm can usually �nd packets each with a cost of 1 and a

transition gain of 2. Thus, the savings in transitions �� are about
2en=100. The percentage reduction in transitions is then

��(%) =
2en=100

2np(1� p)
100 (6)

=
e

p(1� p)
(7)

Setting p = 0:5 (as is the case in the bit sequences generated for
the above experiment), we obtain a reduction of about 4e. To
further con�rm the analysis, we conducted the entire experiment

with p = 0:25. We do not report the results here, but we observed
a percentage reduction of about 5e, which is consistent with 16e=3

1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

(A) (B)

Figure 3: A pathological case when our algorithm can

destroy useful information

given by (7).4

5 Discussion

In this paper, we identi�ed an avenue for reducing switching activ-

ity in applications where data integrity is not crucial. One appli-
cation where this may be useful is in storing and displaying images
on the computer. We presented an optimum linear-time dynamic

programming based algorithm to solve this problem of data mod-
i�cation for minimizing the total number of transitions given an

upper bound on the number of modi�able bits. Experimental re-
sults on randomly generated data with uniform distribution show

that by modifying data by e%, on average one can hope to reduce
transitions by 4e%.

Our technique has at least one drawback. Consider a binary-
encoded black and white picture, shown in Figure 3 (A). A `1'

represents a white pixel, and `0' a black one. Thus a black strip
runs down the entire length of the original picture. Suppose each

row is transferred on a data line. If 20% distortion is allowed, our
algorithmwill change each 0 into a 1, reducing the number of tran-

sitions by 100%. However, as a result, the black strip disappears.
The entire picture is now white (i.e., all 1s), as shown in Figure

3 (B)! The problem arises because the algorithm can modify any
data bits in order to maximize the transition reduction. It does not
distinguish portions of the data stream that have high information

content (e.g., object boundaries) from those having low informa-
tion content (e.g., the continuouswhite background). The problem

may be recti�ed by marking the high-information regions and dis-
allowing the algorithm to modify them. We plan to work on this

extension in the future. We must point out, however, that such
an extreme behavior should manifest itself rarely, the reason being
that typically each pixel is encoded using 7 bits, which represent
the color-coding or the gray-level of the image at that location. So
a 1 to 0 (or 0 to 1) transition in the data stream may not corre-

spond to a sharp boundary in the image (since a boundary is an
inter-pixel manifestation), and may just be within the pixel (i.e.,

intra-pixel). When the algorithm changes the subsequence 1001
to 1111, it may not necessarily be making changes across two pix-
els, but simply within a pixel, in which case, the boundary is not
destroyed.

In future, we plan to apply our algorithm on real binary-coded
images and audio streams and study the reduction in transitions
vis-a-vis degradation in the quality.

4Note that (7) should be appliedonly when the expected savings
in transitions �� = 2en=100 is not more than the total number of
transitions � = 2np(1 � p). For instance, when p = 0 or p = 1,
the total number of transitions (the denominator in (6)) is 0, and

hence there can be no savings in transitions. However, (7) predicts
huge savings!

Finally, we realize that data compression is an obvious approach
to saving power. Our data modi�cation technique is complemen-
tary to data compression, in that it can be applied in tandemwith
compression (as was shown in Figure 2), and thus save additional
power.

References

[1] J. Bunda, W. C. Athas, and D. Fussell. Evaluating Power
Implications of CMOS Microprocessor Design Decisions. In
International Workshop on Low Power Design, pages 147{
152, April 1994.

[2] A. Chandrakasan, T. Sheng, and R.W. Brodersen. Low Power
CMOS Digital Design. In Journal of Solid State Circuits,
pages 473{484, April 1992.

[3] K. Y. Chao and D. F. Wong. Low Power Considerations in
Floorplan Design. In International Workshop on Low Power
Design, pages 45{50, April 1994.

[4] J. Cong, C. K. Koh, and K. S. Leung. Wiresizing with Driver
Sizing for Performance and Power Optimization. In Interna-
tional Workshop on Low Power Design, pages 81{86, April

1994.

[5] ExperiencedMotorola Designer. Personal comm., April 1995.

[6] P. Duncan, S. Swamy, and R. Jain. Low-Power DSP Cir-
cuit Design Using Retimed Maximally Parallel Architectures.

In Proceedings of the 1st Symposium on Integrated Systems,
pages 266{275, March 1993.

[7] V. Hirendu and M. Pedram. PCUBE: A Performance Driven

Placement Algorithm for Lower Power Designs. In Proceed-
ings of Euro-DAC, pages 72{77, 1993.

[8] R. Murgai, M. Fujita, and S. C. Krishnan. Data Sequencing

for Minimum-transition Transmission. In VLSI'97, August
1997.

[9] R. Murgai, M. Fujita, and A. Oliveira. Using Complementa-
tion and Resequencing To Minimize Transitions. In Proceed-

ings of the Design Automation Conference, pages 694{697,
June 1998.

[10] K. Roy and S. Prasad. SYCLOP: Synthesis of CMOS Logic

for Low Power Applications. In Proceedings of the Int'l Con-
ference on Computer Design: VLSI in Computers and Pro-
cesors, pages 464{467, October 1992.

[11] A. Shen, S. Devadas, J. White, A. Ghosh, and K. Keutzer.
A Combinational Logic Design Methodology Targeting Low
Power Applications. InMIT Technical Report (available from
the authors), February 1993.

[12] C. H. Tan and J. Allen. Minimization of Power in VLSI Cir-

cuits Using Transistor Sizing, Input Ordering, and Statistical
Power Estimation. In International Workshop on Low Power
Design, pages 75{80, April 1994.

[13] V. Tiwari, P. Ashar, and S. Malik. Technology Mapping for

Low Power. In Proceedings of the 30th Design Automation
Conference, pages 74{79, June 1993.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

